Performance-Based Seismic Design Guidelines for Tall Buildings Ch. 5: Seismic Input (Ground Motion)

TBI Committee Members

C. Crouse J. Stewart Y. Bozorgnia

Tall Buildings Initiative Workshop, Los Angeles

April, 14, 2009

Presentation

1. Seismic Hazard Analysis (SHA)

- Probabilistic
- Deterministic
- Site-Response Analysis

2. Soil-Foundation-Structure Interaction

- Kinematic
- Inertial
- Input Motion

Presentation (cont.)

3. Selection and Scaling of Accelerograms

- Identification of Controlling Seismic Sources
- Accelerogram Selection Guidelines
- Accelerogram Modifications

Two SHA Approaches (cont.)

- 2. Site-Specific (Preferred)
 - Probabilistic
 - Deterministic

Uniform Hazard Spectrum

Cascadia Earthquake Sources

Contribution to 2475-yr Ground Motion Hazard

Lavizzo Park, Seattle (47.6° N, 122.3° W) 2008 USGS PSHA

Basin Effects

- Amplify long period motions
- Increase duration

Seattle Basin

Ref.: Frankel et al. (2009)

Seattle Basin – EW Profile

PEER

CSZ M 9.2 Scenario (Yang, 2009)

Simulated CSZ M 9.2 Rock & Soil (Basin) Ground Motions for Seattle

Response Spectra for Seattle Fault & CSZ Scenarios

2002 & 2008 USGS S_{DS} & S_{DI} , Site Class D, Seattle

Response Spectra for Seattle Fault & CSZ Scenarios

PEER

Accelerogram Selection and Scaling

Identify controlling earthquakes

Select representative accelerograms

 Modify accelerograms to match target Sa

Contribution to 2475-yr Ground Motion Hazard

Lavizzo Park, Seattle (47.6° N, 122.3° W) 2008 USGS PSHA

CMS – ϵ Parameter

Number of Accelerograms - N

7 (minimum)

Maximum numberSE and GE decision

N depends on:

controlling earthquakes
Median/mean or maximum structural response
Target Sa

$M \ge \sim 8$, Long Duration Motion

San Andreas fault M ~ 8

Cascadia and S. Alaska subduction zone
 M 9+

Past and Future Seattle Ground Motions

Accelerogram Modification

Constant Scaling

Spectral Matching

Constant Scaling Method

Sa (g)

Spectral Matching

Accelerogram Selection and Scaling Recommendations

- $N \ge 7$ (max N limited by \$ and time)
- Use M-R deaggregations → controlling EQs
- CMS use for multiple M-R → different Sa shapes
- Scaling (constant or spectral matching)
 SE's decision
- Simulated Accelerograms (M > ~ 8)
 + long duration and basin effects

- very limited no. qualified providers
Peer Review – Extremely Important

Site Response Analysis

Recommendations

 Don't do SRA for stiff soil sites; account for local geology through GMPE (i.e., select stiff soil GMPE or appropriate site terms in GMPE)

Possible Exceptions

Required in ASCE 7-05

SRA (cont.)

Tall Embedded Building

Site Response Analysis

(may not be necessary)

PEER

SRA (cont.)

Tall Building on Piles

Site Response Analysis (necessary)

_JMM00000-

Marin

Site Class F

input

- motion

Soil-Foundation-Structure Interaction (SFSI)

SFSI for MCE

(c) Model for maximum-considered earthquake Linear springs and dashpots model soil
 -foundation interaction

Input motion same at all points along foundation

 See FEMA 356 and 440, ASCE 41-06, ATC 40, and other references for details

Basement Wall – Soil Interaction

Gravity

