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ABSTRACT

The State of California is highly seismic, capable of generating large-magnitude earthquakes that
could cripple the infrastructure of several large cities. Yet the annual maintenance of the State’s
bridges, such as highway overpasses, is not robust due to budget and staff constraints. Over 1000
bridges were not inspected according to the California Department of Transportation’s (Caltrans)
2015 Maintenance Plan. To help engineers monitor infrastructure conditions, presented within is
a device recently developed that employs modern sensing, computing, and communication tech-
nologies to autonomously measure and remotely report vertical settlements of bridges, such as
highway overpasses. Given the limitations of existing measurement devices, we propose a novel
vision-based method that employs a camera to take a picture of a projected laser beam. This new
device is referred to as the Projected Laser Target Method (PLTM).

This report documents the embedded system design and development of two prototypes. The
first prototype implements communication over a local WIFI network using synchronous code to
measure distance over time; this PLTM is deployed in a laboratory setting. The second device
under study implements communication over a Bluetooth Low Energy system using asynchronous
code and communication over 2G cellular networks using synchronous code, with the aim of deter-
mining its accuracy in the field. This report evaluates the performance of the field-suitable system
in terms of its system reliability, measurement accuracy and precision, power consumption, and its
overall system performance.
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1 Background and Previous Work

1.1 STATE-OF-THE-ART AND MOTIVATION

Bridges are a critical component in the day-to-day business of communities. It is a key responsi-
bility for state and federal agencies to maintain the safety of bridges under their jurisdiction. As of
2015, California’s Department of Transportation (Caltrans) reported in their 2015 Five-Year Main-
tenance Plan [Caltrans (2015b)] that they were responsible for the maintenance of 13,100 bridges;
this includes highway overpasses. In the same document, key statistics shed light on the need for
improvements to the state-of-the-art technologies as it applies to bridge maintenance. Therefore, a
brief discussion is presented below will define what is currently considered“state-of-the-art” bridge
maintenance.

1.1.1 State-of-the-Art in Bridge Maintenance

In order to maintain bridges, knowledge of the real condition of the bridge stock is critical. Cal-
trans states that bridge stock conditions are identified through regular bridge inspections performed
by contractors on-site, as mandated by federal regulations. These federal regulations are enforced
by the Federal Highway Administration (FHWA), a subdivision of the U.S. Department of Trans-
portation. The FHWA began implementation of its National Bridge Inspection Standards in 1971
[Washer (2011)] following the cataclysmic collapse of the Silver Bridge in Point Pleasant, West
Virginia in 1967 [O’Connor (2015)].

As laudable as this effort was, these standards suffer from many shortcomings in implemen-
tation and enforcement, and in fact were not even evaluated for their efficacy until 1998, when
the NDE (Nondestrutive Evaluation) Validation Center was established by the FHWA. A resulting
study on the reliability of visual inspections on highway bridges by the NDE Validation Center
[Washer (2011)] uncovered several issues of concern:

• Professional engineers are typically not present on site for bridge inspections;

• In-depth inspections are unlikely to correctly identify many of the specific types of defects
for which this type of inspection is prescribed;

• Significant variability in the condition rating given to bridges depending on the thorough-
ness of the investigation;and

• Few inspection teams perform an in-depth level inspection of bridge decks as part of their
Routine Inspection.

1



Ultimately, these findings all stem from and human bias. With this in mind, Caltrans’ Five-
Year Maintenance Plan states that by 2015 there was a backlog of over 1000 bridges that had not
been inspected by the State, with an estimated $450 million required just to maintain that backlog
through the year 2020. State agencies like Caltrans currently ensure their bridges are operating
safely through a maintenance program. Another strategy for ensuring safe operation of bridges is
through design measures.

1.1.2 State-of-the-Art in Bridge Design

An elevation of a prototypical bridge is illustrated in Caltrans’ Design Manual for Bridges. [Cal-
trans (2015a)].

Figure 1.1: Elevation view of example bridge [Caltrans (2015a)]
.

The typical bridge design shown in Figure 1.1 must consider various types of anticipated
loads. A key type of loading is that caused by differential settlement, in which one “bent” of the
bridge may settle into the ground at differing depths following the construction of the bridge and
its foundation, and also during normal bridge operation. To allow for this sort of loading, whose
magnitude and direction can be estimated by geotechnical methods (which are outside the scope
of this study), the Design Manual requires that bridge foundations must allow for a pre-defined
differential settlement of 1–2 in. To account for such a magnitude of vertical settlement, sufficiently
large safety factors must be applied to the design forces or displacements that are used in the design
calculations to supply enough design capacity to meet anticipated loading demands. Enlarging the
design factors to account for estimated settlements can be expensive. In the same Design Manual,
engineers are advised to consider the cost of enforcing settlement limits. If foundation costs are
unacceptable, it allows for larger settlements but requires more advanced settlement analyses. The
motivation for this project is to have Caltrans reduce design factors and accept less conservative
foundation designs that would be less expensive overall to build but would still provide an adequate
level of safety.

Allowing for occasional settlement would be a fairly reasonable approach in managing the
inevitable settling of bridges post-construction. Caltrans’ maintenance plans recognized that the
cost-benefit ratio for bridge maintenance is 12:1, i.e., minor damage rehabilitation costs 12 times
as much as that of preventative measures [Caltrans (2015b)]. This project is aimed at investigating
and providing a meaningful proof-of-concept yet deployable solution for engineers and decision
makers to detect early-stage as well as long-term settlements. If Caltrans can detect the settlement
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early, it can mitigate any potential damage before it occurs. Currently, Caltrans does not operate
an existing settlement monitoring program.

With the context of this project established, we subsequently reviewed selected research lit-
erature that already exist in the field of infrastructure monitoring to construct the framework of our
solution.

1.2 PREVIOUS WORK

Structural health monitoring, as defined by Lynch and Loh (2006), is a new “paradigm” of rapidly
identifying structural damage in an instrumented structural system, which can be classified in terms
of local or global damage detection methods. Whereas global methods employ numerical models
that intake global characteristics of a structure (such as modal frequencies) that indicate possible
damage, local methods seek to detect damage by screening structural systems at the individual
element scale. In the context of this project, our scope covers only local-based damage detection
and is aimed at measuring the relative settlement between two points on a bridge, and reporting
that settlement to decision makers so that a conclusion can be made concerning the maintenance
state of that bridge.

1.2.1 Traditional Sensors

Quantifying structural responses (be it local or global) is a critical step for structural health moni-
toring, and common responses that are employed in structural health monitoring are often acceler-
ation, strain, displacement, and tilt [Khuc and Catbas (2017)]. This project focused on measuring
the settlement of bridge foundations, i.e., displacement, a not-so-trivial task.

(a) Linear Wire Potentiometer (b) LVDT (c) Strain Gage (d) Dial Gage

Figure 1.2: Contact-type traditional sensors.

Traditionally, engineers have employed displacement sensors such as Linear Variable Differ-
ential Transformers (LVDTs), strain gauges (followed by integrating strain readings), wire poten-
tiometers, and dial gauges to collect displacement responses [Anderson and Thorarinsson (2009);
Khuc and Catbas (2017)]; see Figure 1.2. Although perfectly adequate under laboratory condi-
tions, these contact-type sensors have critical shortcomings for deployment in the field. These
classical sensors require stationary platforms near the measurement points to mount the sensors
and are limited in their measurement range [Anderson and Thorarinsson (2009); Khuc and Catbas
(2017)]. To overcome some of these limitations, non-contact type sensors have been developed in
recent years, including terrestrial laser scanning [Park and Lee (2007)], fiber optical sensors [Lien-
hart and Brunner (2003)], smartphone sensors [Ozer et al. (2017)], global position system methods
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[Moschas and Stiros (2011); Yunus et al. (2018); Im et al. (2013)], accelerometers [Arias-Lara and
la Colina (2018); Park et al. (2005)], and vision-based systems [Myung et al. (2011); Jeon et al.
(2011); McCallen et al. (2017); Wahbeh (2003); Olaszek (1999); Fukuda et al. (2010); Lee and
Shinozuka (2006); Feng and Feng (2015); Feng and Feng (2016); Park et al. (2015); Abdelbarr
et al. (2017); Khuc and Catbas (2017); and Jauregui et al. (2003)].

1.2.2 GPS, Laser Scanning, and Fiber Optic Methods

The GPS is a satellite-based radio navigation system whereby specialized satellites orbit the globe
and continuously transmit digital radio signals that contain information about the location of the
satellites and exact times of transmission. Then, GPS receivers on the ground track these signals
sent by the orbiting satellites and by calculating the time difference between the encoded time
stamp and the received time to determine distance; see Figure 1.3. When multiple receivers per-
form this action together, triangulation can ascertain an exact location, including elevation [Yunus
et al. (2018); Im et al. (2013)].

Figure 1.3: Calculation of distance between GPS satellite and receiver [Im et al. (2013)].

The main advantage of GPS is due to its universal presence; as long as a GPS receiver can re-
ceive the transmitted signals from orbiting satellites, a distance calculation can be made; however,
the latency involved in receiving these signals and interpreting them typically limits sampling rates
to below 100 Hz. In addition, GPS receivers also may not receive signals if mounted in enclosed
or partially enclosed spaces (such as underneath bridges) [Yunus et al. (2018); Im et al. (2013)].
Nonetheless, controlled laboratory experiments have resulted in measurements down to 3-mm ac-
curacy in the vertical direction [Im et al. (2013)]. Unfortunately, for the purpose of early-onset
settlement estimates, sub-millimeter accuracy is desired.

Another new non-contact method that hinges on a time-of-flight calculation is terrestrial laser
scanning (TLS). Here, a three-dimensional (3D) coordinate is extracted by measuring the time it
takes for a laser pulse to travel from the emitter to an object and then return. Then, a coordinate
transformation must be made to convert the coordinate from the local TLS axes to the global
structural axes; see Figure 1.4. This method, while able to achieve sub-millimeter accuracy in
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laboratory experiments, is hampered by the expense of installing TLS, and the inability to deploy
the equipment remotely and run it autonomously [Park and Lee (2007)].

Figure 1.4: TLS coordinate systems [Park and Lee (2007)].

Another innovative technology that has gained traction in structural health monitoring is fiber
optic-based sensors. Various studies have investigated the merits of embedding fiber optic cables
into spans of bridges and measuring the deformation of those cables, which then gives an estimate
of the deformations experienced within the structural element under study. For instance, Lienhart
and Brunner (2003) embedded eight fiber optic cables in a newly-built bridge; see the white curves
in Figure 1.5.

Figure 1.5: Position of sensors in three measurement profiles [Lienhart and Brunner (2003)].

Lienhart and Brunner (2003) used Michelson interferometers to split a beam of light down
the length of a fiber optic cable. After recombining them, the team calculated the differences in
travel time between the two beams of light. This was subsequently related to travel distance, which
reflected any asymmetric deformations in the cable since its installation.

Wang et al.(2015) employed a large deployment of fiber optic cables to examine long-term
settlement along sections of the Chinese high-speed railway. By using Fiber Bragg grating sensors,
they measured relative settlements between foundations along spans of the elevated railway [Wang
et al. (2015)]. as illustrated in Figure 1.7, the Fiber Bragg grating sensor is based on the concept
that light traveling between media of different refractive indices may reflect and refract differently
depending on the media interface. Deformation can be calculated by studying which wavelengths
are reflected or lost through a section of fiber optic cable; see Figure 1.8 [Wang et al. (2015)].

Although both methods were able to obtain sub-millimeter precision in their deformation
estimates, significant drawbacks in implementing fiber optics for monitoring purposes make it
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Figure 1.6: Michelson interferometers used by Park and Lee (2007).

Figure 1.7: Schematic of idealized settlements of railway foundations [Wang et al. (2015)].

Figure 1.8: Fiber-Bragg grating sensor [Wang et al. (2015)].

infeasible for long-term deployment . The sensing equipment and fiber optics are expensive and
potentially hard to mount and power in remote locations. In addition, the fiber optic cables must
be embedded into the structural element for the best results; thus, they would not be appropriate
for monitoring the deformaton of existing structures [Wang et al. (2015); Lienhart and Brunner
(2003)].

1.2.3 Displacement Estimation from Acceleration Data

Another popular method for determining displacement is by double integrating acceleration data,
which are collected using an accelerometer. Indeed, accelerometer records can be obtained without
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a reference (unlike an LVDT, for instance), and, depending on the specific sensor, can obtain very
high resolution readings. Such accelerometers are often used in dynamic testing of structures due
to their ease of installation and relatively low cost and noise (depending on the sensor) [Park et al.
(2013)].

Figure 1.9: Typical MEMS accelerometer.

However, the process of double integrating acceleration to obtain displacement is fraught
with error due to the inclusion of low-frequency noise and imprecise initial conditions [Park et al.
(2005); Park et al. (2013)]. For instance, when Park et al. (2005) double integrated laboratory-
obtained acceleration data with various initial velocities, they achieved vastly different estimated
final displacements; see Figure 1.10. Another method used to selectively filter out certain bands of
frequencies from the acceleration data involves a high-pass filter to eliminate low-frequency noise
[Park et al. (2013)]. This method often leads to the forcing of end displacement values to zero,
which is desirable for dynamic analysis but not for static displacement measurements [Arias-Lara
and la Colina (2018)]; see Figure 1.11. In Figure 1.11, the top three plots show the effects of
various high-pass filters applied on the acceleration time history, whereas the bottom three plots
employed either statistical methods or initial condition varying methods [Arias-Lara and la Colina
(2018)].

Figure 1.10: Effects of varying initial velocity [Park et al. (2005)].

1.2.4 Vision-Based Methods

As discussed above, various issues have made such technology inappropriate for the goals of the
program discussed herein, including the necessity of reference points for contact-based sensors,
the need to embed fiber optics into structures when they are built, and the restrictions for mounting
GPS receivers with unobstructed paths for communication with satellites. In addition, overall high
equipment costs and difficulties in mounting are additional issues that make such technologies
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Figure 1.11: Effects of high-pass filter [Arias-Lara and la Colina (2018)].

poor candidates for long-term deployment for monitoring settlements. Recent work in vision-
based methods have addressed many of these issues.

A brief explanation of the high-level goals of this project will put into context why vision-
based methods of displacement measurement were considered. Early detection of bridge settle-
ment requires taking only static measurements without regard for the dynamics of the bridge.
These dynamics are more indicative of the global response of a bridge (e.g., a frequency shift due
to extensive cracking of the deck) as opposed to a local response (e.g., one bent of a highway
overpass has sunk 0.5 mm relative to another). Ultimately, all vision-based methods require three
critical components to measure the displacement of a point or region of interest: a camera or op-
tical device (hence, vision), something to take a picture of and keep track of over time (hence,
feature), and a computational unit to process the photos for the desired features (hence, processor).
We will first examine two subsets of these methods: target-based and non-target-based.

Target-Based Methods

Target-based vision methods, which keep track of a target over time, have been investigated ex-
tensively in the literature. Many of these studies employed a physical target, often with a pattern.
This pattern can be merely an arrangement of circular dots, either printed or painted [Fukuda et al.
(2010); Lee and Shinozuka (2006); Park et al. (2015); Jauregui et al. (2003)] on the target surface,
or even illuminated with LEDs per Wahbeh et al. (2003). These patterns can also be rectangular,
per Abdelbarr et al. (2017), Feng and Feng (2015) and Feng and Feng (2016), or even in the shape
of a cross hair per Olaszek (1999). A few of these are shown in Figure 1.12.

These vision-based methods often employ some sort of a motion tracking scheme whereby
the camera/camcorder records a sequence of images focused on the target of interest. The initial
frame or image is analyzed to extract a coordinate of a certain feature; in subsequent frames or
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images, the same feature is located and its location is tracked through time. This initial coordinate
acts as a reference frame. In some studies, like those done by Feng and Feng (2015), this algorithm
of tracking a certain feature in a sequence of images is called template matching, making motion-
tracking possible; see Figure 1.13. Note that “ROI” represents the feature that is being tracked, or
a “region of interest”

Rectangular, Feng and Feng Dots, Fukada et al. Crosshair, Olaszek Dots (LED), Wahbeh et al.

Figure 1.12: Example templates for vision-based methods.

Figure 1.13: Procedure for implementing motion tracking [Feng and Feng (2015)].

By varying the rate of image capture, this motion-capture method can used for either dynamic
or static measurements. In the case of the majority of the studies reviewed in this report, dynamic
measurements were taken, thus requiring a high-frame capture rate; see Wahbeh (2003), Olaszek
(1999), Fukuda et al. (2010), Lee and Shinozuka (2006), Feng and Feng (2015), Feng and Feng
(2016), Park et al. (2015), Abdelbarr et al. (2017), and Khuc and Catbas (2017). Due to hardware
limits and Nyquist’s theory, this limited the range of dynamic response that these systems could
capture. For instance, Fukuda et al. (2010) could only achieve reliable readings up to 8 Hz, and Lee
and Shinozuka (2006) could only achieve reliable readings below 3 Hz. This of course constrains
the use of vision-based methods to low-frequency structures, which includes bridges.

Many of these studies had equipment setups where a camera was mounted a distance away
from the target, and the images were either recorded onto local storage [such as in Wahbeh (2003)],
or onto a computer for storage and processing [Fukuda et al. (2010)]. In the former case, the data
acquisition and data processing stages are separated, with the investigator required to process and
analyze the data off-site after the measurement period. In the latter, if the computing unit not only
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acquires the images but also processes them, some semblance of real-time measurements can be
attained. Various studies, such as those by Lee and Shinozuka (2006) and Fukuda et al. (2010),
used laptops and camcorders to acquire images, and telescopic lenses to zoom onto a particular
target from afar; see Figure 1.14.

(a) [Fukuda et al. (2010)] (b) [Lee and Shinozuka (2006)]

Figure 1.14: Experimental setup for real-time measurements using target based vision methods.

Although considered“cost-effective” by Fukuda et al. (2010) per the setups in Figure 1.14,
this is no longer true due to advancements in micro-controllers and cameras. In addition, these
immobile setups are much more suitable for laboratory experiments; indeed, they were only tested
in the laboratory or in the field for short duration of times with no long-term deployment.

Studies by Olaszek (1999) and Wahbeh (2003) have provided great insight that benefited the
development of our project. We therefore discuss these two projects in brief. Olaszek (1999) in-
vestigated the dynamic characteristics of bridges by mounting pairs of cross-hair targets onto the
under-structure of the bridges. He developed a specially manufactured optical device to concur-
rently zoom in and capture images of the two far-away points, utilizing one as a reference point to
the other; see Figure 1.15(a). That way, if the camera unit were to be perturbed (perhaps by wind),
the data from the reference image could be used to correct for any camera translation. The image
analysis algorithm employed cross-edge detection in which edges of the cross hairs of the images
were determined [see Figure 1.15(b)], from which the centroid could be determined by regression.
This photo-grammetric approach with edge-detection image analysis achieved submillimeter ac-
curacy at long ranges (up to 100 ft) but required the careful consideration of external factors, with
the most important factor being lighting.

Wahbeh (2003) used a camcorder with digital zoom that could shoot images of large black
targets (28 in. tall × 32 in. wide), that also were mounted underneath a bridge; see Figure 1.16(a).
These targets had two dots of known distance from each other and were lit up via an LED. A so-
phisticated signal processing technique employing Gaussian regression curve fitting was applied
to find the center of this high-intensity spot in the images [see Figure 1.16(b)], which required
off-line (and not real-time) processing but achieved sub-millimeter precision. The lack of a com-
munication pathway for data to be transmitted from the camera unit to the computational unit,
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(a) Dual-Camera Unit (b) Edge Detection Method

Figure 1.15: Camera equipment and image analysis methods [Olaszek (1999)].

combined with the prohibitively large targets, ultimately made this infeasible to deploy; however,
it provided good insight into what was required to make a system convenient to deploy in the field
on a semi-permanent basis.

(a) LED Targets (Mounted) (b) Raw Image of LED Target

Figure 1.16: Target Mounting and Target Images [Wahbeh (2003)].

Non-Target-Based Methods

To do away with exacting installation of targets, some studies have explored non-target vision
methods of displacement measurement. A study by Khuc and Catbas (2017) implemented an
advanced image processing algorithm that applied Gaussian filters at different scales. From the
differences between various Gaussian filtered versions of the same images, local extrema were
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identified as points of interest that are then matched between adjacent photos in a sequence of
photo; see Figure 1.17.

Figure 1.17: Key feature points extracted from images [Khuc and Catbas (2017)].

