System Performance Assessment *Quantifying Building Code Advancements*

Greg Deierlein Stanford University

with contributions by Curt Haselton & Abbie Liel Stanford University

Illustration – 4 Story SMF Building

- Office occupancy
- Los Angeles Basin
- Design Code: 2003 IBC / 2002 ACI / ASCE7-02
- Perimeter Frame System
- Maximum considered EQ demands:
 - S_s = 1.5g; S₁ = 0.9g
 - $S_{a(2\% \text{ in } 50 \text{ yr})} = 0.82g$
- Design V/W of 0.094g

Typical Perimeter Frame Members

Beams: 32" to 40" deep Columns: 24"x28" to 30"x40"

Governing Design Parameters

- Beams: minimum strength
- Column size: joint strength
- Column strength: SCWB
- Drift: just meets limit

Collapse Capacity – with Modeling Uncert.

Mean Annual Frequency of Collapse 0.9 Collapse 0.8 b а b 0.7 CDF 0 Ρ 0.6 е v 0.5 t 0.4 а 1 u 0.3 m m u C 0.2 Empirical CDF 0.1 Lognormal CDF (RTR Var.) Lognormal CDF (RTR + Modeling Var.) 15 25 0.0020 0.0018 Excedance (Poisson rate) 0.0016 Hazard 0.0014 Curve 0.0012 0.0010 0.0008

0.0006

0.0000

0

2/50

0.5

1

1.5

2

2.5

Sa at First Mode Period (g)

3

3.5

4

4.5

5

Jo JOUCO 0.0004 0.0002

Collapse Performance

- Margin: S_{a.collapse} = 2.7 MCE
- Probability of collapse under design MCE = 5%

• $MAF_{col} = 1.0 \times 10^{-4}$ (about 1/4) of the MCE 2% in 50 year ground motion)

Comparison of Alternative Risks

- Mean Annual Frequency (MAF) of "Serious Events"
 - EQ Collapse (Conform. RC Buildings): 1 x 10⁻⁴
 - Strength Limit State (Gravity Loads)²:7 x 10⁻⁴
 - Flashover Fire in Office Building¹: 1×10^{-6}
 - EQ damage to Nuclear Power Plant: 1 x 10⁻⁵
- Fatality Rate in Collapsed Buildings³: 10% to 20%
- Causes of Death (lifetime probability in US)
 - Heart disease 2000 x 10⁻⁴ (20% chance)
 Fire or smoke (residential) 9 x 10⁻⁴
 Air travel accident 0.5 x 10⁻⁴
 Tornado 0.2 x 10⁻⁴
 Snake or Bee Bite/Sting 0.1 x 10⁻⁴
 Earthquake 0.08 x 10⁻⁴

REF: 1) Ellingwood and Corotis (1991); 2) Ellingwood and Tekie (1999); Krawinkler et al (2005).

Discussion Topics

Effect of Building Code Design Provisions on **Building Collapse Performance**

- 2003 Design Variants
- 1967 vs. 2003 Design

Ground Motion Hazard Characterization

Current Best *Seismology* Practice*:

• *Disaggregate PSHA* at Sa1 at p_o , say, 2% in 50 years, by M and R: $f_{M,R|Sa}$. [Perhaps: Repeat for several levels, Sa1₁, Sa1₂, ...]

 [For Each Level] Select Sample of Records: from a "bin" near mean M and R. Same faulting style, hanging/foot wall, soil type, ...

• Scale the records to the UHS in some way, e.g., to the $S_a(T_1)$.

*DOE, NRC, PEER, ... e.g., see R.K. McGuire: "... Closing the Loop" (BSSA, 1996+/-); Kramer (Text book; 1996 +/-); Stewart et al. (PEER Report, 2002) **PEER**

Additional Factors To Consider

- Elastic versus Inelastic Structural Response
 - softening and period lengthening
 - cumulative damage effects
- Availability of records to represent extreme ground motions (e.g., 2% in 50 year)
 - Coastal CA many records, can require large scaling
 - Central & Eastern US few recorded events

Record features not captured by M-R selection and UHS (Sa) scaling

PEER research indicates that *spectral shape* is key consideration in record selection & scaling

Mean Annual Freq. = (Probability of Sa > Sa*, given EQ) x (MAF of EQ)

Ground motion selection (+ ϵ effect)

- Close match to characteristic event [M 6.9, R 14, Sa(T=1) = 0.65g]
- Epsilon: +1.7 at T=1 sec; -0.3 at T = 0.45 sec
- General trend for +epsilon records to peak at the +e periods and drop off elsewhere

Positive Epsilon Records

Epsilon Neutral Records (default)

Summary – Selection/Scaling Method I

- Earthquake Hazard Curve (MAF vs. IM)
 - Intensity Measure = $S_{a(T1)}$
- Ground Motion Record Selection
 - Strong records, matching characteristic M-R, fault & site effects
 - For collapse analyses, use $+\varepsilon$ records (western US)
- Scale record pairs by $IM = S_{a(T1)}$
- Drawbacks and Limitations
 - Does not address near-fault (R < ?) with directivity</p>
 - Epsilon is site and period dependent
 - Cases with significant higher modes or long periods have not been fully investigated.

