Beam-Column Connections

Jack Moehle University of California, Berkeley

with contributions from Dawn Lehman and Laura Lowes University of Washington, Seattle

Outline

design of new joints

existing joint details

- failure of existing joints in earthquakes
- Interval sequences of the sequence of the s
- importance of including joint deformations
- stiffness
- strength
- deformation capacity

The second se

Special Moment-Resisting Frames - Design intent -

(a) moments, shears, axial loads acting on joint

(b) internal stress resultants acting on joint

Joint geometry (ACI Committee 352)

a) Interior

A.1

d) Roof Interior B.1

b) Exterior

A.2

c) Corner

A.3

e) Roof Exterior B.2

f) Roof Corner B.3

Classification /type	interior	exterior	corner
cont. column	20	15	12
Roof	15	12	8

Joint Details - Interior

Elevation (Section A-A)

←
$$h_{col} \ge 20 d_b$$
 →

Code-conforming joints

Older-type beam-column connections

region ion joir ion joir reinfor joint-p ion joir

SECTION A-A

Survey of existing buildings

Can add.3: Awaraga Caramatars far Cra 1327 St. I aings

	0au *** 0aa	Value 1
Ax'z zzz	Sa ແລິລາຊ∕າ	. 400
.8a1 m	()"	likari m

Average Standard Deviation: Minimum: Maximum:

Can a S.4 : Avaraga Caramatars far 1557 1575 (S. Fairgs)

Ax a 🛛 zaz	022 . *** . 2.2	
ila z	Sa ແລິລາ⊗`າ	. ša:_ ::

Average: Standard Deviation: Minimum: Maximum:

Mosier

Joint failures

Studies of older-type joints

Effect of load history

interior connections

Damage at 5% drift

Standard Loading

Impulsive Loading

Contributions to drift *interior connections*

Evaluation of FEMA-356 Model *interior connections*

Joint Shear Strain

Joint strength effect of beam yielding

• Joint strength closely linked to beam flexural strength

• Plastic deformation capacity higher for lower joint shear

Joint strength interior connections - lower/upper bounds

Joint strength interior connections

Plastic drift capacity interior connections

Note: the plastic drift angle includes inelastic deformations of the beams

Joint behavior exterior connections

Note: the plastic drift angle includes inelastic deformations of the beams

Exterior joint

Unreinforced Joint Strength

FEMA 356 specifies the following:

• No new data. Probably still valid.

Assuming bars are anchored in joint, strength limited by strength of framing members, with upper-bound of $\gamma \approx 15$. For $15 \ge \gamma \ge 4$, joint failure may occur after inelastic response. For $\gamma \le 4$, joint unlikely to fail.

 Assuming bars are anchored in joint, strength limited by strength of framing members, with upper bound of γ ≈ 25. For 25 ≥ γ ≥ 8, joint failure may occur after inelastic response. For γ ≤ 8, joint unlikely to fail.

Joint failure?

Joint test summary axial failures identified

Suggested envelope relation interior connections with continuous beam bars

Note: the plastic drift angle includes inelastic deformations of the beams

Suggested envelope relation exterior connections with hooked beam bars

Note: the plastic drift angle includes inelastic deformations of the beams

Methods of Repair (MOR)

Method of Repair	Activities	Damage States
0. Cosmetic Repair	Replace and repair finishes	0-2
1. Epoxy Injection	Inject cracks with epoxy and replace finishes	3-5
2. Patching	Patch spalled concrete, epoxy inject cracks and replace finishes	6-8
3. Replace concrete	Remove and replace damaged concrete, replace finishes	9-11
4. Replace joint	Replace damaged reinforcing steel, remove and replace concrete, and replace finishes	12

Beam-Column Connections

Jack Moehle University of California, Berkeley

with contributions from Dawn Lehman and Laura Lowes University of Washington, Seattle