At this point, the motion-tracking scheme matches the general procedure mentioned in the
previous section on target-based methods, with the consecutive position of points in a sequence
of images being tracked and subtracted from the previous through time to obtain a displacement
history; see Figure 1.18. Khuc and Catbas (2017) acknowledges that although their method could
be used to measure both static and dynamic displacements, they did not consider long-term de-
ployment of their technology on an actual site beyond taking proof-of-concept measurements.
Ultimately, this device obtained sub-millimeter precision in laboratory settings, but it was also
hindered by ambient lighting conditions when deployed outside, perhaps even more so than target-
based methods due to their reliance on quality images of distinctive backgrounds for feature detec-
tion.

Figure 1.18: Motion tracking procedure [Khuc and Catbas (2017)].

Structured Light

The success of these target and non-target based vision methods are dependent on environmental
conditions. Ambient lighting conditions could successively cause feature detection, making motion
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tracking impossible to perform. For instance, Jauregui et al. (2003) had to use construction lights
to illuminate three targets mounted underneath an overpass in order for their targets to be identified
successfully from 60 ft away. To side-step this limitation, one team, Myung et al. (2011), employed
a method called structural light. Structural light employs two modules, each comprised of a canvas
screen, one camera, and lasers; see Figure 1.19. Each module was mounted a distance across of
each other. This distance was only limited by the range of the lasers. The cameras were aimed
at their own canvas (not across the spanned distance), and the number of lasers pointed in each
direction could be chosen to obtain enough information to reconstruct the 6-DOFs pose of one
module relative to the other.

Figure 1.19: One unit of a paired structural light system [Myung et al. (2011)]

The kinematic equations that were derived were extensive, requiring specific geometries of
the initial mountings of cameras and lasers to be precise and known; however, once derived, these
equations are solved easily. As implemented by Myung et al. (2011), they can be incorporated
into a Kalman filter to account for any imprecision in mounting or camera noise. Ultimately, this
system was able to achieve sub-millimeter precision, but only in a laboratory setting as it was not
deployed on an actual structure. Myung et al. (2011) envisioned a series deployment where the
canvas of one module would serve as the canvas of another, forming a chain of paired units, as
shown in Figure 1.20.

Figure 1.20: Proposed deployment of paired structural light, [Myung et al. (2011)].

A subsequent paper by Jeon et al. (2011) identified some limitations of the system developed
in Myung et al. (2011). That system, while able to estimate 6 DOFs of displacement (translational
and rotational), is limited by the canvas size. The cameras are always aimed at the canvases, so
the laser points from one module must land upon the canvas of another. Simple perturbations of a
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laser emitter on one end could lead to large translations on the receiving canvas. For instance, if
two modules were distanced 100 m from each other, with a 30 cm × 30 cm block of canvas, the
screen would only capture for ±0.086◦ in rotation of the laser emitter due to simple trigonometry
[Jeon et al. (2011)]. To account for this, Jeon et al. (2011) employed servo motors to control the
rotation of the laser emitters, the feedback of which would be fed into the Kalman filter employed
in Myung et al. (2011).

Laser-Based Optical Sensor

Vision-based systems need not employ a camera. McCallen et al. (2017) developed a displacement
measuring system that employed position sensitive detectors (PSD). The PSD system operates on
the concept of a photoelectric effect, so when a laser beam shines upon the semiconductor material
of the PSD, electrons are prompted to flow and these resulting currents can then be measured. A
sensor array was then custom fabricated for the project, in which individual PSD sensors were
embedded into a board in a staggered pattern (see Figure 1.21), such that in practice, measurement
precision of 1.0 mm was obtained.

Figure 1.21: PSD sensor array and inferred displacement through time [McCallen et al. (2017)].

This precision is limited by the spacing of the PSD sensors. Although much too imprecise for
detecting early-stage settlement, by mounting the sensor array on the floor and shooting a vertical
line laser beam onto the board from the ceiling, it was enough to measure interstory drift in a
building [McCallen et al. (2017)]; see Figure 1.22.

1.3 PROPOSED SOLUTION

1.3.1 Scope of Work and Specifications

The objective of this study was to develop a system that monitored the settlement of foundations of
a bridge with some degree of regularity and report this information wirelessly to decision makers.
Such a system would help Caltrans detect potentially damaging foundation settlements in the first
year of a bridge’s lifespan. To implement such a system, the project employed lasers, optical
sensors, and accelerometers. Most importantly, several specifications were defined. To design an
effective system, it must meet the following requirements:

1. Accuracy of 1 mm or better;

2. Battery life of 1 year or more;
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Figure 1.22: (a) Schematic of PSD system; and (b) PSD sensor array [McCallen et al. (2017)].

3. Ability to take 1 measurement per day;

4. Ability for Caltrans to access data remotely;

5. Rugged for field use by Caltrans; and

6. Cost effective and easy to use.

Based on the literature review, further consideration of the use of traditional contact-type sen-
sors was abandoned. The requirement for installation to a physical point of reference is simply too
constraining for ease of installation and flexibility in deployment. The use of GPS, laser scanning,
and embedded fiber optic devices were also abandoned, primarily due to expense of the equipment
and undesirable installation/deployment consequences.

Given the goal of this project in developing a reasonably low-cost, yet precise measurement
system, we opted for a vision-based method. Although Feng and Feng (2016) developed a cost-
effective system for their target-based vision-based method, their system still required the use of a
camcorder with a specific telescopic lens to zoom onto a far-away target. The system also required
a PC to read in data from the camcorder in real-time [Feng and Feng (2016)].

We believed this interpretation of “cost-effective” to be outdated and were certain that we
could develop an embedded system using commercially available micro-controllers to interface
with a sensor suite comprising easily obtainable laser diodes, image sensors, and accelerometers.
We felt confident that we could design a reliable state machine for the various micro-controllers
chosen for our prototype, implement that design through multi-threaded code, and design a robust
image processing algorithm to estimate the position from obtained images. With these objectives in
mind, we proposed a key design departure from the typical aforementioned vision-based systems,
both target or non-target based.
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1.3.2 Projected Laser Target Method

A primary limitation acknowledged by Olaszek (1999) and Khuc and Catbas (2017) was the sensi-
tivity of vision-based methods to environmental conditions. Vision-based systems inherently rely
on the extraction of information and features from images, which stresses the importance of quality
images. This is no easy task, and Olaszek (1999) even mentioned that the mere direction of the
sunlight complicated his image processing and produced errors in his measurements. To that end,
we adopted a system that shelters the image sensor in a far more controllable environment; see
Figure 1.23.

Figure 1.23: Schematic of proposed system.

This proposed design placed the image sensor into an enclosure that blocked out all outside
light short of the opening located directly in front of it. This opening holds an infrared filter (a piece
of red-tinted acrylic), which blocks out all ambient light except for red light. The laser emitter was
a red laser corresponding with the red IR filter that shines its beam onto the IR filter from afar. The
beam is visible from within the chamber by the light sensor, which takes a picture of the interior
face of the acrylic panel.

This design essentially takes the fixed target used by several teams—such as Feng and Feng
(2015), Wahbeh (2003), Wahbeh (2003)—to serve as a point of measurement and breaks it into
two components: the canvas and pattern, much like the structured light approach per Myung et al.
(2011). The canvas, represented by the IR panel, is brought to within a foot of the image sensor to
ensure that quality images of the canvas can be taken without an expensive zoom lens. Much like
in Myung et al. (2011), the pattern is not painted directly on the canvas but is projected onto it by
an external laser emitter mounted a distance away from the canvas; see Figure 1.23. Our system
departs from Myung’s system by using an opaque (except for the red light) acrylic panel instead of
a solid white canvas. Instead of extracting position information through an affine transformation
of coordinates based on pictures taken of laser points projected onto Myung’s white canvases, our
solution borrows from the method used by McCallen et al. (2017) who employed a discrete array
of light-sensitive diodes. Instead of measuring how many intervals of diodes are traversed by a
line laser, as was done in McCallen et al. (2017), our solution measured how many pixels were
traversed by a cross-hair laser. We were then be able to employ edge-detection computer vision
methods, as employed by Olaszek (1999), to determine the centroid of the cross-hair laser beam.

The advantages of this setup lie in the design of the camera module, in which the controlled
camera chamber freed us from using expensive cameras and zoom lenses to take high-quality
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photos of far-away targets. The limitations of our setup were as follows: (1) the laser emitter
must be of adequate strength and focus in its output such that the beam is of adequate intensity
and clarity when imparted on the acrylic panel; and (2) while the acrylic panel may filter aberrant
external light, thereby reducing environmental effects on the captured image, the panel does so by
“averaging” the exterior light. The effects of light penetrating this acrylic will be studied further,
as there are most certainly limitations on the conditions of light that may result in unacceptable
captured images.

We adopted a similar motion-tracking scheme to that used in many previous vision-based
systems; see Khuc and Catbas (2017) in Figure 1.18. Instead of measuring differences in positions
of pictures sampled at high frequency (for purposes of dynamic displacement tracking), we tracked
the motion of the pattern across pictures taken once or twice a day for the purpose of long-term
monitoring of static displacements.

To implement this tracking procedure, various measurement tasks must be performed in se-
quence. To perform these tasks, communications must be established between the camera unit and
the laser unit. In addition, another communication line must be established to carry measured data
to an off-site server. We proposed an embedded system that will reliably perform the aforemen-
tioned duties.

1.3.3 Embedded System Design

Vision-based displacement measurement systems are known for their flexibility in installation
(compared to contact-type sensors) and can produce readings accurate enough for static measure-
ments as well as for dynamic studies of structures. Many previous studies, such as those by Feng
and Feng (2016), were limited in scope to laboratory experiments with no field deployment. Stud-
ies that did deploy their systems onto actual real-world structures did so with much difficulty,
such as with the large panels and expensive equipment of Wahbeh (2003) and Olaszek (1999),
respectively. Finally, these studies did not address the application of their systems for long-term
monitoring purposes.

Some studies have endeavored to produce systems that are field-worthy. For instance, Washer
employed electrolytic tilt sensors to measure both short-term and long-term movements of bridges
[Washer (2010)]. While these sensors could not directly measure settlement, the system that
Washer developed leveraged the pre-meditated mounting arrangement of tilt sensors to estimate
an over all vertical settlement. The most important takeaway from Washer’s study was the one-
plus year deployment of his system on a test bridge in Rome, New York, during which the system
collected data without interruption, with reasonable power consumption (<70 W) supplied by a
power-line and back-up battery, along with remote data accessibility through a web server [Washer
(2010)]. Unfortunately, Washer’s report discusses little of the electronic design required to obtain
these performance metrics, as seen in a diagram of the system in Figure 1.24.

To best construct a framework for our embedded system, we adopted the hardware design
of the wireless sensing units developed by Wang et al. (2007), which included a sensing interface,
computational core, and wireless communication, all of which together ensured limited power con-
sumption, long peer-to-peer communication ranges, and local data processing capabilities. Wang’s
team chose specific hardware components to meet these goals, as detailed in Figure 1.25.
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Figure 1.24: Schematic diagram of sensors and electronics modules [Washer (2010)].

Figure 1.25: Hardware design of the wireless sensing unit [Wang et al. (2007)].

Wang’s team aimed to design a wireless monitoring system that supported real-time data ac-
quisition from multiple wireless sensing units. This necessitated the development of multi-threaded
software to implement simultaneous data collection, data interrogation, and wireless transmission.
In addition, a unique data communication protocol was developed to enable real-time and near-
synchronized data acquisition from the multiple sensing units.

The scope of the research reported herein did not require a network of sensing modules that
must measure and report time-sensitive data. Our project required taking one or two measure-
ments per day, with no priority for time synchronization of data taken from multiple modules. In
other words, if each deployed module wirelessly reports back their daily information in a loosely-
defined “timely” manner, we have already made an appreciable improvement in the state-of-the-
art of long-term bridge settlement monitoring. Such a flexible scope also accommodated the use
of commercially available computing modules that implemented the exact same communication
channels and hardware components as detailed in Figure 1.25.

Our project was not novel in pushing the limits of any hardware or software capabilities; that
job has been done well by groups such as Wang et al. (2007). What distinguishes our project is
that we applied the fundamental embedded system framework used by teams such as Wang et al.
(2007) to extend vision-based measurement methods into feasible long-term monitoring solutions
for use-cases such as bridges and highway overpasses.

Undeniably, the framework and analysis used in Wang et al. (2007) was inspirational and
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useful in organizing and designing an effective embedded system. For instance, because Wang’s
team approximated the current and voltage consumption of their wireless sensing unit, they were
able to specify a reasonable power source for their deployable system. In addition, their design of
multi-threaded embedded software for their wireless sensing unit demonstrated that it was possible
to perform parallel tasks simultaneously on the same computational core. This was directly appli-
cable to our project. Certain tasks, such a collecting data, manipulating data, or communicating
data, could be done concurrently instead of consecutively. To design the sequence, logic, and flow
of these various tasks for the sensing unit to perform, it was proven to be most helpful in designing
a state machine that could clearly describe the expected behavior of the unit given a current opera-
tional task and various inputs. An example of a state machine as designed by Wang et al. (2007) is
shown in Figure 1.26.

With these takeaways, we applied many of the same concepts to our project: to write multi-
threaded code to implement sensor interfacing, data interrogation, data transmission, and module
communication on our chosen hardware. We analyzed the power consumption of our own wireless
sensing unit so that we could ensure that our system is deployable for long-term monitoring with
minimal maintenance requirements. To ensure that our software operated as intended, we used
state machine methods to visualize and analyze our operational states and program flow

Figure 1.26: State diagram for the wireless sensing unit [Wang et al. (2007)].

1.3.4 Development Stages of the Project

We divided the project timeline into two primary phases; the first phase focused on the development
of a laboratory-deployable system and the second phase on the development of the field-deployable
system. The division of the project into these two phases was purposed such that in developing
the laboratory-deployable system, we would become familiar with key skills that are needed to
prototype an embedded system that met Caltrans’ needs.

Such skills involve programming with whatever coding language could be compiled onto
our chosen hardware to interface with various sensors using the input/output capabilities of our
chosen micro-controller, and generally understand how to quickly debug and iterate code versions
on the chosen hardware. Moreover, in addition to developing the hardware and software package,
time was required to design an adequate experimental setup for calibrating and testing our system
in a laboratory setting. To perform such experiments, we also had to learn how to use 3D CAD
software and a 3D printer to design and fabricate mounting devices for our computing and sensing
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hardware. Note: the skills gained in the first phase were crucial to the timely completion of the
second phase of the project.

The second project phase involved the application of skills learned during the first phase to
make the final prototype for Caltrans: a field-deployable system. Beyond re-designing certain
features of our hardware and software package, this called for designing a robust enclosure that
could securely protect all mounted hardware from the elements and ensure the viability of projected
laser target method.

A possible mounting scenario is illustrated in Figure 1.27 in which the red dots signify the
location where one module out of the paired system will be mounted (either the camera module or
the laser module) in the context of an idealized highway overpass with two spans.

Figure 1.27: Mounting arrangement.
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2 Project Phase I: Lab-Deployable System

The first iteration of our system was intended as a beta version to examine features that may be
adopted in the final prototype for Caltrans. Ultimately, although this Phase I prototype became
more suitable for lab deployment, a similar design workflow was developed that could be repeated
for Phase II:

1. Consider the intended user and use case to determine features and key items in the proto-
type;
2. Specify what hardware components would be used and how they should be integrated
together in a system architecture; and
3. Develop an embedded system capable of being deployed in the laid out system according
to state machine concepts, including its communication protocols and procedural code.

2.1 SYSTEM FEATURES AND ASSUMPTIONS

Before any development of the prototype could begin, consideration of the possible use cases of our
system was necessary to determine what features would be useful for the intended user; an engineer
at Caltrans. In addition, various limitations became very obvious at the onset and required making
key assumptions to validate our projected laser target approach.

2.1.1 Use Case Considerations for Feature Selection

We envisioned the following use case for the Phase I system: After the device is installed, there
should be no need to touch the device for a considerable time—on the scale of months or years.
Beyond the accuracy of the reported measurement, the engineer will also require that the system
be reliable, i.e., measurements should be taken at regular intervals with little to no latency. The
system should automatically take measurements with the assurance that there would be trivial small
latency in measurements. Given this blueprint, the first issues to tackle were as follows:

• How would the system know when to take measurements?

• Will the engineer send a command to the device?

• Will the engineer hard-code in a timing frequency?

These questions will be addressed in our ultimate design.
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2.1.2 Limitations and Assumptions

Our projected laser method measures one-dimensional (1D) displacement by taking pictures of the
interior face of the acrylic screen; therefore, it is blind to tilt effects stemming from both the camera
and laser modules. A detailed discussion on the contribution of tilt of either module is included
in Appendix A. In short, we assume that neither module will rotate after the initial mounting, but
module tilting using digital accelerometers will separately measure and report for each unit.

2.2 SYSTEM ARCHITECTURE

These issues of camera tilt and laser tilt are exterior to the embedded system design, but the mea-
surement tasks and time synchronization items are not. We devised a prototype system architecture
that will work along with the assumptions made to limit camera and laser tilts, as illustrated in Fig-
ure 2.1.

The camera module and laser module are illustrated abstractly in Figure 1.23. They are
broken up into their constituent hardware and are connected by pathways that represent information
flow. Consider, for example, the WiFi-Router; the pathway leading to its left leads to the camera
module, and the pathway leading to its right leads to the laser module. The pathway leading above
it leads to the database, server, and website.

This schematic features all lines that carry data. For instance, the relay circuit component,
while ultimately controlling power flow through the system, is controlled using polling data lines
between the GPIO ports of the Raspberry Pi and the GPIO ports of the Arduino. We will go into
further detail on the chosen hardware and details of the above schematic below.

Figure 2.1: Phase I system architecture.
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The system architecture can best be explained in terms of the three-component framework
of a wireless sensor device, as constructed in Wang et al. (2007), which contains a computational
core, a sensing interface, and a communication component. We will explain the proposed system
architecture in terms of this framework, which is better illustrated in the context of a generalized
structural system in Figure 2.2. Note: we do not have an actuation interface as there is no need
to actually perform any action back on the system. We are merely reporting measurements to a
remote server. This server has been implemented and will be briefly discussed in this report as it
relates to the outputs in Phases I and II.

Figure 2.2: Functional elements of a wireless sensor for structural monitoring applications [Lynch
and Loh (2006)].

2.2.1 Computational Core

Each module contains two computational units: a Raspberry Pi and an Arduino. These two com-
puting modules were chosen for this project as they both have a large hobbyist following, with
immense online documentation generated by the engineers and developers of their respective com-
panies, in addition to a tremendous amount of open-source resources. As stated in Section 1.3.3,
the ultimate purpose of this project is not to push the envelope on the efficiency nor effectiveness
of the computational core of the wireless sensing module, but rather to extend the functionality of
modern-day electronics and computing to make the long-term monitoring of bridges more feasible
and deployable. Nonetheless, why we chose these two computational units extends beyond merely
their commercial and popular appeal.

The computational core must perform several tasks specific to this phase of the prototype.
They are:

1. Interface with various digital sensors;

2. Communicate wirelessly with the other module;

3. Implement measurement tasks in a programmatic manner as defined by a state machine;

4. Implement complex image processing and computer vision algorithms;

5. Perform time synchronization; and

6. Control power delivery to various components in the computational unit.
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For clarity, a subset of Figure 2.1 is extracted in Figure 2.3 showing the composition of the
computational unit which consists of two boards. The Raspberry Pi will perform the first four tasks
enumerated above, and the Arduino will perform the last two tasks enumerated in the above list.

Figure 2.3: Schematic of entire computational unit.

Raspberry Pi

A Raspberry Pi can perform most of the requirements listed above with reasonable power con-
sumption. The Raspberry Pi is a “system on chip” (SoC) that acts as a mini-computer. It does
most operations that one would expect from a typical computer. It contains an operating system
(OS), which is a derivative of Linux called Raspbian. The various tools available because of the
OS include high-level programming with helpful modules such as Python, as well as useful Linux
tools through the command line. Because of these benefits, we chose to adopt the Raspberry Pi
as our primary computation unit. In addition, the Raspberry Pi has extensive online support and
documentation to support this project.

We chose to use the Raspberry Pi 3B+ model because it has built-in Bluetooth Low Energy
and Wi-Fi; see Figure 2.4 . For more details on the various peripherals, data capabilities, power
consumption, and general discussion on our reasoning behind choosing the Raspberry Pi 3B+,
refer to Appendix B.

Figure 2.4: Raspberry Pi 3B+ Google Images.
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Arduino

As opposed to the Raspberry Pi, which is essentially a computer, the Arduino is much simpler; it
is a micro-controller. In fact, a SoC like the Raspberry Pi may actually have a micro-controller as
one of its components. That being said, the Arduino, with its simple input-output functionality, is
capable of performing the last two duties listed above. It can read in signals on its input pins, make
a decision based on those inputs, and output a command. In addition, the Arduino has sufficiently
low-power consumption with a very large hobbyist following, much like Raspberry Pi. Therefore,
we selected the Arduino as another component of our computational unit. For more information
on the Arduino, our selection of a specific model of the Arduino (the Arduino UNO Rev3, Figure
2.5), and the various features of the Arduino board, refer to Appendix C.