Alternative Selection/Scaling Methods

FEMA 356

- Record selection based on M-R, site, etc.
- Scaling of SRSS of 2 components to hazard spectra over period range from 0.2T₁ to 1.5T₁
- SAC Steel Project
 - Record selection based on M-R, site, etc.
 - Scaling to hazard spectra based on scaling factors weighted based on *Sa* at **multiple periods** (T = 0.5 to 4 sec.)

Others ... inelastic spectra?

Discussion Topics

Selection and Scaling of Ground Motions

Effect of Building Code Design Provisions on **Building Collapse Performance**

- 2003 Design Variants
- 1967 vs. 2003 Design

4-Story Benchmark Building Design

- Office occupancy
- Los Angeles Basin
- Design Codes
 - 2003 IBC /2002 ACI
- Maximum considered EQ demands:
 - S_s = 1.5g; S₁ = 0.9g
 - Sa_{2/50}(T₁) =0.82g
- Design V/W of 0.094g
- Maximum inelastic design drift of 1.9% (2% limit)

Design Variants:

Perimeter vs Space Frame "Median" vs. Code Minimum IBC 2003 vs. UBC 1997

Collapse Performance of Design Variants

Building Model	Median Collapse		Uncertainty Measure (s _{In})		Collapse Performance	
	Sa _{collapse}	Margin	RTR	Total	P[C/ Sa _{2/50}]	MAF x 10 ⁻⁴
Perimeter Frame, Rep., w/gravity frame	2.2g	2.7	0.36	0.62	4%	1.0
Perimeter Frame, Rep.	2.0g	2.4	0.34	0.60	5%	1.2
Perimeter Frame, MIN. Design w/gravity frame	2 .1g	2.6	0.31	0.59	5%	1.1
Perimeter Frame, Rep.Design, w ⁄o SCW B, w ⁄gravity frame	1.0g	1.2	0.39	0.63	40%	22.0
Perimeter Frame, Rep.Design, w ⁄o SCW B	0.7g	0.9	0.45	0.67	55%	49.0
Space Frame, w /T-beam	1.9g	2.3	0.38	0.63	11%	3.1
Space Frame	2.0g	2.4	0.32	0.59	6%	1.4
Space Frame, SCW B from 1997 UBC	1.9g	2.3	0.34	0.60	8%	1.8

Collapse Performance of Design Variants

Building Model		Median Collapse		Uncertainty Measure (s _{In})		Collapse Performance	
		Sa _{collapse}	Margin	RTR	Total	P[C/Sa _{2/50}]	MAF x 10 ⁻⁴
Perimeter Frame, Rep., w ⁄gr frame	avity	2.2g	2.7	0.36	0.62	4%	1.0
Perimeter Frame, Rep.		2.0g	2.4	0.34	0.60	5%	1.2
Perimeter Frame, MIN. Desi w ⁄gravity frame	gn	2.1g	2.6	0.31	0.59	5%	1.1
Perimeter Frame, Rep.Desig w ⁄o SCW B, w ⁄gravity frame	n, e	1.0g	1.2	0.39	0.63	40%	22.0
Perimeter Frame, Rep.Desig w ⁄o SCW B	n,	0.7g	0.9	0.45	0.67	55%	49.0
Space Frame, w /T-beam		1.9g	2.3	0.38	0.63	11%	3.1
Space Frame		2.0g	2.4	0.32	0.59	6%	1.4
Space Frame, SCW B from 1 UBC	997	1.9g	2.3	0.34	0.60	8%	1.8

1967 and 2003 Design Comparisons

1967 Design

- Space Frame
- 1967 UBC, Zone 4
- Design V/W: 0.068 g
- Member sizes
 - Col. 20x20 to 24x24
 - Beam depth 20 to 26
- No SCWB, no joint check, nonconforming ties

- Perimeter Frame
- 2003 UBC/2002 ACI
- Design V/W: 0.094 g
- Member sizes
 - Col. 24x28 to 30x40
 - Beam depth 32 to 42
- Fully conforming design

Comparison of 1967 vs. 2003 Designs

Column Hinge Backbone Parameters $\Theta_{p,cap}$: 1967 = 0.02 rad (COV 50%) 2003 = 0.06 rad K_{c}/K_{e} : 1967 = -0.22 (COV 60%) 2003 = -0.08 FEMA 356 Θ_{p} limits: 1967 = 0.006 rad 2003 = 0.015 rad

