Behavior and Modeling of Existing Reinforced Concrete Columns

Kenneth J. Elwood University of British Columbia

with contributions from Terje Haukaas, UBC Jose Pincheira, Univ of Wisconsin John Wallace, UCLA

Questions?

What is the <u>stiffness</u> of the column?
What is the <u>strength</u> of the column?

- What <u>failure mode</u> is expected?
- ♦ What is the <u>drift capacity</u>...
 - at shear failure?
 - at axial failure?
- How can we account for <u>uncertainty</u> in the models?
- How can we <u>model</u> this behavior for the analysis of a structure?
- What is the influence of poor <u>lap</u> <u>splices</u>?

Effective stiffness

 L^2 $\overline{6}^{\phi_y}$

Does not account for end rotations due to bar slip!

Effective stiffness

Yield displacement

Shear Strength

Several models available to estimate shear strength:

- Aschheim and Moehle (1992)
- Priestley et al. (1994)
- Konwinski et al. (1995)

FEMA 356 (Sezen and Moehle, 2004)

ACI 318-05

All models (except ACI) degrade shear strength with increasing ductility demand.

• Based on principle tensile stress exceeding $f_t = 6\sqrt{f_c}$

Sezen and Moehle, 2004

- Based on principle tensile stress exceeding $f_t = 6\sqrt{f_c}$
- Accounts for degradation due to flexural and bond cracks

- Based on principle tensile stress exceeding $f_t = 6\sqrt{f_c}$
- Accounts for degradation due to flexural and bond cracks
- Degrades both V_s and V_c based on ductility

Shear Strength

Sezen and Moehle, 2004

Shear Strength

Sezen and Moehle, 2004

Elwood and Moehle, 2005a

Drift at Shear Failure Model

Elwood and Moehle, 2005a

Drift at Axial Failure Model

Simplifying Assumptions

- *V* assumed to be zero since shear failure has occurred
- Dowel action of longitudinal bars (V_d) ignored
- Compression capacity of longitudinal bars (*P_s*) ignored

$$\sum F_{y} \rightarrow P = N\cos\theta + V_{sf}\sin\theta$$

$$\sum F_{x} \rightarrow N\sin\theta = V_{sf}\cos\theta + \frac{A_{st}f_{y}d_{c}\tan\theta}{s}$$

$$P = \frac{A_{st}f_{y}d_{c}}{s}\tan\theta\left(\frac{\cos\theta + \mu\sin\theta}{\sin\theta - \mu\cos\theta}\right)$$
Classic Shear-Friction $\rightarrow V_{sf} = N\mu$
Elwood and Moehle, 2005b

Elwood and Moehle, 2005b

Elwood and Moehle, 2005b

Drift models for flexural failures

• Flexural strength will degrade for columns with $V_p << V_o$ due to spalling, bar buckling, concrete crushing, etc.

Several drift models have been developed:

Drift at onset of cover spalling:

$$\frac{\Delta_{spall}}{L} = 1.6(1 - \frac{P}{A_g f_c'})(1 + \frac{L}{10D})$$
 (Berry and Eberhard, 2004)

Drift at bar-buckling:

$$\frac{\Delta_{bb}}{L} = 3.25(1 + k_e \frac{\rho_{vol} f_{yt}}{f_c'} \frac{d_b}{D})(1 - \frac{P}{A_g f_c'})(1 + \frac{L}{10D})$$
(Berry and Eberhard, 2005)
50 for rectangular columns, 150 for spiral-reinforced columns

• Drift at 20% reduction in flexural capacity: $\frac{\Delta_f}{L} = 0.049 + 0.716\rho_l + 0.120 \frac{\rho'' f_{yt}}{f_c'} - 0.042 \frac{s}{d} - 0.070 \frac{P}{A_g f_c'} \qquad \text{(Zhu, 2005)}$

First classify columns based on shear strength:

- $V_p/V_o > 1.0 \rightarrow$ shear failure
- $1.0 \ge V_p/V_o \ge 0.6 \rightarrow$ flexure-shear failure
- $V_p/V_o < 0.6 \rightarrow$ flexure failure

where
$$V_o = \frac{6\sqrt{f_c'}}{a/d}\sqrt{1 + \frac{P}{6\sqrt{f_c'}A_g}} 0.8A_g + \frac{A_{st}f_{yt}d}{s}$$

 $V_p = \frac{2M_p}{L}$

Shear failure

- Force-controlled
- Define drift at shear failure using effective stiffness and V_o.
 - May be conservative if $V_p \approx V_o$
- Use drift at axial failure model to estimate Δ_a/L
 - Very little data available for drift at axial failure for this failure mode, but model provides conservative estimate in most cases.
- Do not use as primary component if V > V_o

Flexure-Shear failure

- Deformation-controlled
- Max shear controlled by 2M_p/L
- Use drift at shear failure model to estimate Δ_s/L
- Use drift at axial failure model to estimate Δ_a/L
- Do not use as primary component if drift demand > Δ_s/L

Flexure failure

- Deformation-controlled
- Max shear controlled by 2M_p/L
- Use model for drift at 20% reduction in flexural capacity to estimate Δ_f/L
- Do not use as primary component if drift demand > Δ_f/L
- For low axial loads, axial failure not expected prior to P-delta collapse.
- For axial loads above the balance point and light transverse reinforcement, column may collapse after spalling of cover.