Figure 2.5: Arduino UNO Rev3.

2.2.2 Sensor Interface

We refer back again to the framework of a wireless sensor network of Wang et al. (2007). Having
discussed the computational core of our system, we now introduce the sensor interface that it must
engage with. As seen in Figure 2.1, each computation core must interface with an accelerometer.
The camera module will also engage with an image sensor/camera. The laser module will also
engage with a laser diode.

Digital Accelerometer

The chosen accelerometer is an MMA8451 digital accelerometer, which includes the MMA8451Q
accelerometer by Freescale Semiconductor installed in a breakout board and distributed by Adafruit.
The tri-axial accelerometer can either run at 14-bit or 8-bit resolution, has adjustable full-scale
range of up to ± 8g, and can be interfaced using I2C. With a current consumption of up to 165 µA
and input voltage of 1.6 to 3.6 V, the power consumption of the MMA8451Q is essentially trivial
to the total system power consumption.

The accelerometer will output how much acceleration it sustains in three Euclidean axes.
We are using these accelerometers to measure tilt, i.e., pitch [see Figure 2.6(b)]. To compute tilt
from triaxial acceleration readings, we used concepts of vector algebra to obtain the pitch. Given
Ax, Ay, Az, the measured accelerations in the three axes x, y, z, respectively, we can calculate for
pitch:
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Figure 2.6: Angles for independent inclination sensing [1].

θ = tan−1

(
Ax√

A2
y + A2

z

)
(2.1)

From empirical tests (moving the accelerometer into various positions and keeping it con-
stant), it is incapable of measuring tilt to the precision required to correct for module tilt influence
on the settlement estimate. This is why we configured the physical setup so that the modules can-
not tilt following installation but use an accelerometer to report back a tilt reading of precision of
order of magnitude 1o. Although this configuration is restrictive, monitoring such tilt will help
engineers decide on the need of a more sophisticated settlement measurement or assessment, such
as sending engineers to the site.

Camera/Image Sensor

The camera module’s computational unit must also interface with an image sensor/camera that is
compatible with the Raspberry Pi. We chose to use the Raspberry Pi Camera v1, which uses the
image sensor OmniVision OV5647. From Raspberry Pi Foundation documentation, the v1 camera
has 5 megapixel still resolution, with maximum sensor resolution of 2592 × 1944 pixels [2]. The
sensor’s horizontal and vertical field of view, 53.50 ± 0.13o, 41.41 ± 0.11o, respectively, will be
important when designing the hardware enclosures. In addition, this camera is compatible with the
camera port of the Raspberry Pi 3B+, which connects to the camera itself via a ribbon cable (see
Figure 2.7), and transfers data over a CSI interface, employing I2C/SPI data protocols [3].

Laser Diode

Finally, our laser module’s computational unit must interface with a laser diode. The physics
behind the operation of a laser diode are beyond the scope of this report. Of concern herein is
the power draw for a laser diode, which is indicative of the laser’s effective range. Again, we
emphasize that this is a key limitation of the effective range of our proposed projected laser target
method. We performed various laboratory tests to explore this limitation. We tested three laser
diodes of various power ratings: a 5 mW, 30 mW, and 100 mW laser (see Figure 2.8); laser diodes
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Figure 2.7: Raspberry Pi camera port with ribbon cable.

were provided with lenses to create a cross-hair beam. The power consumption of the chosen laser
was a key consideration.

With the sensing interface already specified, we now have a computational unit interfaced
with a sensing suite. This is illustrated in Figure 2.9, which is extracted from Figure 2.1 for clarity.

Figure 2.8: 100 mW laser with included lenses and mount.

Figure 2.9: Schematic of computational unit with sensing interface.
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2.2.3 Communication

We now must consider the last aspect of the Wang framework’s wireless sensing device: wireless
communication. Our device must be able to send its measurements to the engineer. In addition, our
system requires having both a laser and camera module, each of which controls specific sensors;
therefore, the modules will have to communicate commands to each other. For instance, the camera
module may have to command the laser module to turn on the laser.

When considering wireless communication, common considerations include: how much data
you can send, how fast you can send it, and how reliably you can send it [Lee and Seshia (2017);
Wang et al. (2007); Park et al. (2013); and Lynch and Loh (2006)]. Wireless sensor nodes send data
over radio frequencies; the specific band and technology are then up to the choice of the developer.
For instance, a system may employ Bluetooth (short-range radio), Zigbee (also short-range radio),
or 802.11 (commonly used for Wireless Local Area Networks, WLAN) technology to send their
data [Lynch and Loh (2006)]. A great deal of existing literature and studies exist in the realm of
wireless sensor networks (WSN), with emphasis placed on the specific “network.” Indeed, these
networks can take the shape of a variety of topologies, as illustrated in Figure 2.10.

Figure 2.10: Wireless network topologies for WSNs: (a) star; (b) peer-to-peer; and (c) two-tier net-
work topologies [Lynch and Loh (2006)].

These various topologies have their own advantages. For instance, whereas the the star topol-
ogy may be a very simple network to implement and visualize, the range of the network is limited
to the wireless technology’s range from wireless sensor to central server. If one wanted to spread
various nodes of limited range about a large structure, they could perhaps employ a peer-to-peer
network, which would then require more intricate mapping of each node in relation to each other.
Investigating the various implementations of WSNs is outside the scope of this study. We were
concerned in the Phase I laboratory-deployment level to have a single pair of modules communi-
cate with each other, and then have one of the modules communicate the final measurements to the
remote server. Granted, while this may resemble a two-tier network topology, this classification
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was not a design choice for this project.

Wireless Router

As our system in Phase I will only be launched in a single room (i.e., a large single-room structural
testing facility), the range that our modules would have to communicate across to each other is well
within the limits of a WLAN. Typically, the range of a WLAN is limited by the wireless router,
which can have ranges of up to 150 ft indoors [4]. We chose to use a spare wireless router that met
our prototyping requirements: a Netgear WGR614v7 wireless router. Each module can connect to
the local area network established by the wireless router through its 802.11 Wi-Fi chip and find any
other device on the network provided they know the other device’s IP address. Once connected on
the WLAN, devices can then communicate with each other using some communication protocol
such as TCP/IP. These details will be covered in a subsequent implementation section.

The communication pathways between the two modules and the modules and the remote
server is now established. Our system now resembles the complete schematic in Figure 2.1. The
server and website were written and deployed, and can be abstracted outside of the wireless sensor
framework, as illustrated in Figure 2.2 by Wang et al. (2007), and Figure 2.1 detailing our proposed
system architecture. In other words, we have designed the embedded system nearly independent
of the server, database, and website. Our only requirements were that the inputs for the server are
output by the wireless device, and that the communication pathway is compatible for both parties
per the design of the proposed system. Further details about the server/website can be found in
Appendix E.

Figure 2.11: Netgear WGR614v7 wireless router.

2.3 IMPLEMENTATION

With all components specified, the next step was to design a system that integrates all of the
separate parts together to perform the required measurement tasks. We decided to employ the state
machine concept to better design and visualize the program flow to develop a robust embedded
system that will behave in an expected manner and be reliable. A state machine is a model of a
system that can be described as having discrete states. These states are the operational conditions
of a system at a particular point in time. These states accept certain inputs and will respond with
certain outputs and/or actions [Lee and Seshia (2017)].

For instance, consider a thermostat that controls an HVAC system that must either turn on
or off the heating. The behavior of this thermostat can be modeled as a state machine; see Figure
2.12. In this figure, the states are defined as follows: states = {heating, cooling}, with a set-
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point temperature between 18 and 22. The machine will intake the temperature as an input at a
given state, and output a command of either turning on the heat or turning off the heat. The output
and action is associated with a transition from one state to another. Note: if the machine is in the
cooling state, the machine will only perform an action if the temperature ≤ 18. This is reflective
of the advantage of using state-machine concepts when designing the behavior of a machine in that
one can clearly state the inputs and outputs of a machine with respect to certain states of operation.

Note the notation of the state transition where the left item, the input, and the right item the
output are separated by a ”/”. Another action that can be done in addition to an output is the setting
of a shared variable. This can be denoted as a second line underneath the [input] / [output] line,
where a variable x can be assigned a value: x := value.

Figure 2.12: State machine model of a thermostat [Lee and Seshia (2017)].

2.3.1 State Machine Design and Implementation

We have described the various duties of the computing components in each of the camera and
laser modules in the system in Figure 2.13. These duties will then be implemented more fully in
subsequent subsets of the functional block diagram in Figure 2.13.

Figure 2.13: System-level functional block diagram and component duties.
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One key point worth emphasizing is the extensive list of duties required of the camera mod-
ule. The camera module, namely the Raspberry Pi in the camera module, must be capable of com-
piling all of the required data to send to the server, including the extracted centroid value of the cap-
tured image ([px, py] = [pixel, pixel]), along with two tilt measurements ([pitchcamera, pitchlaser]).
This seemingly arbitrary choice to designate the camera module as the so-called “master” or “cen-
tral” device, and the laser module as the “slave” or “peripheral” device, is made to establish a
directionality in the communication protocol developed for the passing of data and command mes-
sages between the camera and laser modules. This communication protocol and the impact of this
chosen directionality will be explained later in this section.

The proposed functioning of this system is as follows:

1. Engineer pre-defines settings and hard-codes them into the computing unit. Settings in-
clude measurement intervals and synchronization intervals;

2. Technician installs unit into field and boots up the computational unit;

3. Once powered on, the system operates autonomously; and

4. The system will take measurements according to the defined intervals and synchronize the
laser and camera modules according to the defined intervals.

Raspberry Pi Design and Implementation

The design of the Raspberry Pi in both the camera and laser modules is shown in Figure 2.14.
These state diagrams illustrate the finite number of states possible per each Raspberry Pi at any
one instance of time and define the transitions required to move from one to another. We will
explain the program flow through each diagram to illustrate the expected robust operation of each
module with respect to each other.

Before narrating the programs of each module, note that there are three points of interest that
each state machine addresses:

• Non-fatal handling of unexpected errors;

• Proper synchronization of tasks between the laser and camera modules; and

• Power control by another micro-controller, the Arduino in this case.

These two Raspberry Pi’s illustrated in Figure 2.13 must work together to complete their
measurement tasks; therefore, their operations are discussed together. Both Raspberry Pi’s are
connected via wired GPIO pins to an Arduino, which is poised to turn on and off the power supply
to each respective Raspberry Pi to conserve overall system power consumption. Therefore, at
boot-up, each Raspberry Pi must perform Initialization tasks, including driving a ”True” signal
through a GPIO pin being read by their corresponding Arduino. This alerts the Arduino that the
Raspberry Pi is on. Also, each Raspberry Pi references a text-file, called run log.txt. This file
contains a single integer run count: a counter that starts at 0 and encodes the current boot-up
that the module has performed that is only incremented at the end of the program. Each Pi also
maintains a settings file, which contains hard-coded information that the main program references.
One of these variables is sync interval, the number of runs that must elapse before a clock
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(a) Camera module Raspberry Pi (b) Laser module Raspberry Pi

Figure 2.14: State diagrams for Phase I deployment of the Raspberry Pi.

synchronization must be performed between each module. Both Pi’s at boot-up also check if the
current run is a multiple of sync interval; if it is, each Pi will perform clock synchronization
tasks instead of measurement tasks. If it is not, each Pi will proceed onto measurement tasks. The
laser module, as part of Initialization, will also turn on the laser diode.

Next, the Pi in the camera module, RPIcamera, will access its accelerometer to calculate a
pitch value and save it to pitch camera in the state Acceleration. Then, it will proceed to take
the required images using its camera in the state Image. Following this, the RPIcamera commands
the RPIlaser to turn off the laser diode. The RPIcamera then also performs the computer vision
algorithm in this state to extract the centroid of the laser beam, [px, py]. All the while, the RPIlaser
has been in its Wait state as the capturing of the images takes an appreciable amount of time.
The RPIlaser therefore is designated its own idle state, waiting to receive the command from
RPIcamera to shut off the laser diode. After receiving this message, the RPIlaser calculates its
own tilt value pitch laser from reading its own accelerometer in its state Acceleration. After
Acceleration, theRPIlaser then proceeds to transmit pitch laser to theRPIcamera in the state
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Send Pitch Reading. All the while, as reading an accelerometer does not take long to execute,
the RPIcamera has moved onto its Settlement Estimation state without entering a separate Wait
state, and receives the pitch laser reading from RPIlaser. After RPIlaser sends out its pitch
reading, all of its duties have been completed, so it proceeds to its Shutdown state. In doing so,
it drives its designated GPIO pin “LOW”, or “False” to indicate to the Arduino that the Raspberry
Pi will shutdown momentarily. Before issuing a shutdown command, the RPIlaser will update its
run log.txt with an incremented run count.

In the meantime, theRPIcamera has moved to state Server, whereby it connects to the server,
sends the compiled data [px, py, pitchcamera, pitchlaser] to the server, and then proceeds to Shut-
down, which is identical to the Shutdown state for the RPIlaser except that the camera module
must also shutdown its camera sensor. If the camera is not shutdown properly, the resources that
are shared between the camera board and the Pi are not de-allocated properly, and the Raspberry
Pi is at risk of suffering from abnormal memory segmentation faults, which are typically fatal and
may cause the Raspberry Pi board to freeze.

Figure 2.14 shows additional state transitions in red. In the execution of each state, if any
significant error is caught (e.g., if the camera is not accessible), the entire system transitions to its
Shutdown state. This ensures that the unit does not prematurely exit from the program execution
and shutdown improperly, which is considered a “fatal” handling of the error.

An important question is now posed; if one unit shuts down, how will the other unit know to
shutdown? As will be discussed in a subsequent section on the communication protocol for this
system, there exists certain states that require the passing of messages between the two units. For
instance, in order forRPIlaser to transition from Wait to Acceleration, it must receive a command
from RPIcamera to turn off the laser. If RPIcamera has somehow encountered an error prior to
sending out that command in Image and shut down, RPIlaser will never receive this message. To
prevent RPIlaser from hanging and entering a phenomenon called deadlock in which the system
no longer responds to the provided inputs and stalls, we consider this lack of a message to be an
error in itself, and our communication protocol will raise the error to the state machine. This error
then results in RPIlaser proceeding to Shutdown.

Lastly, we note that if run count % sync interval == 0 for both modules exiting
their respective Initialization states, they will both transition to a Synchronization state. In each
of these states, the Pi’s will perform time-synchronization procedures to correct the clock offset
that may have accrued between boot-ups. This time synchronization procedure will be explained
in more detail in Section 2.3.2. Each Pi then proceeds onto their respective Shutdown for Syn-
chronization states.

We have therefore addressed each of the three concerns mentioned earlier in this subsection.
These state machine designs allow for the Raspberry Pi’s to implement their measurement tasks
while also non-fatally handling unanticipated errors, correcting for clock drift, and communicating
with the Arduino to implement power-saving operations. We can next proceed to discuss in further
detail the state machine model for the Arduino.
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Arduino Design and Implementation

The Arduino plays an important role in the functionality of the computation unit of the proposed
monitoring system: it controls when to power the Raspberry Pi on or off. First, we designed a state
machine for the Arduino, as illustrated in Figure 2.15.

Figure 2.15: State diagram for Phase I deployment, Arduino.

This state machine is time-triggered instead of event-triggered. A time-triggered system
reacts based on an internal timer, while an event-triggered system reacts to external stimuli based
on interrupts [Lee and Seshia (2017)]. When implemented in code, the Arduino “polls” the state of
certain input/output pins and reacts accordingly. A discussion on the difference between interrupts
and polling is provided in a subsequent section.

Note: the state machine model for the Arduinos in both the laser and camera modules are
identical as their respective “slave”—the Raspberry Pi’s—ultimately provides the same inputs to
accomplish the exact same goals. These goals are as follows: (1) inform the Arduino when the
Raspberry Pi is powered “on” and “off”; and (2) inform the Arduino if and when the Raspberry Pi
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wishes to perform time synchronization. This information is transmitted to the Arduino via wired
GPIO pins. As discussed below, it is desirable to synchronize the clocks of both the camera and
laser modules when they are both booted-up for the first time.

The Arduino boots-up and begins in state Wait as it waits for a signal from its Raspberry
Pi to synchronize. This signal is transmitted via a connected GPIO pin to signal to the Raspberry
Pi that it needs to pivot from “LOW” to “HIGH” when a time synchronization is desired. Once
this signal is received, the Arduino will initialize the software timer (based on a physical hardware
oscillator) and begin a counter variable T at zero. The machine then automatically transitions to
the predominant state of the diagram, Timer and Wait, in which the Arduino will wait for various
inputs or conditions in order to transition to other states and perform actions. These rather intuitive
transitions are:

1. If T matches a value T sync and a condition variable flag sync, the Arduino will turn
on the Raspberry Pi;

2. If T matches a value T ON and flag sync is not active, the Arduino will turn on the
Raspberry Pi;

3. If the Arduino receives a “LOW” pinpower signal (i.e., ¬pinpower) from the Raspberry Pi,
the Arduino will cut the power going to the Raspberry Pi (Note: ¬ is a logical “not” symbol
that signifies the absence of a signal, or if a signal is “LOW” or “False” versus “HIGH” or
‘True”);

4. If the Arduino receives a “HIGH” pinsync signal (i.e., pinpower) from the Raspberry Pi, the
Arduino will turn the condition variable flag sync to be active; and

5. If no other transitions are made, T will be incremented.

The incrementation of T ensures that the conditional statements of T == T sync and T ==
T ON in the first two enumerated transitions above will eventually be satisfied.

If the machine has transitioned from Timer and Wait to either PI OFF or PI ON, the pro-
gram will immediately return back to Timer and Wait following the execution of PI OFF and PI
ON. In this way, we ensure that the incrementation of T is interrupted as infrequently as possible.
In addition, when the Arduino transitions to PI ON, not only is the command made to turn on
the Raspberry Pi, but the counter variable T resets to zero, as well as any condition flag such as
flag sync. When the Arduino transitions to PI OFF, T is not reset. The reasoning behind this
protocol is best illustrated in an example program flow.

First, assume that T sync is significantly less than T ON, T sync = 2 minutes and
T ON = 12 hours, meaning that when the Pi is synchronizing with the other module, it will
shutdown and wake up again after only 2 minutes of elapsed time instead of waiting a full 12
hours. Next, assuming that we are booting the monitoring system for the first time, run count
= 0. Therefore, we know that the Raspberry Pi, according to its state diagram in Figure 2.14, will
perform time synchronization instead of measurement tasks.

Upon boot-up, the Raspberry Pi will send pinsync to the Arduino, thus allowing the Arduino
to transition to Initialize Timer from Wait and also set flag sync := 1. After initializing the
software timer and T := 0, the Arduino then transitions to Timer and Wait. If the Raspberry
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Pi had already finished its synchronization tasks and shutdown, a ¬pinpower signal would be sent
to Arduino, thus allowing the Arduino to cut the power to the Raspberry Pi with the command PI
OFF.

We have now arrived at a state where the Arduino is in Timer and Wait, and the Raspberry Pi
has shutdown, i.e., its power has been cut. The Arduino will establish power back to the Raspberry
Pi once a pre-defined time T sync has elapsed, as noted by one of the transitions to PI ON
during which T is reset. The Arduino now is back in Timer and Wait, and the Raspberry Pi is
now performing measurement tasks instead of synchronizing with the Arduino. Eventually, the
Raspberry Pi will shut itself down and will send ¬pinpower to the Arduino, which will trigger a
transition to PI OFF and back. Note that this time, T has not been reset and flag sync == 0.
Therefore, when T sync has elapsed, the power is not re-established to the Raspberry Pi. The
Arduino waits until T ON has elapsed and then re-establishes power.

We have explained the expected execution of the Arduino state machine in relation to the
expected execution of the Raspberry Pi state machine. In doing so, we have now established that
the Arduino is expected to power the Raspberry Pi on and off in accordance with the task required
of the Raspberry Pi, be it time synchronization or measurement.

2.3.2 Time Synchronization

Time synchronization is required because of error that a timer accumulates as it counts through
time, typically due to imprecision of the hardware of the timer itself [Lee and Seshia (2017)]. For
instance, in the case of the Arduino UNO, its timer features are implemented using the 16 MHz
crystal oscillator located on its board; literally a quartz crystal oscillates at a known frequency,
which gives the micro-processor a notion of time. In addition, there is an initial existing offset
because the two modules cannot be booted simultaneously; this offset must be corrected. Each
Arduino unit has no concept of actual real-world time without additional outside information, e.g,
from the Internet. It only knows how much time has elapsed “locally” from some initial point in
time, say, when a software timer is initialized.