References

- Clyde, C., C. Pantelides, and L. Reaveley (2000), "Performance-based evaluation of exterior reinforced concrete building joints for seismic excitation," *Report No. PEER-2000/05*, Pacific Earthquake Engineering Research Center, University of California, Berkeley, 61 pp.
- Pantelides, C., J. Hansen, J. Nadauld, L Reaveley (2002, "Assessment of reinforced concrete building exterior joints with substandard details," *Report No. PEER-2002/18*, Pacific Earthquake Engineering Research Center, University of California, Berkeley, 103 pp.
- Park, R. (2002), "A Summary of Results of Simulated Seismic Load Tests on Reinforced Concrete Beam-Column Joints, Beams and Columns with Substandard Reinforcing Details, *Journal of Earthquake Engineering*, Vol. 6, No. 2, pp. 147-174.
- Priestley, M., and G. Hart (1994), "Seismic Behavior of "As-Built" and "As-Designed" Corner Joints," SEQAD Report to Hart Consultant Group, *Report #94-09*, 93 pp. plus appendices.
- Walker, S., C. Yeargin, D. Lehman, and J. Stanton (2002), "Influence of Joint Shear Stress Demand and Displacement History on the Seismic Performance of Beam-Column Joints," *Proceedings*, The Third US-Japan Workshop on Performance-Based Earthquake Engineering Methodology for Reinforced Concrete Building Structures, Seattle, USA, 16-18 August 2001, *Report No. PEER-2002/02*, Pacific Earthquake Engineering Research Center, University of California, Berkeley, pp. 349-362.
- Hakuto, S., R. Park, and H. Tanaka, "Seismic Load Tests on Interior and Exterior Beam-Column Joints with Substandard Reinforcing Details," ACI Structural Journal, Vol. 97, No. 1, January 2000, pp. 11-25.
- Beres, A., R.White, and P. Gergely, "Seismic Behavior of Reinforced Concrete Frame Structures with Nonductile Details: Part I – Summary of Experimental Findings of Full Scale Beam-Column Joint Tests," Report NCEER-92-0024, NCEER, State University of New York at Buffalo, 1992.
- Pessiki, S., C. Conley, P. Gergely, and R. White, "Seismic Behavior of Lightly-Reinforced Concrete Column and Beam Column Joint Details," Report NCEER-90-0014, NCEER, State University of New York at Buffalo, 1990.
- ACI-ASCE Committee 352, Recommendations for Design of Beam-Column Connections in Monolithic Reinforced Concrete Structures," American Concrete Institute, Farmington Hills, 2002.

References (continued)

• D. Lehman, University of Washington, personal communication, based on the following resources: *Fragility functions:*

•Pagni, C.A. and L.N. Lowes (2006). "Empirical Models for Predicting Earthquake Damage and Repair Requirements for Older Reinforced Concrete Beam-Column Joints." *Earthquake Spectra*. In press.

Joint element:

•Lowes, L.N. and A. Altoontash. "Modeling the Response of Reinforced Concrete Beam-Column Joints." *Journal of Structural Engineering*, *ASCE*. 129(12) (2003):1686-1697.

•Mitra, N. and L.N. Lowes. "Evaluation, Calibration and Verification of a Reinforced Concrete Beam-Column Joint Model." *Journal of Structural Engineering*, *ASCE*. Submitted July 2005.

•Anderson, M.R. (2003). "Analytical Modeling of Existing Reinforced Concrete Beam-Column Joints" MSCE thesis, University of Washington, Seattle, 308 p.

Analyses using joint model:

•Theiss, A.G. "Modeling the Response of Older Reinforced Concrete Building Joints." *M.S. Thesis*. Seattle: University of Washington (2005): 209 p.

Experimental Research

•Walker, S.*, Yeargin, C.*, Lehman, D.E., and Stanton, J. Seismic Performance of Non-Ductile Reinforced Concrete Beam-Column Joints, *Structural Journal, American Concrete Institute*, accepted for publication.

•Walker, S.G. (2001). "Seismic Performance of Existing Reinforced Concrete Beam-Column Joints". MSCE Thesis, University of Washington, Seattle. 308 p.

•Alire, D.A. (2002). "Seismic Evaluation of Existing Unconfined Reinforced Concrete Beam-Column Joints", MSCE thesis, University of Washington, Seattle, 250 p.

Infrastructure Review

•Mosier, G. (2000). "Seismic Assessment of Reinforced Concrete Beam-Column Joints". MSCE thesis, University of Washington, Seattle. 218 p.