Slab – Column Frames

John Wallace University of California, Los Angeles

with contributions from: Dr. Thomas H.-K. Kang University of California, Los Angeles

Dr. Ian Robertson University of Hawaii, Manoa

Presentation Overview

- **Current Practice**
- Modeling & analysis
- Connection design
- Progressive collapse
- Deformation compatibility
- Existing Construction
 - Post-earthquake observations
 - Modeling and Model Assessment
 - Backbone curves/Rehabilitation
- Shear reinforcement

Current Practice

- Non-participating or "gravity" system
- Post-tensioned slabcolumn frame
- Span-to-depth ratios typically ~40+
- Use of shear reinforcement at slabcolumn connection to allow for thinner slabs or to eliminate drop panels

 \sim 1/3 scale shake table test specimen

Shear Reinforcement

~1/3 scale shake table tests: Kang & Walalce, ACI SJ, Sept-Oct. 2005

Gravity Load Analysis & Design

ACI 318 Chapter 11, 13, & 21 Materials

- Slab moments: Use direct design, Equivalent frame, or computer program
- Connection design Chapter 11 & 13

- Design slab-column connection to transfer unbalanced moment to column
- FEMA 356 refers to ACI 318 provisions

- Unbalanced moment at the slab-column connection is transferred by two mechanisms:
 - Moment transfer (flexure) over a transfer width of c + 3h centered on the column
 - Eccentric shear on a critical section around the slabcolumn connection
 - Code provisions are covered in Chapter 13 (13.5) and Chapter 11 (11.12) of ACI 318

$$M_{f} = \gamma_{f} M_{unbalanced}$$

where $\gamma_{f} = \frac{1}{1 + (2/3)\sqrt{b_{1}/b_{2}}}$
 b_{1}, b_{2} = widths of critical section

defined in 11.12.1.2

$$M_{v} = (1 - \gamma_{f})M_{unbalanced} = \gamma_{v}M_{unbalanced}$$

If
$$\mathbf{b}_1 = b_2$$
, then:
 $\gamma_f = 0.6$ and $\gamma_v = 0.4$

Unbalanced Moment (Interior connection)

$$M_{unb} = M_L + M_R$$

 \clubsuit Flexural Transfer: $c_2 + 3h$

- γ_f M_{unb} where γ_f is typically ~0.6 for square columns
- Ratio of top to bottom reinforcement of 2:1 recommended in ACI 318 (R13.5.3.3)

FEMA 356 6.5.4.3(2) allows use of c₂+5h 8

Eccentric Shear transfer

- Critical section is defined d/2 from column face
- Direct shear stress
 - b_0 = perimeter of critical section

$$v_{gravity} = \frac{V_{u(direct)}}{b_o d}$$

• Eccentric shear stress due to $(1-\gamma_f)M_{unb} = \gamma_v M_{unb}$

$$v_{unb} = \gamma_v \frac{M_{unb}Z}{J}$$

10

Laboratory Studies

Interior connection

Photo: Hwang and Moehle, ACI SJ, March-April 2000.

ACI Committee 352.1R89 Slab – Column Report

Fig. 5.4-Model of connection during punching failure

$$A_{sm} = 0.5 \frac{w_u l_1 l_2}{\phi f_y}$$

Recommendations for the design of slab-column connections in monolithic RC Structures, ACI-ASCE Committee 352, Report 352.1R-89 (reapproved 1997)

Deformation Compatibility

- Determine if the connection can resist the V_u & M_{unb} without punching failure – Adequate strength. (ACI 318-05 21.11.5)
 - Flexural transfer, eccentric shear stress model
 - Limit analysis approach for connections with a fuse
 - this does not consider the potential for shear strength degradation.

Alternative - Deformation Compatibility

- Verify that punching failures do not occur for gravity shear combined with imposed interstory displacement for Δ_M (new) or δ_{target} (Rehab). Adequate deformability. (ACI 318-05 21.11.5)
- RC interior and exterior (limited data) connections

Deformation Compatibility

Presentation Overview

- **Current Practice**
- Modeling & analysis
- Connection design
- Progressive collapse
- Deformation compatibility
- Existing Construction
 - Background & observations
 - Modeling and Model Assessment
 - Backbone curves/Rehabilitation
- Shear reinforcement

 Gravity design, or relatively low lateral forces used for design

Post-Earthquake Observations

Bullock's Department Store - Northridge Fashion Mall

Presentation Overview

- **Current Practice**
- Modeling & analysis
- Connection design
- Progressive collapse
- Deformation compatibility
- Existing Construction
 - Background & observations
 - Modeling and Model Assessment
 - Backbone curves/Rehabilitation
- Shear reinforcement

Modeling Overview

- How to model...
- Lateral stiffness?
- Connection behavior?
- How good are our models?
 - Shake table studies
- ۲
- FEMA 356 backbone curves
- Basis of existing curves
- New information?