Clearly there are two sources of time error: (1) accumulated clock drift due to hardware
imprecision; and (2) an initial clock offset. To correct for this time error, we implement a syn-
chronization protocol called the Precision Time Protocol (PTP) [Lee and Seshia (2017)], which is
illustrated in Figure 2.16.

Implementing the PTP will solve for the accumulated error between two separate clocks,
assuming that one clock is a “master,” and the other is the “slave”: essentially we synchronize
the slave clock relative to the master clock. This protocol calculates this time error by passing
encoded time stamps between the two clocks and assumes that the time of flight in both directions
is equal, which is a fair assumption when trying to obtain a reasonable level of synchronization
precision. Referencing Figure 2.16, it should be noted that the actual messages passed between
master and slave are encoded time stamps. For instance, t1 is the time that t1 was sent from the
master. It is then received by the slave at a time t2 (in the time context of the slave). The error term
e accounts for the difference in time references, which is exactly the time error we want to solve
for. Ultimately, the error can be solved using the following equation:
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Figure 2.16: Precision time protocol (PTP) [Lee and Seshia (2017)].

e∗ = (t2 + e)− t1 −
r

2
(2.2)

where e∗ is the exact clock error if the communication latency, or travel time, is symmetric between
the master and the slave, and r is the round trip travel time, defined as follows:

r = (t4 − t1)− [(t3 + 3)− (t2 + e)] (2.3)

To implement PTP synchronization, the Raspberry Pi’s will pass these various messages
between each other over WLAN, and after the error e∗ is computed, both Raspberry Pi’s will pause
for program execution for a unique period of time using the Python time.sleep() method
such that when they both resume program execution, they are indeed synchronized. It is expected
that one Pi will have ”waited” longer than the other to account for this error. When a Pi resumes
execution, it will immediately command the Arduino with pinsync to signal both the desire to
synchronize as well as when to synchronize, and then shutdown. Its Arduino will receive this signal
and immediately initialize its software timer and counter. The other Pi will send its own pinsync
signal eventually to its own Arduino to initialize its Arduino’s software timer and counter, and then
also shutdown. Both of these signals would have been sent at the same time, thereby initializing
the timers of both Arduinos at the same time. Therefore, when the Arduinos re-establish power to
their respective Pi’s after waiting for the same T sync to have elapsed, the Pi’s will reboot at the
same time.

2.3.3 Communication and TCP/IP

Still to be addressed is how messages are passed between the Pi’s. Across a WLAN, we can
employ TCP sockets to pass messages from one device on the network to another. The Python
module socket offers users high-level functionality of TCP/IP communication. Transmission
Control Protocol (TCP) is advantageous as it is reliable; packets sent according to this protocol
that are dropped are automatically detected and re-transmitted by the sender. In addition, TCP has
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in-order data delivery, meaning that data is read by the recipient in the same order it was sent by the
sender [5], thus removing any worrying about issues such as packet loss, out of order data arrival,
and other issues. The Python socket module then implements this protocol using a notion of
sockets by adopting the framework of a server and client (master and slave) device; see Figure
2.17. Note in Figure 2.17 how the server end must initially create the socket object, bind its own IP
address to that socket object, and “listen” for connection attempts from other client devices. In our
system, we designated the camera module as the master device (or the server in this case) and the
laser module as the client. Once this connection is made via a three-way handshake, the messages
are passed using send and read methods, and after one party decides to end the transaction, the
TCP socket is closed.

Figure 2.17: TCP socket flow [3].

During measurement tasks, our Raspberry Pi’s will communicate according to a protocol that
uses the TCP socket flow as illustrated in Figure 2.17. To construct this protocol, we employed a
helpful property of socket communication: blocking or non-blocking sockets. When a socket is set
to “non-blocking,” it means that the socket will not wait indefinitely on certain “receiving” methods
for something to arrive. For instance, the server socket must “listen” for incoming connection
requests from the client socket in order to make a connection. If set to “blocking,” this socket will
wait indefinitely for that connection request, which runs the risk of placing the invoking program
(in our case the primary state machine program) into deadlock. Deadlock is a phenomenon in
which the system no longer responds to inputs and stalls because it is waiting for some event to
occur, often when such event will actually never occur.

To prevent this, we set our sockets (client and server) to be non-blocking. For example, a
non-blocking server socket will only check for a connection request once and in that one instance.
If a client connection request has not arrived, the server socket will return to the invoking program
without making a connection. Another example is that from the client end when the client is
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reading a message from the socket buffer. Instead of waiting indefinitely for a message to arrive
in the buffer, the socket will only try once instantaneously (or for a certain amount of time called
a timeout) before returning. This useful property allows one to employ these socket methods in
program loops to construct their own communication protocols, such as the one developed for this
project. Our protocol accommodates a very specific communication protocol whereby the server
will only wait for a designated amount of time for a connection, and the client will only query for
a connection for a designated maximum number of times. If a connection is created, the client will
immediately send out a message, and the server will immediately begin reading its buffer. Once
the server socket reads the message, it immediately sends out a response. Once the client has sent
out its message, it will immediately begin reading for this server response message. This protocol
is illustrated in Figure 2.18.

We made extensive use of the Python module select(), which monitors input/output
ports. For example, if select.select() is given a non-blocking TCP/IP socket as an ar-
gument, it will return lists containing communication channels that are ready to read from, ready
to write to, or have reported an error.

(a) Server (a) Client

Figure 2.18: Phase I functional block diagrams and communications protocol.
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2.3.4 Power System

Because we have no intention of field-deploying this system, we were not concerned regarding
power consumption. A more rigorous discussion of power consumption will be made in discus-
sions of Phase II.

The last fundamental questions in developing the Phase I system are how the Arduino phys-
ically receives the pinpower and pinsync signals, and how the commands to turn the Raspberry Pi
”On and Off” are implemented. To implement this power delivery system, a prototype circuit was
fabricated using various components including a Low-Signal (5 VDC) Latching Relay; see Figure
G.1. There are various components and signal lines that are important to note in Figure G.1 and
are tabulated in Table G.1. Of importance is the use of pull-down resistors as well as the choice of
using the latching relay. We installed a 1N457 diode across all of the relays in our circuits.

Pull Down Resistors

As will be mentioned in a subsequent section on implementation challenges, the power delivery
system relies on the signal lines carrying pinsync and pinpower to be accurate. The Arduino will
cut off power to the Raspberry Pi when pinpower drops from HIGH to LOW; if the signal does so
when the Pi has not yet completed its tasks, this could cause severe ramifications on the operation
of the computational unit and may damage the micro-controller itself.

An example of how this signal may have become corrupted is when the Raspberry Pi first
boots up. It is known from the BCM chip datasheet that all 54 GPIO pins on the Raspberry Pi 3B+
have a pre-set pull up or down resistor built into them [6]. This ensures that when the pins are not
being driven, their voltages are not “floating”; however, it takes time for these built-in resistors to
activate at boot-up. While this is usually not a problem, we installed pull down resistors on the two
signal lines to ensure that even during boot-up, the signals are pulled low even if the pull-down
resistors in the Pi have not taken effect yet. This ensures that pinsync is low until the Pi decides
to either drive it high to indicate a synchronization request or keep it low. This also ensures that
pinpower is always low until the Pi drives it high to indicate that the program is running, and then
drives it low to indicate that the main program has terminated. For typical low-voltage applications
such as this one in which logic values are defined below 5 V, an adequate pull down or up resistor
is 5 kΩ [7].

Latching DPDT Latching Relay

To actuate the closing and opening of a switch that carries the power for the Pi, we used a latching
relay. A relay can be thought of as a simple switch but with coils that are energized/de-energized
that close or open that switch. These relays can be latching or non-latching; the latter meaning
that in order to maintain the current state of the switch, the coil must be constantly energized. If
the coil is de-energized, the switch automatically reverts back to its default state. Since we wanted
more control over our power delivery, we opted for the latching relay in which there may exist two
relay coils, one of which is to be driven high and the other low. At that point, the switch ”latches”
and does not revert back to its previous state. The only way for the switch to revert is to drive the
high coil low and the low coil high. This sort of behavior is illustrated in the internal schematic of
the double pole-double throw (DPDT) latching relay we selected for our circuit; see Figure 2.19.

40



An additional concern, although subtle, is important. The coils in the relay act as a solenoid
in which the current carried in the coils generates a magnetic field, which drives an electromagnet
in the relay to close or open the switch. When the coil is de-energized, the magnetic field induced
by that solenoid collapses, essentially creating its own electro-motive force (EMF) according to
Lenz’s Law [9]. This EMF travels in the direction opposite to that of the original driving current,
hence the name “back-EMF.” Depending on the voltage and currents in play, this back-EMF could
be large enough to damage the electronics. To capture this back-EMF, we use a “flywheel diode,”
as illustrated in Figure 2.20. When the driving current is active, the diode is reversed biased to
the flow of the current and will not allow any current to pass. When the switch opens, the diode
polarity matches the direction of the back-EMF, diverting the back-EMF away from the driving
electronics.

Figure 2.19: Terminal schematic for DPDT relay: G6AK-234P-ST-US-DC5 [8].

Figure 2.20: Back-EMF suppression using a diode [9].

2.3.5 Computer Vision Algorithm

The computer vision algorithm must take in captured images and output an estimate of where the
center of the cross-hair beam is on the image in units of pixels. The algorithm must be robust in
that it can accommodate light artifacts (e.g., streaks of light or smudges on the screen), and it must
be able to return a position that is of sub-millimeter precision. Indeed, this is a requirement for the
entire monitoring system; to return a settlement measurement of sub-millimeter precision but with
all components of the monitoring system considered: the computational unit, sensing interface,
and communication pathway. Their role is to ensure that the proper images are captured and given
to the algorithm so that it can generate output. Presented below is a block diagram that explains at
a high level the function of this computer vision algorithm.

Note in Figure 2.21 that it requires two images: one of the laser beam and another of the
baseline ambient conditions. This way, the algorithm can remove significant light artifacts by
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Figure 2.21: Block diagram of developed computer vision algorithm.

merely subtracting the baseline image from the laser beam image. This corrected image is then
de-noised using a Gaussian filter, and the gradients of the pixel values are then calculated using
the Sobel operator. From these gradients, regression points are found upon which a regression will
be made. In essence, an edge-detection method is employed, very similar to that done by Olaszek
(1999). In the end, the intersection of the two regression curves is output as the centroid estimate.
Also key is that a restriction imposed on this algorithm is that it is constructed to work only on
pictures taken at night, as it is safe to assume that ambient light is at a minimum during after dark.
Further details on the computer vision algorithm can be found in Appendix E.

2.3.6 Implementation Challenges

Crystal Oscillator Imprecision

As shown in Figure 2.22, the 16 MHz oscillator located on the Arduino has tolerances on the
nominal frequency of oscillation. The tolerance of the oscillators used on the Arduino is around
±50 ppm [10]. Thus, if we expect the oscillator to have a frequency of 16 MHz, the actual fre-
quency may deviate by:

Fdeviation =

(
50PPM

1, 000, 000

)
∗ FIdeal = 800Hz (2.4)

This deviation can have serious implications regarding time-keeping by the Arduino across
long time spans, say, 12 hours, which is a reasonable measurement interval in terms of monitoring.
During testing of this system, the software timer ran for over 30 hrs, resulting in the two Raspberry
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Figure 2.22: Location of crystal oscillator on Arduino UNO Rev 3.

Pi units waking up with a delay of 52 sec, i.e., one of the Arduino clocks had accumulated 52 sec
of drift over 30 hrs. To correct this, one method was to adjust the value of the timer’s compare
match register.

The logic behind this solution is as follows: the Arduino’s ATmega328 micro-controller [11]
has 8-bit and 16-bit counters, meaning that each counter will either reach 2n or a compare match
value, and then restart at 0, where n is the number of bits in the counter [5a]. An interrupt can
be interpreted as an action(s) that must be done by the micro-controller when a certain event trig-
gers the interrupt. When that event occurs, an interrupt handler “handles” the event and performs
the programmed action(s). Because this interrupt mechanism itself is already implemented in the
micro-controller, the user need not be concerned. In the case of a timer interrupt, the event that
triggers the action(s) to be performed is either the counter reaching its maximum value and over-
flowing, or when the counter value matches the compare match value, which is stored in the com-
pare match register. For reference, a register is merely a small parcel of memory in a computing
unit and is often associated with an address.

Ultimately, the user needs only to apply Equations (2.5) and (2.6) to control the frequency
by which the timer interrupts occur [12]. In our case, we wanted timer interrupts to occur every
second, so that the Arduino can check to see if a certain amount of time has elapsed (in seconds).

FreqT imer[Hz] =
FreqCrystal[Hz]

Prescaler
(2.5)

FreqInterrupt[Hz] =
FreqT imer
CMV

=
Freqcrystal

Prescaler ∗ (CMV − 1)
(2.6)

Note that the −1 term in Equation (2.6) exists because the Compare Match Value (CMV) is zero-
indexed, and that the Arduino Crystal Frequency is nominally 16 MHz. To set our nominal 1 Hz
timer, we use a default Prescaler (defined in the Arduino architecture) of 1024 and compute the
CMV to be 15,624. Note: it was with this exact value that one Pi accumulated 52 sec of error over
30 hrs. That error is due to the tolerance of the nominal frequency of the crystal. By empirically
correcting for this error, we can back-calculate a corrected CMV to be 15,614 instead, which is
reasonable as a smaller CMV speeds up the frequency of the timer interrupt.
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By tuning the CMV, we were able to correct for this relative time error between the camera
and laser modules; this may not have been necessary for this monitoring application. In the context
of the communication protocol illustrated in Figure 2.18, we can have the server and client sockets
wait longer for the other module to boot-up and connect. Referencing the state diagrams in Figure
2.14, once both Raspberry Pi’s have transitioned out of their Initialization states, the rest of the
measurement tasks or synchronization tasks will be in-sync with each other. That being said, this
issue did bring up an important limitation of this implementation of the monitoring system. While
we can empirically tune timer properties to reduce clock drift and also employ PTP calculations
to synchronize the modules relative to each other, we need some sample of the actual world time
to synchronize the units absolutely. A straight-forward way would be to access the Internet. This
would require a gateway to the Internet instead of merely tying all of the various components
together across a WLAN. Ultimately, for the purposes of this laboratory-deployed system, we
deemed the implemented time-synchronization methods to be adequate.

Interrupts or Polling

Another interesting complication that arose during implementation involved the passing of the
signals pinpower and pinsync from the Raspberry Pi to the Arduino. During testing, it was observed
that the signal would often flicker during program run time. While the pull-down and pull-up
resistors on the signal lines ensure that the signals are stable when there exist floating voltages
before and after the GPIO pins on the Raspberry Pi are fully initialized and driven, one problem
they could not resolve were environmental factors. The presence of static electricity and other
ambient conditions would sometimes cause the pinpower signal to flicker from High to Low, thereby
falsely indicating to the Arduino that the Raspberry Pi had shut itself down and was ready for its
power to be cut. This resulted in premature shutdown of the computational unit. Granted, this
could have been due to poor craftsmanship and soldering of the circuit board, as described in the
Power System section of this chapter, but enforcing quality control of electronics can be difficult
and required implementing a software solution to address this problem.

Figure 2.23: Poll v. interrupt mechanism.
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Interrupts react to stimuli nearly instantaneously and can be of two types; external or software
(internal) [Lee and Seshia (2017)]. For internal software interrupts, the micro-controller typically
has some sort of timer programmed to trigger certain interrupts when certain time values are met.
This is how the Arduino was programmed to check if T sync or T ON time had elapsed in order
to turn on the Raspberry Pi, using a timer interrupt. For external interrupts, the micro-controller
is typically programmed to constantly monitor a certain pin for a certain event, be it a logic level
(High or Low), or a falling edge (High to Low), or a rising edge (Low to High). Once that event
occurs, an interrupt handler handles that event and performs certain programmed actions in re-
sponse to that event. This is how we initially implemented the Arduino to respond to pinpower and
pinsync signals as it has very low latency. If the signal itself has abnormalities, such as flicker-
ing, these interrupts will cause unexpected and oftentimes unwanted behavior. To counter this, we
implemented polling.

Polling is very similar to interrupts, in the sense that the micro-controller is monitoring the
state of a pin. Instead of the event triggering a response from the micro-controller, the micro-
controller must first detect if the event has occurred and then respond to it. This slight difference is
illustrated in Figure 2.23. We can see that depending on when the event actually occurs in relation
to when the micro-controller samples the GPIO pin, the latency between the event occurrence and
the micro-controller response can be quite high. However, when we implemented the Arduino
response to pinpower and pinsync, using polling at a sampling frequency of 100 Hz, we were able
to eliminate any unexpected behavior due to flickering GPIO pins as the frequency of the signal
abnormalities was higher than the polling frequency.

2.3.7 Programmatic Implementation

The actual deployment of the designed state machines and protocols in code was done predomi-
nantly on Python. All code described in Phase I will be available in a Github, as well as docu-
mented in Appendix H. In addition, it is important to understand how all of the different function
files are organized and dependent upon each other. This organization and dependency is illustrated
in Figures G.2 and G.3.

Note: the Arduino only has one program flashed onto it at a time. This one program may
include certain libraries that may already be saved in memory, but there is only one written program
that implements the Arduino state machine. Because of its OS, the Raspberry Pi has a file system
that is organized as illustrated in Figure G.2. To ensure that the system runs autonomously, the main
codes RPI C.py and RPI L.py on each module are run automatically when the system boots-
up. This is done automatically by editing the configuration file in the Raspberry Pi that controls
the actions done at boot-up, /etc/rc.local. To shutdown the Raspberry Pi programatically, a
command line shutdown command, “sudo shutdown -h now” must be issued.

2.4 TESTING AND EVALUATION

With our system properly designed and implemented, additional steps still remained before we
could run laboratory experiments to test this system. They were as follows: (a) mount the hardware
in an appropriate enclosure; (2) calibrate the projected laser target system; and (3) run a laboratory
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experiment to evaluate how the completed system operates.

2.4.1 Test Enclosure Design and Fabrication

For laboratory-deployment, the requirements for the enclosures of both the laser and camera mod-
ules are different than those if the system were to be deployed in the field. We were not required
to design an enclosure that is weatherproof. Therefore, in this phase of the project, we designed a
mounting device for both the laser and camera modules in SolidWorks, and 3D printed them using
an in-house 3D printer using PLA (polylactic acid) material. These designs were only intended
to validate the concept of the projected laser target method. The minimum requirements of the
enclosures and mountings required for this system to return accurate results are listed below:

1. The camera chamber must eliminate the majority of the outside light to ensure consistent
lighting conditions for the camera;

2. The camera chamber geometry must be compatible with the field of view of the image
sensor;

3. The camera module, which includes the camera chamber, should be able to hold the acrylic
panel in place;

4. The laser module must be able to hold the laser firmly in place through the duration of the
testing; and

5. The laser module must allow for the adjustment of the trajectory of the laser diode.

Various Designs of Camera and Laser Enclosures

With these requirements in mind, we designed two laser enclosures and two camera enclosures,
each of which would be suitable for various situations. Pictures of these enclosures are included
in Figures G.4, G.5, G.6, and G.7. In Figures G.4 and G.6, we can see various iterations of the
camera module. The primary improvement of the camera module v2 versus camera module v1
is that whereas v1 mounts the hardware on the exterior faces of the camera chamber [as seen in
Figure G.4(b)], the v2 module features another wall surrounding the camera chamber that encloses
the electronics, as seen in Figure G.6(a). In both versions, a lid encloses the camera chamber, with
the camera itself mounted on the rear wall farthest from the acrylic screen and facing the screen.

As shown in Figures G.5 and G.6 the laser modules hold the laser firmly in place by fastening
the cylindrical laser diode using set screws that penetrate a cylindrical chamber housing the laser
diode. This cylindrical chamber is incorporated in a fixed mounting, as seen in Figure G.5, and is
set in a ball-and-socket joint in Figure G.6(b). This latter mounting allows the user to install the
laser off axis from the camera module (perhaps on a wall), and aim the laser beam at the camera
module, which may be located somewhere else in the room. After aiming the laser beam, the user
can set the positioning of the laser by tightening the set screws that penetrate the socket component.

