Current Assessment Approaches

Jack Moehle University of California, Berkeley

Outline

- Background
- Early assessment and rehabilitation approaches
- Current assessment and rehabilitation approaches
- Improved simplified analysis methods

Seismic assessment/upgrading through mid-1990s (FEMA 1725) inuous Shear Wall

 Checklist to identify critical deficiencies
Minimum strength

requirement

 $V \approx \frac{3}{4} \left(\frac{ZICS}{R} W \right)$

Seismic assessment/upgrading since mid-1990s (FEMA 273)

- Checklist to identify critical deficiencies
- Detailed requirements for condition assessment
- Performance approach
 - Performance objectives
 - Seismic hazard characterization
 - Nonlinear, displacement-based analysis
 - Detailed acceptance criteria

Performance objectives

Most commonly selected performance objective —

Performance objectives

Seismic hazard

Foundation modeling

(b) Modified input

- "slab" averaging
- embedment
- damping

Comartin

FEMA 440

- $C_o =$ converts SDOF spectral displacement to MDOF roof displacement
- C_1 = amplification for nonlinear response of bilinear
- $C_{1} = \operatorname{amplification for horizon to the set of the set of the system = 1 + \frac{R 1}{aT^{2}}$ $C_{2} = \operatorname{amplification for pinched hysteresis, stiffness \operatorname{degradation, and strength deterioration = 1 + \frac{1}{800} \left(\frac{R 1}{T}\right)^{2}$
 - amplification due to dynamic P-∆ effects

replaced by minimum strength requirement

Cyclic strength degradation

In-cycle strength degradation

Michael Scott, PEER, 2003

Test observations

Strength, strength degradation, and instability

Construction of load-displacement relation

$$\alpha_{e} = \alpha_{P-\Delta} + \lambda(\alpha_{2} - \alpha_{P-\Delta})$$

 λ = 0.8 for near-field motions = 0.2 otherwise

Minimum strength

$$\alpha_e = \alpha_{P-\Delta} + \lambda(\alpha_2 - \alpha_{P-\Delta})$$

$$t = 1 + 0.15 \ln T$$

Component strength (example, column shear strength)

FEMA 356

Component deformation capacity (example, columns controlled by flexure)

Component deformation capacity (example, columns controlled by flexure)

	Table 6-8	Mod Rein	eling Param forced Conc	eters and rete Colu	Numerica mns	al Acceptanc	e Criteria	for Nonl	inear Pro	cedures-	_
0		-b		Modeling Parameters ⁴			Acceptance Criteria ⁴				
$\frac{Q}{Q_{c}}$	$\frac{Q}{Q_{CE}}$ $a \rightarrow$						Plastic Rotation Angle, radians Performance Level				
				Plastic Rotation Angle, radians		Residual Strength Ratio	Component Type				
								Primary		Secondary	
	Conditions			а	b	с	ю	LS	CP	LS	СР
	i. Columns controlled by flexure ¹										
	$\frac{P}{A_g f_c'}$	Trans. Reinf. ²	$\frac{V}{b_w d \sqrt{f_c'}}$								
	≤ 0.1	С	≤3	0.02	0.03	0.2	0.005	0.015	0.02	0.02	0.03
	≤ 0.1	С	≥6	0.016	0.024	0.2	0.005	0.012	0.016	0.016	0.024
	≥0.4	С	≤3	0.015	0.025	0.2	0.003	0.012	0.015	0.018	0.025
	≥0.4	С	≥6	0.012	0.02	0.2	0.003	0.01	0.012	0.013	0.02
	≤ 0.1	NC	≤3	0.006	0.015	0.2	0.005	0.005	0.006	0.01	0.015
	≤ 0.1	NC	≥6	0.005	0.012	0.2	0.005	0.004	0.005	0.008	0.012
	≥0.4	NC	≤3	0.003	0.01	0.2	0.002	0.002	0.003	0.006	0.01
	≥ 0.4	NC	≥ 6	0.002	0.008	0.2	0.002	0.002	0.002	0.005	0.008

Some shortcomings

insufficient data, deterministic procedures

Sezen, 2004

Some shortcomings static versus dynamic response

FEMA 440

Some shortcomings

- Component-based

When the first component gets to LS performance level, the whole building is defined to be at that level.

Some shortcomings results can be sensitive to assumptions

Example: Escondido Village Midrises

- 1961-64 construction
- 8 stories tall
- Vertical system
 - columns
 - bearing walls
- Lateral system
 - walls controlled by flexure
- Foundation
 - spread footings
- Deficiencies
 - shear-critical columns
 - inadequate boundary steel in walls
 - punching at slabcolumn connection

Comartin

Comartin

Boundary Steel

Column Collars and Fiber Wrap

Older RC building performance ratings - a case study

Current Assessment Approaches

Jack Moehle University of California, Berkeley