Modeling Assumptions - Typical

- P_G = axial from gravity and P_E = axial from earthquake
- Anchorage slip not likely as significant as noted for beam column frames (see Elwood presentation)

Analytical Model – Slab Flexural Stiffness Effective Beam Width Model

α: Effective Beam Width Factorβ: Coefficient accounting for Cracking

Allen & Darvall, ACI 74(7), 1977. Grossman, ACI 94(2), 1997. Hwang & Moehle, ACI 97(1), 2000. Kang & Wallace, ACI 102(5), 2005. Kang & Wallace (2005)RCPTα0.750.65β0.330.5

Analytical Modeling - Connections

This model satisfies FEMA 356 6.5.4.2.2, which states that the connection must be modeled separately from slab and column elements,

Connection Modeling - Punching

Kang and Wallace, ACI SJ, Sept-Oct, 2005, another paper in-press.

RC Specimen

- Six 200 x 200 mm columns
 90 mm thick slab
- 9.5 mm rebar f_y = 414 MPa
 f'_c = 28 MPa

RC Specimen - Reinforcement

Interior Connection

Shear Reinforcement

Expected connection behavior: Flexural yielding, followed by punching

PT Specimen

PT Specimen – Interior

ACI318-05 Requires only bottom (integrity) reinforcement

PT Video – Run 5

See Kang et al., 13WCEE, August 2004, paper 1119 Direct measurement of footing rotations

Presentation Overview

- **Current Practice**
- Modeling & analysis
- Connection design
- Progressive collapse
- Deformation compatibility
- Existing Construction
 - Background & observations
 - Modeling and Model Assessment
 - Backbone curves/Rehabilitation
- Shear reinforcement

Deformation – Backbone Curves

P					
	Slabs Controlled by Flexure		Model Parameters, Radians		
	$V_{gravity}$	Continuity	Plastic	Plastic	Residual
	V_0	Reinforcement	Hinge	Hinge	Strength
			а	b	С
	≤ 0.2	Yes	0.02	0.05	0.2
	> 0.4	Yes	0.0	0.04	0.2
	≤ 0.2	No	0.02	0.02	
	≥ 0.25	No	0.0	0.0	

Continuity reinforcement defined as at least one bottom bar or pt bar continuous through the column cage in each direction

Figure 2-Slab Reinforcement for ND1C, ND4LL, and ND5XL.

Test Results #1 – Control Specimen

Test Results #1

Figure 4-Slab Reinforcement for ND7LR.

10ft x 10 ft x 4.5"

2 Continuous bottom bars

Subassembly Test

- Test specimens ~1/2 scale
- 4 specimens
 - DNY_1, DNY_2, DNY_3, DNY_4 (spandrel beam)
 - Bent-up (1,2,4), Straight (3)

• $\frac{V_g}{V_c} = 0.2, 0.3, 0.24, 0.28$

Fig. 5—Envelopes of load-drift hysteresis loops for subassemblies

Durrani, Du, Luo, ACI SJ, July-Aug. 1995 47

Presentation Overview

- **Current Practice**
- Modeling & analysis
- Connection design
- Progressive collapse
- Deformation compatibility
- Existing Construction
 - Background & observations
 - Modeling and Model Assessment
 - Backbone curves/Rehabilitation
- Shear reinforcement

Recent Tests – ERICO Fortress Steel

0.6 Scale model tests (6" thick slab) – Smith Emery

Preliminary Results – ERICO Steel Fortress

- Fortress steel appears to be very effective in improving the punching resistance
- Appear as effective as stud-rails

Summary

Modeling

- Effective beam width model
- Connection behavior Limit state model
- Backbone curves RC
 - Conservative In general
 - Review allowable plastic rotation for low gravity stress ratios < 0.2, mean σ
 - Potential to increase plastic rotation for low reinforcement ratios
 - Remove residual capacity for RC connections

Summary

Backbone curves - PT

- Conservative
- Increase plastic rotation from 0.02 (RC) to 0.03 at gravity shear ratio of 0.2
- Review higher gravity shear ratios allowable plastic rotation of 0.01 at a gravity shear ratio of 0.5
- Allow residual capacity of 0.2 up to drifts of about 5% where one strand pass within the column cage in both directions.

Slab – Column Frames

John Wallace University of California, Los Angeles

with contributions from: Dr. Thomas H.-K. Kang University of California, Los Angeles

Dr. Ian Robertson University of Hawaii, Manoa