It is possible to mount the camera module on various types of specimens so long as the
camera chamber itself is kept intact. In other words, one may design an enclosure that mounts the
hardware in other orientations, or perhaps includes mounting devices to affix the entire chamber
on a certain specimen. So long as the camera chamber, which includes the camera, acrylic panel,
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and the walls that define the field of view of the camera, is kept intact, the projected laser target
method is viable. For instance, note that in Figure G.5 the entire camera chamber can be affixed
onto a tripod for mobility in a laboratory setting, and in Figure G.7 the entire camera enclosure can
be affixed onto the top of a concrete cylinder (analogous to a cylindrical structural or foundational
element) via a metal frame.

To ensure the efficacy of the projected laser target method, much effort must be put into the
camera module. It requires the proper dimensioning of the camera chamber, the proper orienta-
tion and mounting of the camera within the chamber, and the accurate calibration of the camera
chamber.

Camera Chamber Design

The slanted walls of the camera chamber follow the field of view of the camera, as illustrated in
Figure 2.24. Depending on how much vertical and horizontal translation of the projected cross-hair
beam we want to capture on the acrylic panel, we are restricted to the horizontal and vertical fields
of view of our camera. For the Raspberry Pi Camera v1, the horizontal field of view is 53.5±0.13o,
and the vertical field of view is 41.41± 0.11o [6]. Using these values, we can calculate how far we
must install the camera from the acrylic panel in order to achieve a certain horizontal and vertical
range of measurement.

Figure 2.24: Field of view of a camera.

In addition, we can see that the horizontal field of view is greater than the vertical, meaning
the horizontal range of the camera is greater than the vertical range. Therefore, as we are interested
in capturing settlement, i.e., a vertical displacement, we oriented the camera 90o rotated, so that
the horizontal field of view as per the spec sheet is actually oriented vertically. In order to achieve
a range of 4 in. of vertical measurement range, we calculated that we needed to install the acrylic
panel 3.97 in. away from the acrylic panel, per Equation (2.7).

depth =
h

2tan(0.5 ∗ θ)
=

4

2tan(0.5 ∗ 53.5o)
= 3.97 in. (2.7)

We note that accounting for the uncertainty in the field of view, the depth would only vary
by +/ − 0.011 in., which is trivial when considering fabrication tolerances; therefore, we can
neglect this uncertainty and work with the expected field of view calculation. This mounting depth
will also result in a horizontal range of 2.99 in. With these calculations, we must be sure when
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designing the chamber to mount the camera such that the lens is mounted exactly at the center of
the expected field of view. At that point, we can build the rest of the camera chamber and enclosure
around this space bounded by the camera and field of view, as illustrated in Figure 2.24.

2.4.2 Calibration of Camera Module

We must now consider how to calibrate the camera module; in this case, calibration means obtain-
ing a scale factor between pixels and an engineering unit of length, say, inches or millimeters. Per
Feng and Feng (2016), this scale factor can be determined in two ways: (1) estimated based on
the known physical dimensions of the captured object and its corresponding image dimension in
pixels; or (2) estimated based on the parameters of the camera and the parameters that relate the
captured object in real life to the camera. Ultimately, we chose to adopt the former option, as the
latter relies on information concerning how the object being photographed is spatially oriented to
the camera as well as the precision of the documented properties of the image sensor, such as its
focal length [Feng and Feng (2016)]. If adopted, these intrinsic means of calculating scale factor
could complicate the implementation by requiring certain mounting procedures that are unrealis-
tic to perform in the field or having tighter quality control on component assembly and selection,
which may add significant cost of the developed system and be prohibitive in massive deployment
on a state-wide bridge network. To side-step these complications, we can obtain this scale factor
by constructing a calibration curve on the camera chamber through the method prescribed below:

1. Mount the camera chamber and laser emitter a short distance away from each other;

2. Capture a baseline image of the initial location of the laser beam on the acrylic screen;

3. Shift the vertical location of the laser beam;

4. Capture another image of the shifted location of the laser beam;

5. Repeat Steps 3 and 4 with different vertical locations of the laser beam;

6. Extract the beam centroid [px, py] of the captured images; and

7. Fit a regression line to the expected linear data, which is the calibration curve.

Note: we are interested in the vertical position of the laser beam because we want to obtain the
vertical scale factor. Indeed, although the scale factor between the horizontal and vertical axes is
expected to be different due to different pixel-image resolution between the two axes, we are only
concerned with the vertical resolution.

This calibration procedure is illustrated in Figure 2.25, where three photos were taken at
three different offset values of the camera chamber. The laser beam was oriented off-perpendicular
from the camera screen to show that although the orientation of the laser is insignificant, its fixed
orientation is significant. The slope of the resulting calibration curve is of units [pixels

mm
].

In Step 1, we mounted the camera chamber a short distance away from the laser diode to
minimize the possibility of laser distortion due to laser diffraction, scattering, etc; the laser beam
need not be projected exactly perpendicular to the screen so long as the orientation of the beam
does not change through subsequent images. Note: at this stage we did not concern ourselves with
the monitoring system and the full camera enclosure. As the camera installation and the camera
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Figure 2.25: Illustration of camera chamber calibration.

Figure 2.26: Gauge blocks for camera chamber calibration.

chamber is invariant between captured images and minimal hardware is installed to capture images,
the scale factor can be determined in post-processing in the last two steps of the above procedure.

In Step 3, we “induced” this vertical offset by using gauge blocks. As shown in Figure 2.26,
these gauge blocks were machined precisely to a certain dimension, which enabled us to shift the
camera chamber up or down by placing it on gauge blocks of different heights. Note: to avoid the
propagation of small tilt effects, we did not change the location of the laser beam. In step five, it
should be clear that the more photos taken, the more accurate the resulting calibration curve. For
the actual results of calibrating the 3D printed camera chamber, as pictured in Figure G.4, please
refer to Section 3.3.2.

2.4.3 Experimental Setup

To evaluate the functionality of the monitoring system, we ran the monitoring system per the
system architecture shown in Figure 2.1. This system was powered via a wall AC to DC adapter
over the course of several days with various hard-coded time-synchronization and measurement
interval times, ranging from taking a measurement every five minutes up to taking measurements
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every 30 hrs. It was through tests of this nature that the two major issues discussed in the section on
implementation challenges arose. Because Phase I was not intended to create a final prototype, we
did not perform extensive testing and evaluation. The key issue here was to verify our calibration
method, which enabled us to deploy our laboratory prototype on a shaking table test of a mock
pile. This mock pile test was performed to evaluate the accuracy of the readings when taken out of
the context of a carefully setup laboratory experiment, whereby the camera was ensured to not tilt,
and the settlement was known to be induced in the vertical direction, only; it was never intended
to evaluate the monitoring system.

We re-purposed a wooden box to accommodate several cubic feet of unsorted gravel and
sand, which was then installed onto a shaking table. To reinforce this box, metal angles were
installed on the edges of the box to ensure that the box itself would not fail when the sand was
shaken; see Figure 2.27. In addition, a post was drilled into one side of the box so that the laser
enclosure could be clamped to it. After this, gravel was gradually poured into the box from a
low height in thin layers using metal scoops to ensure that the gravel was consolidated as little
as possible during the loading of the box. Then, to represent a foundation pile, a 6-in. concrete
cylinder was chosen and partially submerged into the gravel in the box. We secured the camera
module to the top surface of the cylinder using heavy-duty tape. As a reference for the measured
settlement, an LVDT was installed onto a frame that spanned across the top of the box and fixed
the tip of the slider to the top of the camera module; see Figure 2.27.

The soil box was strapped down to the uniaxial shaking table using ratcheting tie-down straps,
and the concrete cylinder was also kept in place using a wooden frame. This wooden frame was
meant to limit how much the concrete cylinder would tilt. To measure how much the camera
module would tilt, we recorded the accelerometer tilt readings before and after shaking.

(a) Overall view (b) Detailed side view

Figure 2.27: Phase I lab deployment, shaking table setup.

2.4.4 Results and Recommendations

To reset the box meant emptying the contents of the soil box and gradually pouring back the soil
into the box layer by layer, a tedious task at best; therefore, not many trials were run and no
statistically important trends could be extracted from the results of these tests. One observation
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was very noteworthy: the wooden frame used to limit how much the concrete cylinder could tilt
did not perform as intended, and the concrete cylinder still managed to rotate as the sand settled
unevenly below it during shaking of the soil. This induced rotation seemed to result in appreciable
errors in the measured settlements; see Table 2.1.

Table 2.1: Errors from the shaking table test.

Tilt (o) δLV DT (mm) δcam (mm) Error (mm) % Error
-0.34 -11.96 -12.37 -0.41 3.4
-4.70 -26.54 -38.89 -12.34 46.5
2.55 -9.17 -0.32 8.85 -96.5
0.71 -6.15 -2.69 3.45 -56.2

From the above table, we see that when tilt of the camera module is small (-0.34o),with
the error between the camera measurement and the reference LVDT measurement below 1 mm.
This level of error is acceptable for the projected laser target method. When any significant tilt is
introduced, however, this error is no longer sub-millimeter.

To this end, it became clear that the focus in the Phase II prototype would be to investigate
various confounding variables that may influence the accuracy of our projected laser target method
as listed below:

1. Influence of mounting distance between laser and camera modules on measurement accu-
racy: Is there a maximum range, and what is it dictated by?;

2. Effects of tilt of the camera module on measurement value: At what threshold does the
contribution to perceived settlement from camera tilt become sub-millimeter?;

3. Influence of laser diode parameters on measurement accuracy: How does the focus and
strength of the laser diode affect the accuracy of the measurement reading?; and

4. Ambient lighting influence on computer vision algorithm: Is the algorithm adequate for
outdoor deployment? If not, how do we address this issue?

Ultimately, Phase I development demonstrated the validity of the projected laser target method
but only under certain circumstances and in a laboratory setting. Phase I development also showed
various limitations of the currently prescribed use case whereby the engineer must hard-code in
synchronization and measurement intervals, and leave the unit alone after mounting it and booting
it up. While the camera and laser modules would be able to synchronize relative to each other us-
ing PTP methods, the amount of clock drift could be reduced by tuning software timer parameters
so that the units will together drift in absolute time. We determined that this lack of reliability in
measurement was not satisfactory and must be accounted for in Phase II. In addition, the limita-
tions of the chosen WLAN wireless network needed to be addressed. It is not feasible to mount
a wireless router and power it continuously in a remote area; thus a more remotely deployable
communication network must be investigated and utilized for Phase II.
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3 Project Phase II: Field-Deployable System

The second phase of our system produced the final product for Caltrans that met all their require-
ments as detailed in Phase I. We again followed the same design flow as implemented in Phase I
and in Section 2, beginning with a description of our use case.

3.1 SYSTEM ARCHITECTURE

3.1.1 Use Case Description

In this final iteration, a use case was determined that matched the basic requirements that the
system be convenient to install and operate. In addition, we also considered that the system must
be power-lean due to field-deployment constraints.

1. Upon installation and initial boot-up, begins in idle state;

2. The system, comprised of both laser and camera modules, stays in idle until a wake-up
signal is received;

3. Wake-up signal transmitted from server and triggers computational units to commence
measurement tasks; and

4. After measurement tasks are completed, both modules will return to idle states and wait
for the next wake up signal.

Note that there is no longer any mention of time synchronization as the synchronized waking-up
of both modules has been delegated to the server. The server, as programmed by the engineer, will
now implement a custom measurement schedule. This frees the engineer from the restriction of the
Phase I prototype for a fixed measurement interval, frees the embedded system from synchronizing
the clocks of the two modules, and eliminates the issue of the entire system drifting with respect
to absolute time.

3.1.2 Proposed System Architecture

To match such a use case, we proposed the system architecture illustrated in Figure 3.1. We note
several departures from the system architecture of Phase I:

1. While the camera module still is comprised of a Raspberry Pi and Arduino, the laser
module only has one Arduino;
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2. Instead of all messages being passed through a wireless router, there is the addition of
a GSM cellular module, which is attached to the camera module, and the addition of a
Bluetooth module, which is attached to the laser module; and

3. An additional relay circuit is attached to the laser module.

Figure 3.1: Phase II deployment: system architecture.

3.1.3 Communication

We will first discuss the communication layer of our computational unit, as this is perhaps the most
radical alteration to the design implemented in Phase I, prompted by the constraints imposed by
remote installation of this system. Considering that Caltrans may anticipate mounting this system
along some fairly remote highways, we utilized a wireless network that has wide coverage across
even remote parts of the state. We do not care about data speeds nor bandwidth, as the amount
of data that we are sending is very small and not sent frequently (a few bytes of data sent every
measurement interval). Considering common wireless networks, we settled on the 2G cellular
network and chose a cell carrier that had reasonable coverage; T-Mobile (or at least a carrier Ting,
which uses the same infrastructure as T-Mobile [13]). As seen in Figure 3.2, the T-Mobile 2G
infrastructure nominally covers most of the major interstates and highways spanning California.
Since T-Mobile uses the GSM protocol for data, we decided to install a 2G GSM cellular module,
the Adafruit FONA (Mini Cellular GSM Breakout), as seen in Figure 3.3, which essentially is
built around the SIM800H chip. To match such a use case, we proposed the system architecture
illustrated in Figure 3.1. We note several departures from the system architecture of Phase I:

• While the camera module still is comprised of a Raspberry Pi and Arduino, the laser
module only has one Arduino;

• Instead of all messages being passed through a wireless router, a GSM cellular module
was added, which is attached to the camera module, and a Bluetooth module was added,
which is attached to the laser module; and
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• An additional relay circuit is attached to the laser module.

.
Next we discuss these aforementioned changes in the context of the framework adopted from

Wang et al.: a computational core, sensor interface, and the communication layer [Wang et al.
(2007)].

Figure 3.2: T-Mobile 2G coverage in California (orion.freeus.com).

The features of the Adafruit FONA align well with this application, which of course are all
merely breakouts from the SIM800H chip. The SIM800H can be controlled with AT commands
sent over serial [14]. Using these AT commands, the SIM800H chip can be put into a sleep mode
during which it is in a low-power consumption state, yet it is still receptive to calls and SMS
messages [15]. An incoming call or SMS message will also trigger another useful feature; a ring
indicator. A pinout on the FONA board allows easy access to this feature in which the ring indicator
signal will be driven into a low state temporarily from its typical high state whenever a text or call
is received. Our system will employ this feature to “wake up” from its monitoring idle state. On
top of all of this, it is entirely possible using AT commands to treat the SIM800H as the “heart”
of a cellphone; one could potentially write a code that can perform basic cell-phone operations
on the SIM800H (i.e., reading, sending, and deleting SMS messages). In addition, it would be
capable of connecting to the Internet through a PPP (Point-to-Point Protocol) connection, thereby
giving access to whatever online server we may want to push our data to. All that is required to
contact the FONA through text or SMS is the phone number associated with its SIM card. Note:
the FONA requires that a Li-Poly battery supply the main power to the chip. An additional power
pin supplies the logic voltage, but a separate battery other than the primary battery used to power
the entire module must be used to power the FONA board.

Now that the hardware necessary to implement the communication pathway between the
camera module and the server/database has been selected (Figure 3.1), we now considered the
pathway between the two modules and decided to deploy over a Bluetooth low-energy (BLE)
connection. The BLE is a wireless personal area network (WPAN) that is different from traditional
Bluetooth in that it consumes much less power. The BLE employs the master–slave framework in

55



Figure 3.3: Adafruit FONA mini-cellular GSM breakout.

which a central device (master) connects to many peripheral devices (slaves). When not connected,
the peripheral devices beam advertisement packets and wait for a central device to connect to
them. The central device listens for advertisements (in a so-called “discovery” mode). Once a
connection has been made, the BLE devices use the Generic Attribute Profile (GATT), which
essentially establishes a framework for the organization of information that Bluetooth devices can
access [16]. Canonically, the central device will request information from the peripheral, which
will then respond with this data; see Figure 3.4.

The peripheral contains all of the information concerning its specific GATT profile (see Fig-
ure 3.5), which allows for the flexible implementation of software of various applications for BLE,
such as health monitoring, low-energy sensor reading, or in our case, structural monitoring.

Figure 3.4: GATT client/server transactions, (adafruit.com).

Figure 3.5: GATT profile framework, (adafruit.com).

We chose to implement BLE using the HM-10 BLE module (see Figure 3.6), which abstracts
out many of the intricacies of BLE communication and provides two communication pin-outs—TX
and RX—that can be interfaced with a serial port. Much like the Adafruit FONA, the HM-10 BLE
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module is conveniently controllable through AT commands, which can be sent over serial lines
(i.e., the TX & RX pinouts on the HM-10 breakout board). These commands provide the means of
customizing the device name of the BLE device, which is useful for the master to correctly find the
slave device. The HM-10 also employs its own special GATT profile, which only has one custom
characteristic that can hold more than enough bits to pass the short messages and numbers that we
anticipate to employ. Once interfaced through a serial connection, messages can be sent or read by
writing to or reading from the BLE characteristic.

Of concern is the expected transmission range of BLE devices. Nominally, BLE devices can
have an operating range of up to 100 m, but this is of course limited in actual deployment due to
obstructions and ambient environmental factors [17]. It is also limited by the BLE power class of
the specific transmitter/receiver. Class 1 devices have the highest range, whereas Class 2 devices
have a range of 10 m. As expected, most consumer devices employ Class 2 devices due to their
low-power usage and adequate range. For the application envisioned herein, we need this BLE
pathway (which connects the camera and laser modules) to span across at least 20 m (around 65
ft, which is a reasonable span between mounting points on a highway overpass). In the case of the
Raspberry Pi 3B+, the Cypress communication chip employs both Class 1 and 2 devices [18] and
the HM-10 BLE module, though not specified specifically as a Class 1 device [19], was found in
tests to have a range in excess of 60 ft in environments with unobstructed line of sight between the
Raspberry Pi and the HM-10 module.

Figure 3.6: HM-10 Bluetooth low energy module.

3.1.4 Computational Core

The computational hardware was not changed as the computational requirements for the measure-
ment tasks have not changed, and the new communication pathways (GSM and Bluetooth) are
fully supported by the Raspberry Pi 3B+. The Arduino UNO Rev3 is more than sufficient for the
actuating of a laser diode through its GPIO pins, the reading of a digital accelerometer through SPI
(Serial Peripheral Interface), and the interfacing with a Bluetooth module through UART serial.

We eliminated the Raspberry Pi from the laser module because of the requirement that this
system be “woken” from idle via a signal sent from the server to the cellular chip, which is only
attached to the camera module. To be more precise, the cellular chip’s ring indicator output is con-
nected to the camera module’s Arduino, which is perpetually on due to its low-power consumption
compared to the cellular chip and the Raspberry Pi, and the cellular chip’s data lines TX & RX
are connected to the Raspberry Pi. The camera module’s Arduino will receive the ring indicator
and wake up its Pi. In order for the camera module to then connect to the laser module, the laser
module must be perpetually on and advertising through BLE in order to be connected to by the
camera module.
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We cannot connect the ring indicator from the camera module to the laser module, as that
would require a very long wire that would span the mounting distance between the two modules,
nullifying the “wireless” nature of the system. Another option would be to attach a cellular chip
to the laser module, but that would then require the server to call two phone numbers instead of
one, thus increasing the complexity of the system. Even if this was done to ensure that the Arduino
is not perpetually on, the Arduino does not consume enough power to be worth conserving. A
lengthier discussion on system power consumption is made in Section 3.2.5.

3.1.5 Sensor Interface

The sensor interface has not changed from the camera, accelerometer, and laser diode suite pre-
sented in Phase I. To the micro-controllers, the HM-10 BLE and Adafruit GSM module can be
perceived to be “sensors” in that the micro-controllers can interface with them through a data line
in order to read and send commands; however, these are not considered to be part of the “sensor”
interface as opposed to the accelerometer, camera, and laser.

3.2 STATE MACHINE DESIGN AND IMPLEMENTATION

We have described the various duties of each micro-controller and communication device in both
the camera and laser modules; see Figure 3.7. Each of these duties will then be implemented fully
in subsequent subsets of the block diagram in Figure 3.7. Note: the duties for the camera module’s
Raspberry Pi have not changed, and the duties of the laser module’s Raspberry Pi in Phase I
have been transferred to the Arduino in this version, with reference to Figure 2.13. A significant
development when comparing Phase I to Phase II is the new set of signals that the camera module’s
Arduino must now read, pinpower, pinring, pinbatt, in which each signal represents:

1. pinpower: HIGH means Raspberry Pi is ON, LOW means Raspberry Pi is OFF;

2. pinring: HIGH means there is no incoming SMS or call to the cellular module, while LOW
means there is; and

3. pinbatt: HIGH means the cellular module’s battery charge is low, while LOW means the
opposite.

Now that time synchronization is no longer an issue, the additions of the cellular module and
BLE module allow for the wireless deployment of the system. Note: we do not directly program
the communication devices shown in Figure 3.7, short of a few AT commands for coding in small
tasks, such as renaming the device name of the HM-10, or erasing the SMS messages saved on the
cellular module. The majority of the programming and state machine design are for the Raspberry
Pi and Arduinos.

