

Jack Moehle University of California, Berkeley

Concrete Design, Codes, Events

Ductile detailing today

1900-1910

- earliest construction
- structural systems
 - frames
 - bearing walls
- concrete quality
- interior and exterior infills
- 1910-1920
 - development of specialized systems
 - flat slabs
 - drop panels and capitals
 - reinforcement arrangements
 - joist and waffle slabs
 - steel pan or hollow clay tile void formers
 - bearing walls

- 1920-1930
 - era of improved construction quality
 - improvements in gravity load design
 - seismic design still in its infancy
- 1930-1950
 - slight progress in concrete construction

- 1950-1960
 - rapid change in systems, design methods, and construction practices
 - more open interiors and lighter cladding
 - some seismic development
 - prestressed and precast concrete
 - formal use of shear walls
- 1960-1970
 - improvement seismic design, but lack of attention to concrete detailing requirements
 - designated lateral load systems
 - lightweight aggregate concrete

Beam-column frame

1970-1980

- 1971 San Fernando earthquake
- 1976 UBC ductile concrete provisions
- 1979 Imperial Valley earthquake
- 1980-present
 - continued improvement and consolidation in design, code provisions, and construction
 - gravity framing
 - 1994 Northridge earthquake
 - FEMA 273/356

Materials

Non-prestressed Reinforcement

- Early proprietary systems
- Plain bars, twisted bars
- Deformed reinforcement
 - prominent use starting in 1950's

- prominent use starting in 1950's
- corrosion
- lack of non-prestressed reinforcement

Materials - Reinforcement

				Structural	Intermediate	Hard			
			Grade	33	40	50	60	70	75
			Minimum Yield (psi)	33,000	40,000	50,000	50,000	60,000	75,000
ASTM	Steel Type	Year Range	Minimum Tensile (psi)	55,000	70,000	80,000	90,000	80,000	100,000
A15	Billet	1911- 1966		Х	Х	Х			
A16	Rail	1913- 1966				Х			
A61	Rail	1963- 1966					Х		
A160	Axle	1936- 1964		Х	Х	Х			
A160	Axle	1965- 1966		Х	Х	Х	Х		
A408	Billet	1957- 1966		Х	Х	Х			
A431	Billet	1959- 1966							X
A432	Billet	1959- 1966					Х		
A615	Billet	1968-			X		X		X

Transition to ductile detailing – 1960s onward

- 1961 Blume, Newmark, Corning published
 - Many fresh concepts
 - confined concrete
 - flexural ductility concepts
 - plastic hinge length
 - capacity design for shear
 - Many aspects not considered
 - column/beam strength ratios
 - lap splices
 - joint design

Beam-column connections

Modern framing systems

Research today

Jack Moehle University of California, Berkeley