Points to remember

- Models provide an estimate of the **mean** response.
- 50% of columns may fail at drifts less than predicted by the models.

Drift Model	Mean $\Delta_{meas}/\Delta_{calc}$	CoV $\Delta_{\text{meas}}/\Delta_{\text{calc}}$
Shear Failure	0.97	0.34
Axial Failure	1.01	0.39
Flexural Failure	1.03	0.27
Spalling	0.97	0.43
Bar Buckling	1.00	0.26

Points to remember

- Shear and axial failure models based on database of columns experiencing:
- flexure-shear failures
- uni-directional lateral loads
- All models except bar buckling and spalling only based on database of rectangular columns.
- Use caution when applying outside the range of test data used to develop the models!
- Shear and axial failure models are not coupled.
 - If calculated drift at axial failure is less than the calculated drift at shear failure, assume axial failure occurs immediately after shear failure.

Application of Drift Models – Shake Table Tests

Characteristics

- Half-scale, three column planar frame
- Specimen 1:
 - Low axial load ($P = 0.10f'_cA_g$)
- Specimen 2:
 - Moderate axial load ($P = 0.24f'_cA_g$)

Objective

 To observe the process of dynamic shear and axial load failures when an alternative load path is provided for load redistribution

Specimen #1 – Low Axial Load

Top of Column - Total Displ.

Center Column Hysteresis

Center Column - Relative Displ.

Full Frame - Total Displ.

Specimen #2 – Moderate Axial Load

Top of Column - Total Displ.

Center Column Hysteresis

Center Column - Relative Displ.

Full Frame - Total Displ.

Axial Load Comparison

Low Axial Load (Spec 1)

Moderate Axial Load (Spec 2)

Center Column Axial Load Time History

Application of Drift Models – Shake Table Tests

Application of Drift Models – Van Nuys, Holiday Inn

 7-story reinforced concrete frame building (1965)
Damaged during San Fernando and Northridge Earthquakes

Did columns sustain axial load failures?

Application of Drift Models – Van Nuys, Holiday Inn

Application of Drift Models – Van Nuys, Holiday Inn

Need for probabilistic model

Probabilistic Drift Capacity Models

Median prediction of drift at shear failure:

$$\frac{\Delta_s}{L}\Big|_{median} = 2.02\rho'' - 0.025\frac{s}{d} + 0.013\frac{a}{d} - 0.031\frac{P}{A_g f_c'}$$

Median prediction of drift at flexural failure:

$$\left(\frac{\Delta_f}{L}\right)_{median} = 0.049 + 0.716\rho_l + 0.120\frac{\rho''f_{yt}}{f_c'} - 0.042\frac{s}{d} - 0.070\frac{P}{A_g f_c}$$

Median prediction of drift at axial failure:

$$\left(\frac{\Delta_a}{L}\right)_{median} = 0.184 \exp\left(-1.45\mu\right)$$
$$\mu = \frac{\frac{P}{A_{st}f_y d_c/s} - 1}{\frac{P}{A_{st}f_y d_c/s} \frac{1}{\tan \theta} + \tan \theta}$$

Now have distributions on coefficients, capturing uncertainty in model!!

Probabilistic model for drift at axial failure

Application of Probabilistic Drift Capacity Model

The relation between the fragility curves of shear failure and axial failure gives useful information regarding the column axial load capacity after shear failure.

Assessment of FEMA 356

- Probabilistic models can be used to assess the probability of failure implied by drift limits in FEMA 356.
 - "Shear-controlled" response
 - Δ_s/L model compared with LS criteria for secondary components
 - Δ_a/L model compared with CP criteria for secondary components

Assessment of FEMA 356

Is this level of safety appropriate?

Zhu, 2005

Analytical Model for Shear-Critical Columns

Elwood, 2004

Analytical Model for Shear-Critical Columns

Elwood, 2004

Benchmark Shake Table Tests

NCREE Shake Table Test 1

NCREE Shake Table Test 2

Lap Splice Failures

Melek and Wallace (2004)

> Six Full-Scale Specimens

- 18 in. square column
- 8 #8 longitudinal bars
- #3 ties with 90° hooks
- 20d_b lap splice
- Fested with Lateral and Axial Load
 - Lateral Load
 - Standard Loading History
 - Near Field Loading History
 - Axial Load
 - Constant

Test Matrix

Spec imen	Splice	Axial Load	Shear	Load	Hloop Spacing	Column
	20d b	% A _g f² _c	(V _u @M _{EXP})/V _n	History	(inch)	Hleight
S10MI	YES	10	0.67	SAD	12	69-022
S20MI	YES	20	0.70	SAD	12	69-059
S30MI	YES	30	0.78	STD	12	6-02
S20HI	YES	10	0.82	SAD	12	5"- 62
S20HIIN	YES	20	0.81	NEAR	12	5"-6"
S30XI	YES	30	0.93	SID	112	5" - 0"