3.2.1 Communication Protocols

Once the system is deployed in the field, the communication protocols designed became more
complex. The choice to use BLE as the link between the laser and camera modules was a key
design shift from Phase I and required the use of an asynchronous communication code instead
of synchronous communications. The difference between synchronous and asynchronous code
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Figure 3.7: Phase II deployment: functional block diagram.

is as follows: (1) synchronous code is defined as a code that runs sequentially, in which one
command follows another; and (2) asynchronous code is more flexible, in which many tasks could
be happening at the same time [Lee and Seshia (2017)]. As expected, as the number of tasks that
can occur at the same time increases and so does the difficulty in predicting the functionality and
reliability of the code. Figure 3.8 is an example of how the two different kinds of programming
that could be implemented.

Figure 3.8: Synchronous v. asynchronous communication tasks.
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Synchronous Code

In Phase I for any of the micro-controllers—specifically the Raspberry Pi—there is always one
main program that implements the main state machine design and directs transitions from one state
to another. By itself, this main program is synchronous in which each state (and at a finer level,
each command) must be completed before another is executed; however, the code may become
asynchronous depending on how the communication protocol is implemented programatically. In
the case of the Phase I implementation, as is seen in Figure 2.14, there is indeed only one “thread”
of execution whereby there is only one state that the machine can exist in at any point in time.

As shown in Figure 2.18, the communication protocol in Phase I was synchronous: each
transaction of communication between the laser and camera modules began with the establishment
of a TCP socket connection, which ensured that both modules were immediately available for
message passing, which was followed by the message passing until the connection was cut. Each
main code was essentially blocked (paused) until the communication transaction was completed;
see the left side of Figure 3.8.

This communication protocol required that the mode chosen for communication be synchronous-
compatible. For instance, in Phase I we employed TCP sockets, requiring that each socket (client
and server) wait for the other until either a connection was made or a timeout was exceeded. This
connection could be made quickly, followed by a quick transaction of messages and then discon-
nection. Due to the ease of simply re-establishing the connection, we were able to implement the
communications synchronously, which melded easily into the uni-threaded main program.

Asynchronous Code

For Phase II, it was decided to implement BLE, which requires careful consideration of how both
the central and peripheral devices handle both incoming and outgoing sending messages. For
convenience, we chose to utilize a Python module that implements BLE communication: Bluepy.
The module performs the scanning, connecting, and sending/writing of messages via the BLE
characteristics, all specifically for the central device. Note: we designated our Raspberry Pi on the
camera module as the central device and the Arduino as the peripheral device, thus using the BLE
communication protocol fits our hardware and software paradigm.

Bluepy operates by instantiating various objects, each of which has various methods. For
instance, one can first use this command to “scan” an object, which is able to do just that: scan
for nearby objects. Once a nearby device is found, that device will have been associated with
a Bluetooth address, allowing the user to create a “Peripheral” object out of the device, thereby
implicitly connecting to the object. At this point, the user can write to the Peripheral’s characteristic
(i.e., writing it a message) or read from it.

Now the issue of synchronicity comes into play. Bluepy specifically handles incoming
messages by throwing notification events. These events act very much like the interrupts that were
discussed in Phase I in that they are meant to alert the attention of the invoking function immedi-
ately and then be handled. In the case of Bluepy, the invoking function needs to be constantly
monitoring the peripheral object for notifications; if a notification is not handled immediately, the
incoming data that is associated with the notification is lost.
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This required reconsidering using synchronous communication for our prototype. We can no
longer have our main code “blocked” until a message arrives. Immediately, the issue of deadlock
arises, in which one module may be blocked indefinitely waiting for a message that will never
arrive. For instance, this may arise if the invoking function begins monitoring after the message in
question has already thrown a notification; the invoking function will search indefinitely or until
a timeout is exceeded. To accommodate this issue required employing asynchronous communi-
cations; see the right side of Figure 3.8. we use multiple threads to implement the entire system:
one thread to implement the state machine itself and other threads to read and write messages.
The multi-threaded code used to implement this asynchronous communication design is discussed
next.

Asynchronous BLE Communication

We implemented the asynchronous BLE communication required due to the functioning of Bluepy
and the architecture of BLE through the means illustrated in the functional block diagram in Figure
G.8, in Appendix G. The critical aspects of the diagram are discussed below.

First and foremost, this diagram is divided into three main columns: (left) main program (or
thread), (center) ble worker thread, which checks and reads incoming messages, and (right)
ble write thread, which transmits messages. Each thread represents an independent sequence
of execution, but the whole diagram represents implementing these three threads in parallel (i.e.,
multi-threading). The diagram shows a scenario where the main program (or main thread) performs
measurement tasks, followed by the reading of a message, then sending a message, performing
more tasks, and then disconnecting from the peripheral. Whenever multiple threads perform tasks
that must both read, write, or otherwise share the same resources, extra care must be taken to
protect the use of those resources. In this case, the three threads collectively share various global
variables: SETTINGS.DATA (which holds the received message), SETTINGS.NEW MSG (a flag
which indicates if the data in SETTINGS.DATA is a new message), SETTINGS.WRITE (which
holds an outgoing message), as well as the BLE peripheral object itself, which can only be used in
one instance at all times. The BLE peripheral object can of course be called by multiple threads,
but only by one thread at a time.

To protect and ensure that these threads function properly, we employed various locks and
events. Locks are the simplest means of protecting memory resources. If a lock is placed before
a section of code, the only way for a thread to access lines of code following that lock are if it
acquires that lock. Once a lock is obtained, the lock holder must release the lock before others
can acquire it, as only one thread can hold a lock at any time. A thread may either block trying to
acquire a lock, or not-block, and merely check/wait for the lock until a timeout. An event is slightly
more complex, in that a thread may wait on an event to be set in order to move onto subsequent
lines of code. This thread may, as with the lock, exhibit either blocking or non-blocking behavior
while waiting for an event to be set. Regardless, when the event is set by the event owner, the thread
waiting on the thread can immediately pass through the event and move onto its next commands.

Note in Figure G.8 which locks and events protect access to which resources in the Ini-
tialization block. Upon the initialization of threads, the main thread will eventually anticipate
an incoming message and will attempt to read that message. It does so by attempting to access
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SETTINGS.DATA, protected by lock 0. In the gray box on the left side of the diagram, you
can see that the thread will repeatedly try to acquire lock 0. The other thread, which is con-
currently using lock 0 is ble worker, which uses it to allow access to SETTINGS.DATA
for the Bluepy notification handler to save any incoming messages. If ble worker is not
holding lock 0, the main thread may access SETTINGS.DATA and SETTINGS.NEW MSG. If
SETTINGS.NEW MSG == 1, it means that the message in SETTINGS.DATA is a newly re-
ceived message from the peripheral device.

In ble worker, lock 1 restricts access to the peripheral object, as its methods are re-
quired not only in ble worker, but also ble write. ble worker requires the method
wait for notifications to monitor the peripheral object for notifications, and ble write
requires write to write messages to the BLE characteristic. Both of these threads are, therefore,
constantly attempting to acquire lock 1 in a non-blocking manner.

Finally, it should be noted that all three threads are daemon threads, meaning that their in-
voking programs can terminate without waiting for them to terminate. This is easier in our case
to implement as we do not have to ensure that ble worker and ble write have been killed
before the main thread can terminate. That being said, just to clear up any resources that may be
required in subsequent measurement tasks, we can choose to terminate ble worker by setting
event 1 from the main thread, which will cause ble worker to break its reading loop, and dis-
connect from the BLE peripheral. When that disconnect occurs, ble write will also terminate
due to the de-allocation of the Bluepy peripheral object. Even if any of the two child threads
were to throw any errors, they would not be fatal to the operation of the main thread. One detail
not included in the diagram is the slight offset in initialization of the two threads; because there are
slight delays interspersed in each thread’s loops and these delays are so small, there is a very small
chance of the threads entering a state where none of them are able to acquire a certain lock due to
an alignment of lock release-and-acquire phases.

3.2.2 Camera Module Raspberry Pi

With the communication protocol designed, we can now interleave it into the rest of the main
program, or in other words, the state machine for the Raspberry Pi on the camera module. We
include a diagram of this state machine in Figure G.9 (in Appendix G). This is the same sort
of structure as was seen in the Phase I prototype shown in Figure 2.14. Discounting the time
synchronization option, most of the same essential states in the main program are still in place,
all programmed to accomplish the duties listed in Figure 3.7. Note the two image states, with an
additional state Image I Comm to command RPILaser to turn off the laser beam. In addition,
there are two additional threads introduced to implement the BLE communication. One of the key
elements we included in this modified design is how the system handles errors and ensures that no
data is lost in the case of said errors.

Error Handling and Data Loss Prevention

It cannot be guaranteed that the FONA cellular module will always function properly. Hardware
failures do occur. The same can be said for any piece of hardware chosen for this monitoring
system. Given this eventuality, it was deemed prudent to ensure that if errors do arise, the field-
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deployed monitoring system does not fail, thus requiring lengthy hands-on debugging to resolve
the issue. To examine how our implemented code ensures this, we will examine a snippet of code
from the main program:

Listing 3.1: Excerpt of RPI C.py main program
e l i f s t a t e == ”IMAGE I COMM” :

t r y : # t r y t h i s e n t i r e ” t r y ” b l o c k o f code
# Send o u t command t o Laser Module
SETTINGS . WRITE = ”TURN OFF LASER? ” ;
b l e e v e n t . s e t ( ) ;
t ime . s l e e p ( 1 ) ;
b l e e v e n t . c l e a r ( ) ;

# Ex pe c t t o r e c e i v e a message back
msg = w a i t f o r m s g ( l o c k s ) ;
i f msg != None : # i f a message i s r e c e i v e d

i f msg == ”LASER OFF” : # i f t h e message i s as e x p e c t e d
s t a t e = ” IMAGE II ” ; # t r a n s i t i o n t o n e x t s t a t e

e l s e : # i f t h e message i s n ’ t as e x p e c t e d
l o g g i n g . debug ( ”No L a s e r Off Ack E r r o r ” ) ;
e r r o r s . append ( 1 2 ) ;
e r r o r f l a g = True ;
s t a t e = ”SHUTDOWN” ; # t r a n s i t i o n t o SHUTDOWN

e l s e : # i f a message i s n ’ t r e c e i v e d
l o g g i n g . debug ( ” RPI L Communicat ion E r r o r ” ) ;
e r r o r s . append ( 1 3 ) ;
e r r o r f l a g = True ;
s t a t e = ”SHUTDOWN” ; # t r a n s i t i o n t o SHUTDOWN

msg = None ;
e xc ep t : # i f a much more g e n e r a l e r r o r o c c u r s

l o g g i n g . debug ( ”IMAGE I COMM : ERROR” ) ;
e r r o r s . append ( 3 3 ) ;
e r r o r f l a g = True ;
s t a t e = ”SHUTDOWN” ; # t r a n s i t i o n t o SHUTDOWN

e l i f s t a t e == ” IMAGE II ” :
t r y : # t r y t o t a k e an image

i m g c o l l e c t o r = I m g C o l l e c t o r ( ) ;
i m g c o l l e c t o r . c a p t u r e ( ) ;
i m g c o l l e c t o r . shutdown ( ) ;
s t a t e = ”L ACCEL” ; # t r a n s i t i o n t o n e x t s t a t e

e xc ep t : # i f image c a p t u r i n g f a i l e d
l o g g i n g . debug ( ” IMAGE II ERROR” ) ;
e r r o r s . append ( 3 ) ;
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e r r o r f l a g = True ;
s t a t e = ”SHUTDOWN” ; # t r a n s i t i o n t o SHUTDOWN

The above code implements two states; see Figure G.9: IMAGE 1 COMM and IMAGE 2. These
are, respectively, the state in which the command is sent to the laser module to turn off the laser
beam, and the state in which the second image is taken, i.e., representing a state dedicated to
communication and another dedicated to hardware interfacing.

Note that the main code differentiates between states by comparing a global variable state
that contains the current state against pre-defined state names. Within each state “block” of code,
we implemented various nested try-except code blocks, which are a useful code structure provided
by Python to implement error handling. Essentially, the program will “try” the try-block of code; if
an error occurs in the try-block, the entire main program does not fail. Instead, the main program
flow will be diverted to the except block. In addition, within the try-block, we can implement
if–else statements to catch any unanticipated non-fatal errors, such as whether or not a received
message is what we expected, as seen in Line 15. This is a non-fatal error, as compared to perhaps
line 34, in which the camera object is initialized. This camera object interfaces with the hardware,
so if the hardware has any issues, Line 34 would most likely throw a fatal error. As such, we can
program the except-and-else blocks to contain error handling functionalities. Here, we enumerated
the various errors that we anticipated based on our partitioning of the code into these try-except
blocks. Each numerical error code is appended onto a global list variable, errors, so that by the
time the main thread has reached the Server state in which data is transmitted to the server, we can
also send any encountered error codes to the server.

What if the transmission of data to the server fails? What if the cellular connection cannot
be made? The prevention of data loss in the event of transmission failure was handled by means
illustrated in the block diagram in Figures 3.9 and 3.10. Note that in the context of error handling,
error codes are also considered data. Any “data” that we send to the server is organized in fields in
the format:

data = [run count, p x, p y, pitch camera, pitch laser, [errors]],

such that we will always attribute each set of measurement results and errors to a given run count,
so that the server can easily organize the received information according to which run the data was
generated. This would also improve any off-site debugging that may occur.

The Raspberry Pi using the cellular module initializes the cell modem on the local end first
and logs in the cellular module, after which the cellular modem negotiates a connection with
the far end (perhaps one of the nearby cell towers). The far end, prompted by a call from the
cell modem, sends back routing information, which is necessary to establish the complete PPP
connection. These negotiations and initializations are implemented on the Raspberry Pi via two
files: a “chat script,” which consists of preset responses to anticipated far-end messages, as well
as a connection configuration file that contains information on the type of PPP connection desired.
If a connection is made and verified using a TCP socket connection to google.com, the current
data is transmitted to the server, after which the Pi will access a file data log.txt, in which
previous un-transmitted data is stored. If this file is not empty, each line (of the form specified by
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Figure 3.9: Phase II deployment: Raspberry Pi camera module Server state diagram.

data previously) is transmitted sequentially through the current Internet connection.

Of course, the PPP connection may not work in one shot if the cellular coverage is weak or
if the FONA cellular module itself is not responding (because it is in idle mode). Should either
of these events occur, the Pi will reset the cellular module and try to connect to the Internet once
more. If a sequence of these attempts does not work, the Pi will deem the connection to be futile
and append a numerical error code to errors (as it does with any other encountered error in the
program execution). Note: there still exists tasks that must be performed by the Pi before it shuts
down completely, such as checking the battery state of the cellular module and putting the cellular
module into its idle state. These tasks themselves may throw errors even as the current data still
has not been dealt with and are appended to by the main thread. We now address the Shutdown
state.

65



Figure 3.10: Phase II Deployment: Raspberry Pi camera module Shutdown state diagram.

In this final state, we see that one of the last actions done by the Pi before final shutdown
is appending the current run’s data to the text file. This ensures that any data or errors that
may not have been sent (including those accumulated since data transmission) will be saved for
transmission during the next time a cellular connection is made. The only action whose potential
errors cannot be accounted for is the de-allocation of GPIO pins. This task is not expected to ever
return an error. If it does, the de-allocation of GPIO pins is performed inherently (albeit not cleanly)
by the rebooting of the Raspberry Pi, which occurs in between measurement runs. Therefore, this
mechanism ensures that all data that is not transmitted is retained for a future transmission.

As far as handling errors and ensuring that data is retained for subsequent transmission, there
are situations where an error may occur in a measurement-critical state whereby the tasks in that
state are essential to a successful measurement. For instance, in Initialization I, if the camera
module cannot even connect over BLE to the laser module, there is no possibility for the correct
images to be taken to extract the position of the current laser beam, [p x,p y]. Therefore, if an
error is caught in this state, the error code is saved in errors, and the main thread transitions to
Shutdown where errors is saved to data log.txt. The same behavior is implemented in
other critical states, as illustrated in red in Figure G.9. We also tabulate the various possible error
codes in Appendix G, Table ??, which also indicates which errors are considered “critical.”
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3.2.3 Camera Module Arduino

We now discuss the state machine design and implementation of the camera module’s Arduino,
which must read in signals from the Pi and cellular module to control the power delivery to the
Raspberry Pi and cellular module battery. The function block diagram is included in Figure 3.11.

Figure 3.11: Phase II deployment: Arduino camera module state diagram.

In Figure 3.11, note that the Arduino essentially resides in one of two states, Idle Polling and
Active Polling, which are differentiated by whether or not the Raspberry Pi does not have power
delivered to it or if it does, respectively. This separation ensures that unexpected signals do not
cause aberrant response from the Arduino. These signals can be one of three: pinpower, pinring,
and pinbatt, which are HIGH when the Raspberry Pi is on, LOW when the FONA receives an SMS
or call, and HIGH when the FONA battery is low and needs to be charged, respectively. Their
opposite logic states imply the opposite meaning, respectively.
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In state Idle Polling, the main thread is not incrementing a counter, but constantly polling
the Arduino’s GPIO pins checking for the incoming signals. The moment that a ring signal is
received, it shuts off the power line to the FONA battery (cmdFONA = OFF ) and then closes the
switch on the line, delivering power to the Raspberry Pi (cmdrpi = ON ). This ensures that the
current consumption while the Raspberry Pi is on is below the total current output supplied by the
battery (more on this in a subsequent section). While the program is in Active Polling, a counter
is incremented. If at any point pinbatt is received during this state, it means that the Pi has queried
the FONA for its battery level and found that it needs to be charged. The Arduino therefore flags
this and continues Active Polling. When the Pi shuts down, a ¬pinpower tells the Arduino to cut
off power to the Pi and transition back to Idle Polling. If the Pi, for some extreme reason, never
shuts down (or at least the signal to the Arduino signifying its occurrence is never received), the
Arduino will automatically shut off the power line when a preset timer threshold has been met
by the counter. Either way, when the machine transitions back to Idle Polling, the Arduino also
checks to see if the FONA battery flag has been activated. If it has, it means that the Arduino will
shut off the power line to the Pi but turn on the power line to the FONA battery. If it has not,
the Arduino will shut off both the power lines to the Pi and FONA battery. As a side note, this
behavior means that the FONA battery must have enough battery capacity to power the FONA for
potentially several measurement intervals, depending on how frequent measurements are taken.
This will be discussed in more detail in a subsequent section.

3.2.4 Laser Module

We can now discuss the state machine design of the Arduino in the laser module, which is shown
in Figure G.10 in Appendix G. Note that this diagram is incredibly similar to the synchronous
implementation of the Phase I deployment of the laser module, as illustrated in Figure 2.14(b),
disregarding the time-synchronization execution branch. This synchronous implementation is pos-
sible due to the BLE interface between the HM-10 BLE module and the Arduino.

Recall that on the Pi, the chosen Python module Bluepy accommodated incoming messages
through interrupt-style notifications, which had to be handled immediately upon arrival. This ne-
cessitated multi-threaded communication implementation. On the Arduino, the main thread ini-
tializes a serial connection with the HM-10 device over its UART TX-RX lines. By doing so,
it sets up a buffer, which can store a finite amount of information at any point and conveniently
stores any incoming messages that are sent from the central device to the peripheral. That way,
the main thread needs not to persistently monitor the buffer for messages; incoming messages are
automatically saved into the buffer.

The additional states Wait I and Wait II are introduced so that the Arduino may wait a
finite time for the Raspberry Pi to (1) take the picture of the laser beam, and (2) take the am-
bient conditions photo, as required for the computer vision algorithm. The machine may exit
these states either when a timeout is met or if the correct command is received from Raspberry
Pi (TURN OFF LASER, and TURN OFF, respectively). These commands are sent by the Pi in its
states Image 1 Comm and Laser Acceleration, respectively.

Note that each state in Figure G.10 is deemed critical. The error catching in this state machine
is very minimal as Arduino’s programming language is based in C and does not implement try-
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except behavior. In practice, implementing try-except behavior is a computationally expensive
operation, requiring the program stack to be copied for each try-except block, with a try-stack
block being discarded if it errors and the program diverting to the corresponding except-stack
block [20]. There does not exist the on-board memory nor programming resources for this to be
implemented on the Arduino.

That being said, we have made the code for the laser module’s Arduino as simple as possible,
see Appendix H, with many of the states’ transitions dictated by timeouts tied to communication
transactions. The expected result is that if any state times out or runs into unexpected errors, the
machine will eventually revert back into its Idle state. In the absolute worst-case scenario, the
Arduino would no longer be responsive to connection responses from the camera module; the user
would be able to discern that based on error codes transmitted from the camera module. Fixing
this would require a technician to visit the module in person and reset the board.