Static Pushover Response Ω_u : 1967 = 2.4 2003 = 2.7 Δ_u : 1967 = 1.5% roof drift ratio 2003 = 5.0%

FEMA 356 demand at MCE: 1967 = 1.9% drift; Θ_p = 0.016 rad 2003 = 1.6% drift; Θ_p = 0.007 rad 25

Possible Failure Modes, cont'd

1967 Design

Strength: Median Sa = 1.0g, COV = 30%Deformation: IDR_{max} = 3 to 6%

2003 Design

Strength: Median Sa = 2.2g, COV = 36%Deformation: IDR_{max} = 3 to 6%

015

1967 Sidesway and Vertical Collapse

Total Collapse Probability

=

Sidesway Collapse **Probability at IM**;

(given drift ratio)

Probability of LVCC X Probability of No SS Collapse at IM,

From Elwood/Moehle & Aslani/Miranda:

Column Shear Failure:

Column IDR = 0.02 (mean) Frame IDR = 0.03

 Column Axial Failure: Column IDR = 0.045 (mean) Frame IDR = 0.06

Recall – Sidesway collapse occurs at peak drift ratios of 0.03 to 0.06.

Shear failure reduces median capacity by about 35%

Comparison of 1967 vs. 2003 Designs

Building	Collapse Risk				
	P _{col.} /MCE	MAF _{collapse}			
2003	5%	1 x 10 ⁻⁴			
1967 _{LVCC}	39%	18 x 10 ⁻⁴			
1967 _{shear}	80%	46 x 10 ⁻⁴			

- 1967_{LVCC} reflects combined probability of sidesway collapse and axial collapse of columns following shear failure.
- 1967_{shear} reflects combined probability of sidesway collapse and shear failure of columns (not necessarily axial collapse).

Example – Van Nuys Hotel damage in 1994

Column Shear Failure, but no collapse

Concluding Remarks

- Integrative Assessment Framework
 - Transparent, Scientific, Modular, Extendable
 - Explicit Performance Metrics
- Standardization of Structural Component Models & Criteria
 - Simulation models & LVCC models
 - Statistically "neutral", i.e., $\mu \& \sigma$
 - Important role for material standards organizations (e.g., ACI, AIJ)
- Validation of System Response Simulation
- More Consistent Safety (Collapse Risk) in Buildings
 - Developing consensus on "codified" approaches
 - Applying to evaluate code provisions (e.g., ATC-63)
 - Applying in new performance-based standards (e.g., ATC-58)

Developing Stakeholder (public) Awareness & Appreciation

References

- Liel, A., C.B. Haselton, and G.G. Deierlein (2006), "How have changes in building code provisions for reinforced concrete buildings improved seismic safety?", *8NCEE*. San Francisco, CA, April 18-22, 2006, 10 pp. (in press)
- Goulet, C., C.B. Haselton, J. Mitrani-Reiser, G.G. Deierlein, J.P. Stewart, and E. Taciroglu (2006), "Evaluation of the Seismic Performance of a Code-Conforming Reinforced-Concrete Frame Building - Part I: Ground Motion Selection and Structural Collapse Simulation", *8NCEE*, San Francisco, CA, April 18-22, 2006, 10 pp. (in press)
- Krawinkler, H.K [Editor] (2005), "Van Nuys Hotel Building Testbed Report: Exercisting Seismic Performance Assessment," PEER Report X.X 2005 (in press)
- Mitrani-Reiser, J., C.B. Haselton, C. Goulet, K.A. Porter, J. Beck, and G.G. Deierlein (2006), "Evaluation of the Seismic Performance of a Code-Conforming Reinforced-Concrete Frame Building - Part II: Loss Estimation", *8NCEE*, San Francisco, CA, April 18-22, 2006, 10 pp. (in press)
- Deierlein, G., 2004. Overview of a Comprehensive Framework for Earthquake Performance Assessment, *Performance-Based Seismic Design Concepts and Implementation, Proceedings of an International Workshop*, PEER Report 2004/05, UC Berkeley, 15-26
- Ellingwood, B. and R.B. Corotis (1991), "Load combinations for building exposed to fires," Engineering J. AISC 28(1):37-44
- Ellingwood, B.R., Tekie, P.B. (1999), "Wind Load Statistics for Probability-Based Structural Design," JSE, ASCE, 125(4), pp. 453-463.
- Aslani, H., Miranda, E. (2006), Probabilistic Earthquake Loss Estimation and Loss Disaggregation in Buildings, Blume Center Technical Report 154, Stanford University.
- Vamvatsikos, D. and C.A. Cornell, 2003. Incremental Dynamic Analysis, *Earthquake Engineering and Structural Dynamics 31*, 491-514.