Experimental Results

Specimen	Maximum Lateral Load (kips)	Lateral Strength Degradation at	Type of Failure	Applied Axial Load (kips)	Axial Capacity Lost?
S10MI	45.56	1.50% Drift	Bond Det.	120	No
S20MI	52.49	1.28% Drift	Bond Det.	240	Yes @ 7% Drif
S30MI	64.14	1.45% Drift	Bond Det.	360	Yes @ 5% Drif
S20HI	55.53*	1.33% Drift	Bond Det.	240	Yes @ 7% Drif
S20HIN	55.10*	1.00% Drift	Bond Det.	240	No
S30XI	63.82*	1.50% Drift	Bond Det.	360	Yes @ 5% Drif

*normalized

Observed Damage

Specimen: S20MI

Splice Deterioration

1.5% Drift

(F_{ult}=53 kips)

3% Drift

5% Drift

7% Drift Axial Load Capacity Lost

Melek and Wallace (2004)

S20MI – S20HI – S20HIN

Melek and Wallace (2004)

Axial Load Capacity

S20MI, S20HI, S30MI, S30XI

- Axial load capacity lost due to buckling of longitudinal bars
- 90° ties at 4" and 16" above pedestal opened up
- Concrete cover lost

S20HIN – Axial Load Capacity Maintained

- Near Fault Displacement History (Less cycles)
- Concrete cover intact

FEMA 356 lap splice provisions

Adjust yield stress based on lap splice length:

Cho and Pinchiera (2005) evaluated provisions using detailed bar analysis calibrated to test data.

FEMA 356 under-predicts steel stress.

(Cho and Pincheira, 2005)

Modified Equation (Cho and Pincheira, 2005)

(Cho and Pincheira, 2005)

Modified Equation (Cho and Pincheira, 2005)

(Cho and Pincheira, 2005)

Modified Steel Stress Equation (Cho and Pincheira, 2005)

References

- Berry, M., Parrish, M., and Eberhard, M., (2004) "PEER Structural Performance Database User's Manual," (www.ce.washington.edu/~peera1), Pacific Earthquake Engineering Research Center, University of California, Berkeley.
- Berry, M., and Eberhard, M., (2004) "Performance Models for Flex ural Damage in Reinforced Concrete Columns," PEER report 2003/18, Berkeley: Pacific Earthquake Engineering Research Center, University of California.
- Berry, M., and Eberhard, M., (2005) "Practical Performance Model for Bar Buckling", Journal of Structural Engineering, ASCE, Vol. 131, No. 7, pp. 1060-1070.
- Cho, J-Y, and Pincheira, J. A., (2004) "Nonlinear Modeling of RC Columns with Short Lap Splices," Proceedings of 13th World Conference on Earthquake Engineering, Vancouver, B. C., Canada.
- Elwood, K.J., and Moehle, J.P., (2005a) "Drift Capacity of Reinforced Concrete Columns with Light Transverse Reinforcement", *Earthquake Spectra*, Earthquake Engineering Research Institute, vol. 21, no. 1, pp. 71-89.
- Elwood, K.J., and Moehle, J.P., (2005b) "Axial Capacity Model for Shear-Damaged Columns", ACI Structural Journal, American Concrete Institute, vol. 102, no. 4, pp. 578-587.
- Elwood, K.J., (2004) "Modelling failures in existing reinforced concrete columns", *Canadian Journal of Civil Engineering*, vol. 31, no. 5, pp. 846-859.
- Elwood, K.J., and Moehle, J.P., (2004) "Evaluation of Existing Reinforced Concrete Columns", Proceedings of the Thirteenth World Conference on Earthquake Engineering, Vancouver, BC, Canada, August 2004, 15 pages.
- Elwood, K. J. and Moehle, J.P., (2003) "Shake Table Tests and Analytical Studies on the Gravity Load Collapse of Reinforced Concrete Frames", PEER report 2003/01, Berkeley: Pacific Earthquake Engineering Research Center, University of California, 346 pages.
- Melek, M., and Wallace, J. W., (2004) "Cyclic Behavior of Columns with Short Lap Splices," ACI Structural Journal, V. 101, No. 6, pp. 802-811.
- Priestley, M.J.N., Verma, R., and Xiao, Y., (1994) "Seismic Shear Strength of Reinforced Concrete Columns," Journal of Structural Engineering, Vol. 120, No. 8, pp. 2310-2329.
- Sezen, H., and Moehle, J.P., (2004) "Shear Strength Model for Lightly Reinforced Concrete Columns," *Journal of Structural Engineering*, Vol. 130, No. 11, pp. 1692-1703.
- Zhu, L. (2005) "Probabilistic Drift Capacity Models for Reinforced Concrete Columns", MASc Thesis, Department of Civil Engineering, University of British Columbia.
- Zhu, L., Elwood, K.J., Haukaas T. and Gardoni, P., (2005) "Application of a Probabilistic Drift Capacity Model for Shear-Critical Columns," Journal of the American Concrete Institute (ACI), Special Publication.