3.2.5 Power System

Power Delivery System

The breadboard schematic of the circuit that implements the power delivery system is included in
Appendix G and Figures G.11 and G.12 for the camera module and the laser module, respectively.
The power delivery system is notably different between the two modules in this prototype as the
system architecture and power demands of either module are very different from each other.

We first consider the power system for the camera module. There are two relays: one for
controlling power to the Pi and the other for controlling power to the FONA battery. The two
relays are respectively controlled by two GPIO pins, each from the Arduino, the green and brown
lines, and blue and orange lines, in that order. The two relays transmit their respective power out
to their sinks, represented by the barrel plugs on the left. Also, there are three lines for carrying
the signals pinpower (yellow wire), pinring (white wire), and pinbatt (purple wire), each of which
are pulled up or down by a 5kΩ resistor. In particular, the pinring line is pulled HIGH instead of
LOW as the FONA cellular module actually outputs a HIGH voltage when there is no ring and a
LOW voltage when there is a ring. The other two signals are pulled low.

Another noteworthy item on this diagram is the wire connecting GPIO07 on the Raspberry
Pi to the reset pin on the FONA cellular module. This line exists so that the Pi can drive the reset
pin in order to reset the cellular module to bring it out of idle mode.

Note in Figure G.12 that the power delivery system for the laser module exists purely just to
deliver power to the laser diode. This is because the 100 mW laser diode requires about 20 mA of
current at 5 VDC, which is greater than what we should draw out of a GPIO pin on the Arduino.
The reason why we did not implement such a system in Phase I was that we were actuating a 5
mW laser, which requires four times less current than the 100 mW laser. The other devices in the
diagram are the HM-10 BLE module, which is connected to the UART pins on the Arduino, and
the accelerometer, which is connected to the SPI pins on the Arduino.
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Power Consumption

Now, we consider another key component of this field-deployable system: how much power it
consumes. For the system architecture illustrated in Figure 3.1, we were able to empirically mea-
sure how much power various components consume. We did this using a USB power meter, like
the one shown in Figure 3.12, which plugs into any USB adapter, be it in a battery or from a wall
adapter, and measures how much voltage, current, and power is being consumed at any time. The
voltage, current, and power consumption of both modules were measured at various “modes” of
their operation [21]. These modes can be best described in terms of how we expect the modules to
operate when deployed, as listed below:

1. Both modules are connected to their battery power supplies through the power delivery
circuit;

2. The laser module’s Arduino receives power and is on for perpetuity;

3. The camera module’s FONA cellular module is delivered power, but the Pi is not;

4. When an SMS is sent to the camera module’s FONA, the power will cut off from the
FONA, and delivered to the Pi;

5. The camera module will perform its measurement tasks and shut off;

6. If the FONA is below charge, the Arduino will cut off power from the Pi and deliver power
to the FONA;

7. If the FONA is well charged, the Arduino will cut off power from both the Pi and FONA:
and

8. The camera module will now wait for the next SMS.

Following the sequence of actions listed above, we measured the power consumption at
various points in the sequence; the results of which are tabulated in Table 3.1. Note that many
consumption readings were made, and the values tabulated are conservative (overestimates). Con-
sidering the power consumption listed in Table 3.1, we chose the V44 USB Battery Pack sold by
Voltaic Systems, which has a 12,000 mAh capacity and can be charged by a myriad of solar panels;
see Figure 3.13. The solar panel chosen is another Voltaic product, a 10 Watt USB Solar Charger,
which outputs 5 VDC current at varying currents depending on cloud cover and how aligned the
panel is with the sunlight. If it is overcast, the panel may output less than 0.2 A. If it is clear, and
the panel is directed straight at the sun, the panel can output in excess of 1.5 A. On a clear day,
with the panel not directed at the sun, it may output about 1.1 A. For powering the camera module,
we connected two solar panels in parallel to double the total solar power generation (current-wise).

Before we can confidently say that the camera module can run on its power supply indefi-
nitely, we should consider the FONA battery, which is required by the FONA’s manufacturers to
deliver enough current to supply for apparent current spikes that the FONA sometimes experiences
[22]. The FONA, when idling and is receptive to incoming calls and texts, depreciates the voltage
of the battery in a nonlinear fashion. The FONA requires a minimum charge of 3.4 V to operate
[23], and the battery at full charge supplies about 4.0 V. We ran the FONA on idle and checked on
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Table 3.1: Power consumption at various modes of operation.

Description of Mode Component Status V [V] I [A] P [W]
Camera Module Pi On FONA** Ard. On

FONA charging, Pi Off No Yes Yes 5.02 0.59 2.96
Pi On & program running Yes No Yes 5.03 0.62* 3.05*
Pi On & program not run. Yes No Yes 5.01 0.54 2.75
Pi Off &
FONA not charging No No Yes 5.06 0.07 0.35

Laser Module Laser On Ard. On
Arduino Only No Yes 5.06 0.06 0.30
Arduino & Laser Yes Yes 5.06 0.26 1.30
*can be as low as 0.5 A, 2.45 W
**Yes means that the FONA is being charged

Figure 3.12: USB power meter.

(a) Voltaic Systems 10 W solar panel (b) Voltaic Systems 12,000 mAh USB battery pack

Figure 3.13: Solar panel and battery pack.

its battery state every few hours. The FONA battery’s charge level dropped from 4.0 V to 3.8 V
in about 24 hrs of inactivity. Then, after about 6 hrs, the charge dropped to 3.45 V, which is very
nearly at the minimum charge to power the FONA. It then took a mere 2 hrs to charge the FONA
battery back up to full charge using the V44 battery pack. As designed, our camera module will
only determine whether or not to charge the FONA battery once every measurement cycle, based
on a threshold of 3.8 V. In the worst case scenario, if the battery charge were just above 3.8 V at
the end of one measurement cycle, the FONA battery would not have enough charge to power the
FONA for another 24 hs to receive the next measurement request from the server.

This necessitated increasing the frequency of measurements taken per day so that we can
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check on the FONA battery charge state. Considering the FONA battery depreciates from 3.8 volts
to 3.45 volts in 6 hrs, our threshold at 3.8 volts required checking the FONA battery every 6 hrs.
Assuming we begin with a fully charged FONA battery (which is a safe assumption as it takes
approximately 2 hrs for the battery to fully charge, and the first measurement is not taken within
2 hrs of installation and initial power-up), this should ensure that our FONA battery is never at
risk of losing charge below 3.4 V. Note: shortening the measurement period to 6 hrs from 24 hrs
had no significant impact on the total camera module power consumption as the Pi is awake only
a maximum of ten minutes at a time, which in itself is a very conservative estimate of program
run time (the camera module program run time, timed several times, is typically four minutes
long). Therefore, we can now calculate some estimates of camera module lifetime based on power
consumption and measurement frequency.

Referring to Figure 3.14, we can visualize how we determined the battery capacity of our
camera module. Assuming six-hour measurement intervals, program run time of ten minutes, a
bi-linear battery voltage discharge rate (Figure 3.14), and a minimum charge threshold of 3.8 V for
the FONA battery, we can project power usage across three days; see Figure 3.14.

Figure 3.14: Three-day power consumption projection for battery capacity specification.
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We have assumed that at hours 24 and 60, the Raspberry Pi reads that the FONA battery
voltage is just above the 3.8 V threshold: therefore, the Pi deems the battery charge sufficient to
last for another 6 hrs. With this assumption, it is noteworthy to see that the pattern of FONA
charge periods and FONA not-charge periods repeats after three days. Therefore, we can analyze
the power usage history across three days to determine if the power generated by the solar panels
will supply enough power to satisfy the general power demand. First, we must calculate the power
demand E3 Days:

ERPI + EFONA BATT + EArduino = E3 Days (3.1)

From Figure 3.14, we can see that the Raspberry Pi is on TRPI = 12 ∗ 10 min
60 min

= 2 hrs, the FONA
battery will be delivered power for charging a total of TFONA BATT = 2 ∗ (6 hrs − 10 mins

60 mins
) =

11.67 hrs, and the Arduino will be exclusively on for the remaining TArduino = 72 − TRPI −
TFONA BATT = 58.33 hrs.

E3 Days = 0.62 A ∗ TRPI + 0.59 A ∗ TFONA + 0.07 A ∗ TArduino = 12.21 Ah (3.2)

If we assume that the average day has about 5 hrs of peak sun [24] and that each of our two solar
panels outputs a very conservative 0.5 amps during peak-sun hours, we can expectEsolar over three
days to equal:

Esolar = 2 panels ∗ 0.5 A ∗ 15 hrs = 15Ah (3.3)

We see that Esolar > E3 Days even when assuming a very conservative solar panel energy gener-
ation and over estimating the program’s run time and component power consumption. It is also
assumed that the FONA battery will be consuming 0.59 amps over the entire six-hour interval it is
delivered power for charging. It may very well be the case that after the battery is fully charged
(two hours according to empirical observations), the current consumption will drop off.

Note that we are merely comparing the expected power consumption versus the expected
power demand. We are disregarding the fact that we are employing a 12-Ah battery to supply the
camera module. This battery acts as a buffer so that when there is no power generation (say, at
night), or when power generation is sub-optimal (say, when the weather is overcast), the system
will still operate on its battery reserve. That being said, we can calculate that from our three-day
power consumption projection, that the average current consumption was:

Aavg =
12.21Ah

3 days
∗ 1 day

24 hrs
= 0.1695 A (3.4)

Therefore, our camera module to run on a V44 12 Ah battery pack for:

12 Ah

Aavg
= 70.80 hrs ≈ 2.9 days (3.5)
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Thus, the camera module is capable of running for nearly three days on reserve power if no power
is generated by the solar panel.

Be aware that we have performed the above power consumption calculations on merely the
camera module. The laser module, referencing Table 3.1, has significantly less power consump-
tion. Over a single day, assuming a measurement interval of 6 hrs, we anticipate the Arduino and
laser to be on together at most Tlaser = 4 ∗ (10 mins

60 mins
= 0.67 hrs, and only the Arduino to be on

for the remaining TArduino = 24− Tlaser = 23.33 hrs. The expected energy consumption per day
Eday is therefore:

Eday = 0.26 ∗ Tlaser + 0.06 ∗ TArduino = 1.573 Ah (3.6)

The expected solar power generation in one day, assuming even just 4 hrs of peak sun hours with
0.5 amps of current output using one solar panel, is Esolar = 2 Ah per day. Clearly, Esolar > Eday,
i.e., we can clearly sustain the laser module using the one solar panel. In the case of no solar power
generation, we can normalize Eday across 24 hrs (1.573 Ah

24 hrs
= 0.0655A) and calculate that the laser

module can survive on reserve power for 12 Ah
0.0655 A

= 183.1 hrs = 7.6 days, assuming an initially
fully charged V44 battery. In conclusion, the entire monitoring system is capable of surviving on
its own power supply and solar panels.

3.2.6 Implementation Challenges

Even with a system architecture as seemingly straightforward as that illustrated in Figure 3.1, it
was of no surprise that a myriad of issues would arise in the course of developing the prototype.
These issues are discussed briefly in the subsections that follow.

Bluetooth Implementation Resource Conflicts

It goes without saying that even on the Raspberry Pi board, many resources may be shared between
many peripherals, be it data or communication related. If any resource is shared by two entities, it
could lead to unforeseen errors. unfortunately, we encountered one large conflict while integrating
the camera into the Raspberry Pi state machine.

Superficially, it should not be anticipated that a camera, which employs data lines on the
Pi board to transmit pixel information to Pi storage [3], to conflict with the UART bus that the
BLE chip on the Raspberry Pi uses [25]; however, we frequently encountered a resource conflict
issue in the main thread of the Raspberry Pi camera module code. The main thread would scan
for peripherals using BLE, as expected, and would eventually find the laser module. It would then
connect with it and proceed onto the next states. The main thread would then create a camera ob-
ject in Python, which is a programmatic way of initializing the camera hardware. A picture would
then be captured, and the camera would close. The next state, Image 1 Comm, then requires a
command to be sent to the laser module to turn off the laser beam. This message would never
send, however, and the main thread would proceed to Shutdown, indicating an error code that an
acknowledgment from the laser module was never received. After restarting the main thread in an
attempt to replicate the error, the following error would arise:
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bluepy.btle.BTLEException: Failed to execute mgmt cmd ’scanend’.

This error, raised by Bluepy’s own error handler, indicates that because it cannot find the Blue-
tooth peripheral, it cannot scan for devices [26]. This error is highly indicative of a resource con-
flict. In many cases, if a resource is shared inappropriately, errors relating to memory or resource
allocation occur, where the processor simply “jams” and can no longer manage the resources in
question anymore. In the case of the BLE resource, the Pi was no longer able to even initialize the
BLE peripheral when the main thread was terminated.

After extensive debugging using lower level Linux hci Bluetooth tools to attempt to some-
how uncover where this conflict was occurring, we employed a high-level solution, which was to
simply use a separate BLE dongle. After employing a separate Class I BLE dongle, as seen in
Figure 3.15, the error was eliminated. Although the resource conflict was avoided, this proved to
be an unsatisfactory solution as the initial resource conflict was not resolved. It was ultimately
found that the Raspberry Pi reserves GPIO pins 32-33 for Bluetooth [6]. The camera, however,
was implemented using another Python module, PiCamera, which, without much documentation
regarding this setting, utilized GPIO pin 32 on the Raspberry Pi to actuate an LED indicator on the
camera breakout board. This was only uncovered after searching through the PiCamera source
code on GitHub. By merely changing the GPIO pin that PiCamera accessed, the entire resource
conflict was resolved in implementation.

Figure 3.15: Tripp Lite mini bluetooth USB adapter 4.0 (Class 1).

Raspberry Pi Camera Memory Allocation

In the same vein of memory allocation issues, the same Python method PiCamera gave way to
another error. This error was unique to this project in that it involved the long exposures that our
images required, as discussed in the section on the computer vision algorithm (Section 2.3.5), and
will be discussed in a subsequent section on testing and validation (Section 3.3.3). Understanding
why this error occurred requires the knowledge that the Raspberry Pi Camera itself is a breakout
board of a GPU (graphics processing unit) that interfaces with the image sensor. This GPU already
has its own programming implemented in it. For instance, in many automatic capture modes, the
GPU runs its own feedback loops to calculate the gains required to magnify each pixel value to
generate a coherent image [27].

Unfortunately, the Raspberry Pi Camera is not suited for long exposures. By initializing the
camera object as such:

PiCamera(resolution = (2592,1944), framerate = Fraction(1,6),
sensor mode = 3),
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we set the frame rate to a fractional value of 1
6
, which is considered to be very slow for the hard-

ware. After capturing the image with these settings, one would want to use a close() method to
“close” the camera. “Close” in this case means the de-allocation of any resources that the Pi had
given to the GPU in order to interface with it.

With this slow frame rate, the Pi could not close the camera. The close() method would
stall, with no other option but to kill the invoking process by using a sudo command through
another terminal. The Pi would then immediately begin to suffer from unpredictable behaviors.
In some cases, the monitor would freeze or begin to show black and white stripes. These indi-
cate memory leak issues, i.e., because an unused resource was not properly de-allocated, another
process afterwards malfunctioned due to this former memory not being released properly. Only a
system reboot resolves this symptom.

It was ultimately found that this is a long-running issue with PiCamera, and that it was
possible to resolve this issue programmatically without altering the source code by “tricking” the
camera GPU. Since a fractional frame rate of 1

6
is too slow, one could simply set the frame rate to

1, give the GPU a second or two to implement that change, and then call the close() method
[28]; this workaround resolved the error.

GSM Cellular Module Implementation Challenges

Two issues were dominant in the implementation of the FONA cellular module. First, the FONA
breakout board includes a reset pin, which when driven low (grounded) from its usual high state,
triggered a hard reset of the FONA board, namely the SIM800H GSM chip. This reset could not
be replicated when the pin was wired to a GPIO pin on the Pi, which would be driven low. When
the reset pin was connected to the Pi’s ground GPIO pin, the reset would occur. This is a critical
issue, as the reset functionality is needed to (a) bring the FONA board out of sleep mode [16], and
(b) reset the serial connection following the termination of the PPP connection. It was only after
reading an obscure guidebook (via a forum post) not linked to the official Adafruit product page
for the FONA [22] that the problem was found. The developers of the Adafruit board had installed
a level shifter on the reset pin, which some micro-controllers such as the Pi, sometimes cannot
overcome through their GPIO pins. Therefore, the recommended solution was to solder on a plain
wire to connect both ends of the level shifter thereby by-passing it, as illustrated in Figure 3.16.
This resolved this issue.

Figure 3.16: Location of FONA reset pin level shifter.
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Second, the FONA plays a critical role in the functioning of the monitoring system in that it
receives SMS messages from the server to “wake up” and take measurements. When the FONA
receives an SMS or call, it will drive a ring indicator low for a few milliseconds. The Arduino will
detect this and then deliver power to the Pi. When initially implemented, it was observed that the
Arduino would seemingly start delivering power to the Pi when no wake up text or call was sent to
the FONA. By using an Arduino with an SD card logger, we were able to poll and record the ring
indicator line as we sent an SMS text as well as a call to the FONA.

Figure 3.17: Expected ring indicator behavior following SMS and Call.

Figure 3.18: Erratic ring indicator behavior.
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Figure 3.17 is a plot of the ring indicator state as we performed these actions. In Figure 3.17,
we see an initial low dip due to the SMS and then two short dips following which correspond to
the FONA reset in order to reset the FONA from idle, and the other to reset the serial connection to
the FONA from the Pi following termination of the PPP connection. The same two blips are seen
following the long low dip, which is due to the longer-duration call ringing. The rest of this test
included erratic ring indicator behavior, indicative of a slew of subsequent SMS messages due to
their ring indicator short in duration, despite not actually texting the FONA.

These subsequent ring indications were initially theorized to be due to spam calls, but they are
too short to be considered calls; removing the antenna of the FONA board eliminated all of these
erratic signals. It was only after digging into the SIM800H manual that the root of the problem was
found. The SIM800H can store 30 SMS messages in total [16]. If this storage is full, subsequent
incoming SMS will still elicit a ring indication from the FONA, but they will not be saved and not
be acknowledged to the cell service provider as received. Therefore, the cell service provider will
repeatedly attempt to re-send this SMS message to the FONA. Indeed, it was only after clearing
the on-board FONA SMS storage that this erratic ring indicator behavior was eliminated. This task
was added into the Shutdown state of the Raspberry Pi state machine; see Figure 3.10.

3.2.7 Programmatic Implementation & Organization

As in Chapter 2 for Phase I, all of the code written for Phase II and the files’ dependencies on each
other are provided in Appendix H and organized in the Raspberry Pi’s file system. Figure G.13
illustrates this and is included in Appendix G. Note: this is only for the camera module, as the
laser module is now extremely simple with just a singular Arduino .ino program flashed onto the
Arduino in the laser module.

3.2.8 Bill of Materials

As this is the final prototype that will be delivered in this study, it is essential to present a bill of
materials; see Appendix F. It was an expected result, though not an objective, to create a prototype
that is reasonably priced and all components used are commonly-available commercial items. The
component cost of the final system was approximately 900 USD, accounting for both the camera
and laser modules. This price is divided nearly evenly one-third for the embedded system, one-
third for the power supply, and one-third for the enclosures and mountings. It is significantly less
than the probable cost for the system implemented in Feng and Feng (2016), which included a
camcorder and laptop computer.

3.2.9 Enclosure Design and Fabrication

The design, fabrication, and assembly of the field-deployable enclosure for both the laser and
camera modules required extensive effort. All materials used are included in the Bill of Materials
in Appendix F. A brief description of the enclosures themselves, how hardware is mounted in
them, and installation instructions for the system are included in Appendix D. In addition, the
team created a video to visually demonstrate the assembly of the laser and camera modules [29].
Various views of the metal enclosures, both internal and external, are presented in Figure 3.19.
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Figure 3.19: Phase II: internal and external views of the camera and laser enclosures.

3.3 TESTING AND EVALUATION

The testing and evaluation of this system can be divided into three parts:

• Evaluation of the embedded system’s functionality and reliability;

• Evaluation of the accuracy and robustness projected laser target method; and

• Evaluation of the system performance when deployed outdoors.

3.3.1 Evaluation of System Functionality and Reliability

We define system functionality to be whether or not the system performs as expected. Reliability
is defined as whether or not this system can perform those functions repeatedly under a variety
of inputs. To evaluate Phase II system’s functionality and reliability, a significant portion of this
effort was performed in controlled laboratory settings throughout the development stages of each
component of the system, and then integrating all components together.

First, we first coded the asynchronous code for the BLE communications and tested the code
repeatedly to ensure that it operated standing alone. A simple way of accomplishing this was
merely passing random test messages between the Pi and Arduino. We combined that communi-
cations code into the context of the state machine, as illustrated in Figure G.9, and then again tried
to communicate between the Pi and Arduino to ensure that every state was transitioned through
accurately. Next, the FONA module was interfaced with the Pi by itself, which required the writing
of the chat script and network configuration file, as well as various Python scripts to implement
AT control of the FONA programmatically. This was then independently tested by first attempt-
ing to connect to various websites on the Internet and then attempting to configure the settings
of the FONA itself. This latter instance was how the issue with the reset pin on the FONA was
discovered. We then integrated the FONA into the main code. Next, the Pi was interfaced alone
with the camera and then incorporated into the main program, which led to the discovery of the
resource conflict between the BLE and camera. Finally, the state machine incorporated the image
processing, computer vision, and server push commands.

A study of our code and its various program flow paths led to the enumeration of the various
ways the program could fail. The execution error handling capabilities were tested by purposefully
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disconnecting certain components or hard-coding in various lines of code to elicit the anticipated
error code and checking the subsequent error string in "data log.txt." An example of one
of these input sequences is shown in Table G.3 in Appendix G; refer to the error code list in Table
G.3. Note: in order to force the Pi to record data to the data log instead of transmitting the data,
the FONA was unplugged.

3.3.2 Calibration of the Camera Module

The calibration scheme for the camera module in this phase is very similar to that of Phase I: we
obtained a scale factor Fscale in units of δpixels to δmm by physically shifting the camera chamber
vertically relative to the laser beam, using the same method illustrated in Figure 2.25. We per-
formed this calibration on both the 3D printed camera chamber, pictured in Figure G.4, which was
developed in Phase I for laboratory testing and the metal camera module developed in Phase II
for field deployment. The calibration curve for the 3D printed camera chamber was generated,
resulting in Fscale = −680.82 pixels

inch
= −26.803 pixels

mm
; see Figure 3.20. Note: the negative slope

is due to the orientation of the camera in the camera chamber such that a positive displacement is
perceived as a negative position change in the axes of the camera.

Figure 3.20: Calibration curve for the 3D-printed test camera chamber.

Calibrating the metal camera module required a slightly different physical setup as the metal
box is hard to mount on a tripod or even on a table right-side up. The box was laid flat on its back
on a carriage on a rail, with the laser pointed vertically onto the acrylic screen, as seen in Figure
3.21.

Our goal was to orient the camera in the camera enclosure to obtain a scale factor that
matched the scale factor of the 3D printed test chamber. The hardware mountings in the metal
camera enclosure were designed so that the field of view of the camera matched the field of view
in the 3D printed test chamber. The equality of these scale factors verifies whether or not the test
chamber was successfully duplicated by the metal enclosure. Due to limitations in mounting pre-
cision, however, we were unable to achieve a scale factor that precisely matched the scale factor
for the metal enclosure. Instead, we mounted the camera to match the test chamber’s scale factor
as closely as possible and obtained a scale factor of −628.42 pixels

inch
; this unique scale factor was

sent to the server to implement.
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Figure 3.21: Calibration setup for the metal camera enclosure.

This report does not discuss the server and website portion of this system in detail, but we be-
lieve that the solution presented in the preceding paragraph deserves some discussion. The server
sends a wake-up signal to the system. It also receives measurement values from the system. With
these values, the server first calculates the difference in pixel position, [δpx, δpy], of the image
by subtracting the previous position values from the most recent measurement, and then applies
the scale factor to convert the perceived displacement from pixels to mm. Note: the monitoring
systems for multiple deployments on a bridge network do not share the same scale factor; there-
fore, the server must store not only the phone number of each deployed system’s SIM card, but
also associate with that phone number that system’s scale factor. Refer to Appendix E for more
information concerning the computer vision algorithm, server, and website.

3.3.3 Evaluation of the Projected Laser Method

We preface this section of evaluation with the reminder that this report is concerned with the appli-
cation of embedded system methods to extend vision-based displacement measurement methods
as a viable protocol for long-term monitoring. The projected laser target method introduced in the
first chapter of this report determined issues of interest in regards to the hardware and enclosures
developed so far. In addition, discussed were how the designed embedded system performed and
the actions and tasks necessary to implement the computer vision algorithm developed. The hard-
ware and software were evaluated by extensive testing of the functionality and resiliency of the
embedded programming of the monitoring system, as well as subjected to the outdoor deployment
of the system.

This section considers whether the system described within obtained measurements that met
the sub-millimeter precision and accuracy required by Caltrans. In addition, discussions of the
results regarding Phase II are largely concerned with the performance of the computer vision code,
as well as its interactions with real-world data and limitations beyond the embedded system.

Experimental Setup

The majority of the experimentation was performed using the setup illustrated in Figure 3.22, in
which two tripods, one holding the laser emitter, and the other holding the 3D printed camera
module, are placed a distance away from each other. Recall that this investigation was concerned
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with the limitations of the projected laser target method as implemented by our computer vision
algorithm, in terms of the questions posed at the end of Phase I, Section 2.4.4. We will consider
these questions in the following sections.

Figure 3.22: Tripod setup for lab testing of the projected laser target method.

Camera Setting Considerations

Before considering the actual act of taking images, we needed to determine the optimal camera
settings. Based on documentation of the Raspberry Pi Camera [27], the two main variables to
explore are shutter speed (SS) and ISO, which are how quickly the shutter opens and closes, and
the sensitivity of the image sensor to light, respectively. The higher the shutter speed value, the
longer the exposure time and, therefore, the brighter the photo. The higher the ISO, the higher
the gain that the image sensor data will be multiplied by, and therefore the brighter the photo. We
approached this issue by taking photos of the laser beam in a dark environment (again, assuming
that any photographs will be shot at night to improve the accuracy of the computer vision method)
at various SS and ISO combinations. An example of these photos is shown in Figure 3.23.

Figure 3.23: Photos of laser beam with varying SS and ISO.
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Figure 3.24: Chosen camera settings: 1 and 2.

To determine how “good” the image was, we evaluated how well the computer vision code
chose its regression points to match the image of the laser beam, i.e., how “sparse” were the
regression points chosen by the computer vision algorithm? For brevity, two camera settings were
ultimately found to be the least sparsity in the regression points: SS = 3E6, ISO = 900 and
SS = 3E6, ISO = 300 or camera settings 1 and 2, respectively. Examples of photos taken at
these settings are discussed next.

Figure 3.24 demonstrates why the two camera settings may elicit good centroid estimation
resultsm which were due to the limitations of the laser. At the far range (taken at a beam–camera
separation of 60 ft), the laser may loose focus and impart a “fat” and “blurred” image on the acrylic
screen; see Figure 3.25. This can be corrected by either a more precisely cut lens for the laser diode
to create the cross-hair pattern or simply altering the camera settings.

As seen in Figure 3.25, the highest intensity portions of the imparted beam designate the
“true” beam, whereas the fainter parts represent lens effects. This method captures changes in
the position of the laser beam with reference to an initial image; as the laser beam is “distorted”
consistently by the lens between image captures, the same features will exist in the same relative
locations in each successive measurement sequence. Note: the camera could be set with high-
image ISO gains such that the algorithm will capture the high gradients of the images through its
kernel operations, thus finding tight regression points. Alternatively, one could set the camera with
lower ISO gains so that the lens distortions are not even captured in the image; the camera merely
captures the higher intensity parts of the beam image, with the algorithm able to discern reasonable
regression points. We shall discuss which camera setting is more successful in practice in the next
section. Note that the captured images in Figure 3.24 are of the laser beam featured in Figure 3.25.

Evaluation of Displacement Measurements

Instead of analyzing images based on the inherent “noise” contained within them, what is key here
is the accuracy and precision of the computer vision algorithm in matching actual displacement
measurements. In a setup exactly identical to the calibration procedures using gauge blocks, we
imposed known displacements on the camera chamber and attempted to match that value with the
computer vision code. After setting up the tripods at various distances from each other (5 ft was
considered close range and 60 ft was considered far range), we were able to discern the accuracy
of our displacement determination methods. We present a subset of our findings in Figure 3.26.
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Figure 3.25: Effects of lens distortion at high range, 100 mW laser at 60 ft.

Figure 3.26: Errors of image-based measurements compared against gauge blocks.

We tested the efficacy of three strengths of lasers: 5 mW, 30 mW, and 100 mW. As shown in
Figure 3.26, all of these methods obtain sub-millimeter accuracy in that the absolute error (δvision−
δgauge block) was always of magnitude less than 1 mm. At close range, this is to be expected, but
we do see the average absolute error corresponding to each laser strength (the filled dot in each
sequence of dots) decreasing as the laser strength increases. This makes sense as the more intense
the laser beam, the more discernible its centroid via the algorithm. That being said, at 60 ft, the
accuracy of the measurements taken using the 100 mW laser was on-par with the accuracy taken
with the same laser at close range. Thus, the computer vision algorithm can elicit sub-millimeter
readings at a range of up to 60 ft.
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This success hinges entirely on the performance of the laser emitter. The reason why there is
no data included in Figure 3.26 for the other two laser strengths at 60 ft is that those images were so
faint and blurred that no measurement was possible, indicating the importance of obtaining a laser
diode of the appropriate focus and strength. If the laser beam is not focused enough, the images
are blurred; see Figure 3.24. If the laser beam is not strong enough, there is not enough light to
impart a discernible image on the acrylic screen.

Obtaining clear images is also dependent on the camera setting. If the laser is too weak, why
not simply boost up the ISO or exposure time? Because images taken at 60 ft of the 100 mW laser
beam proved that this requires careful tuning of those settings. Using camera setting 1 at a long
distance, the absolute error was very large compared to darker images taken using camera setting
2. Referring to Figure 3.27, only images taken using setting 2 obtained sub-millimeter accuracy.
Thus in the design for our final model, we plan to employ camera setting 2.

Figure 3.27: Influence of camera setting on errors, with reference to gauge blocks.

Camera Tilt Errors

We next investigated the effects of camera tilt on the displacement reading. We would expect the
“perceived” translational displacement to be much less than if considering laser emitter tilt due to
the significantly smaller arm of rotation (on the order of inches versus order of tens of feet). By
using the same tripod setup as discussed previously, we kept the laser beam in a fixed position and
merely rotated the camera module forward and backward to introduce pitch. Then we took images
with reference to a zero-pitch image. Figure 3.28 summarizes the results of several trials of this
nature.

Due to large imprecision in the camera-laser tripod setup, we cannot take the precision of
these results as presented, but we can discern a first-order trend; the influence of camera tilt is
nonlinear. This is to be expected as the camera chamber tracks a circle as the pitch grows about
its center of rotation, with these snapshots of that path eliciting a curved trend. While this trend is
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Figure 3.28: Influence of camera tilt on measurement.

interesting, it does not give us much information on how much camera tilt we can tolerate in our
measurements. Taking these perceived settlement readings with a practical point of view, the fact
that a mere 10o of pitch may introduce up to an order of magnitude 10 mm of “error” is alarming.
Clearly, if our transmitted data from the on-board accelerometers reports a change in pitch value
greater than 1 or 2o, then the estimated settlement measurements can no longer be trusted unless a
correction of such undesirable rotation is performed; this topic is outside the scope of this report.

Outdoor versus Indoor Considerations

Another question to answer given laboratory conditions versus in situ conditions: Is the computer
vision algorithm developed robust enough for outdoor conditions? In particular, we were con-
cerned with aberrant light, artifacts, and non-night-time ambient light conditions. To address the
issue of light artifacts, we purposefully left hardware LEDs on in the camera chamber and a few
smudges on the acrylic screen, all in an effort to test the efficacy of the algorithm. The image sub-
traction of a baseline “ambient” photo from the “laser” photo worked very well; see an example of
this image subtraction in Figure 3.29.

Figure 3.29 shows a smudge very close to the center of the image, as well as a stray streak of
light on the bottom left corner. When the ambient photo is subtracted from the laser photo, these
two artifacts were essentially eliminated, resulting in a “clean” photo.

A more pressing concern remained: outdoor light levels. As successful as this algorithm may
be in laboratory settings, we identified three key light “levels” that the system may encounter in
the outside world, each of which could or should be handled differently if daytime photos are a
future objective of this monitoring system.

The first “level” considers images taken at night, where the camera essentially sees a com-
pletely black acrylic screen when there is no laser beam shining on it. These pictures result in
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Figure 3.29: Effects of image subtraction.

Figure 3.30: Images of various camera settings in the “shade.”

good computer vision results that matched the laboratory results. Second, there is also a “shaded”
regime, where there is no direct sunlight shining on the screen. Here, it was possible to see the
screen lit up fairly evenly across the red screen from the inside. In addition, the red acrylic acts as a
fairly good “filter,” blurring out patterns and actual visual details such that we are left with a fairly
uniform baseline image. Although this is desirable for good estimation of results, how bright and
even the screen should be was of concern. If the screen is too bright, then the laser beam will not
impart a high enough increase in brightness to be discernible from the ambient light, even when
image subtraction is performed. To ensure this does not occur, we adjusted the values of ISO and
exposure time to capture a reasonably differentiable image of the laser beam. Images taken with
various camera settings in a “shaded” regime are presented in Figure 3.30.

The second row of images in Figure 3.30 shows subtraction-corrected images of the images in
the first row, where the image to the left is the baseline “ambient” image to be subtracted from the
actual laser image on the right. Depending on the camera settings, the laser beam in the resulting
corrected image may be of fainter or stronger appearance. Tuning these settings autonomously
proved difficult. We attempted to correlate the brightness in the camera chamber itself with the
ambient light conditions outside the chamber by hooking up a photo-resistor to the Raspberry
Pi. Unfortunately, it was found that ambient light conditions are much too variable for a single
photo-resistor in the chamber to offer enough information for the control of the camera settings.
One of the goals of this project was to keep the hardware and software relatively simple, thus
avoiding the installation of feedback control methods to auto-tune the camera settings for daytime
measurements; therefore, we instead decided to continue with only night-time measurements.
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Finally, the last daytime light “level” we encountered was in the case of direct sunlight on
the screen. In that case, it was proved to be difficult in aiming the laser beam onto the acrylic
screen;see Figure 3.31. Even at close range, the photos taken with this method were not very
useful; see Figure 3.32. It is impossible to discern the laser beam at any reasonable camera setting,
since the ambient and the laser images were almost identical, leading to a nearly black image after
subtraction. If the image algorithm is fed images taken under these conditions, there is no chance
that any viable position estimate will be output.

Figure 3.31: Direct sunlight conditions.

Figure 3.32: Images taken under direct sunlight conditions.

3.3.4 Outdoor Deployment

In order to fully test the functionality of the monitoring system, as well as the practicality of its
installation and limitations of operation in the real world, we deployed the system on a bridge
located on the campus of the University of California, Berkeley (UCB). This outdoor deployment
is discussed in this section as the final step toward validating the developed monitoring system.

Site Selection and Mounting

The bridge selected for the in-field testing of the monitoring system is located on University Drive
on the UCB campus, immediately north of the Moffitt Undergraduate Library, as marked in Figure
3.33. As it is located on a major thorough-fare through campus, this bridge experiences frequent
vehicle, bicycle, and pedestrian traffic. This bridge had recently undergone retrofitting; the wooden
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deck was resurfaced and is now supported by a series of steel I-beams that span the length of the
bridge from abutment to abutment; see Figure 3.34.

Figure 3.33: Selected bridge for field tests on UC Berkeley campus.

Figure 3.34: Bottom view of selected bridge.

We mounted the enclosed units onto the new I-beams using uni-strut members and C-clamps,
as seen in Figure 3.35, placing emphasis on fixing the units as firmly as possible to limit any tilt or
slippage of the units. The units were mounted approximately 12 ft apart from each other. The two
corresponding solar panels were connected in parallel and were for the camera unit and the laser
unit. They were mounted separately from the boxes so that they could receive sunlight; see Figure
3.36. The solar panels were then connected as needed using USB-compatible extension cords to
the V44 batteries located in each module.

At this point, with the units mounted in their desired locations, and the solar panels mounted
and connected to their respective batteries, we proceeded with aligning the laser beam with the
camera screen. To accomplish this, we had to devise a power delivery system that was independent
from the power delivery system in the laser module. The easiest way of doing this was by providing
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(a) Camera unit (b) Laser unit

Figure 3.35: Field installation of monitoring units.

(a) Parallel solar panels (b) Single solar panel

Figure 3.36: Field installation of the solar panels.

a separate power supply (e.g., battery) and power cable. Then, we focused the cross-hair beam at
the desired range (upon the camera screen) by twisting the lens cap of the laser diode. Once
focused, we used electrical tape to fix the position of the lens cap. Then, we inserted the diode into
the aluminum laser mount, as seen in Figure 3.37, and used a hex key to tighten the grip of the
laser mount on the diode.

Figure 3.37: Custom adjustable laser fixture.

Referring to Figure 3.37, we then adjusted the horizontal position of the beam by releasing
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the wing nuts and adjusting the custom-designed laser fixture. We then tightened the wing nuts
and adjusted the vertical position of the beam by adjusting the laser fixture after loosening the nuts
that attach the fixture to the metal box. After tightening those nuts and reconnecting the laser diode
to the V44 battery in the laser module, we sealed off any electrical joints with tape and confirmed
that the Arduino in the laser module was receiving power from the V44 battery. This can be done
by ensuring the power delivery board in the laser module is connected to the V44 battery, and
that the battery is charged and outputting power; see Figure 3.38. The HM-10 BLE unit should
be flashing red, and the Arduino’s green power LED should be on. Finally, we locked the laser
module with a padlock. At this point, the Arduino in the laser module was in idle, with the HM-10
BLE transmitter advertising. Next, we proceeded to initialize the camera module.

(a) Camera unit (b) Laser unit

Figure 3.38: Internal view of the hardware.

For the camera unit, we only needed to ensure that the appropriate units were receiving
power. To do so, we checked that the V44 battery was charged and outputting power (Figure 3.38)
and connected to the power delivery board. The Raspberry Pi’s red power LED should be off.
Regarding the Adafruit FONA, the blue LED should be solid and the red LED should be flashing
slowly on the FONA’s board, and its battery should be charging, i.e., the yellow charging LED
indicator should be on. The green power LED on the Arduino should be on. When the camera unit
receives a wake-up signal, the FONA charging LED will switch off, and the Pi will turn on. At this
point, we can close this box and lock it.

Deployment Challenges

This stage of the project revealed various considerations that were not obvious in laboratory tests.
The two most significant challenges were the limitations of 2G coverage and the sensitivity of the
monitoring units to vibrations.

Recall that the monitoring system ultimately relies on three communication pathways: (1) a
2G call connection for the wake-up signal; (2) a BLE connection between the camera and laser
modules for measurement commands; and (3) a 2G data connection to the Internet for data trans-
mission. All three of these components were tested independently during development. For in-
stance, to test connection (2), we placed the two modules at varying lengths in a clear outdoor
space and found that the selected hardware allowed us to obtain connection at ranges in excess of
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60 ft. Note: this remarkable range required that no obstructions block the field of transmission
between the modules.

The 2G coverage was tested by sending SMS messages to the FONA in both a clear outdoor
setting as well as in a room inside a reinforced concrete building. With this in mind, it was expected
that the 2G coverage underneath a bridge located in the middle of UCB campus would have been
more than sufficient. Unfortunately, this was not the case. It was found that when mounting the
unit onto the bottom flange of a thick I beam, which was merely a few feet from the edge of
the bridge, neither SMS messages nor calls could reach the FONA. Refer to Figure 3.34 for the
underside view of this bridge.

To address this problem, two solutions were investigated: (1) extending the antenna to reach
the edge of the bridge; and (2) physically moving the unit to the edge of the bridge. Solution (1)
showed promise when implemented in a clear setting as the signal strength is high, and any signal
losses experienced through a long antenna (approximately 70 in.) were not significant compared to
the strength of the received signal. When tried underneath the bridge in situ, the FONA could not
receive calls. We postulate that the signal strength, even at the edge of the bridge, was too weak to
overcome the losses in the lead wire.

To investigate why the signal strength may be so weak even at the edge of the bridge required
undertaking efforts not possible in our time constraints, so we therefore attempted Solution (2),
which worked. By mounting the camera module onto the perimeter beam (by drilling an angle
bracket into the wooden beam), the FONA with an un-extended antenna was able to pick up signals
the majority of the time.

The second issue concerns the sensitivity of the measurements to vibrations. Recall that the
monitoring system is designed to take static measurements. These images require long exposure
times (in excess of 3 sec) as the camera takes pictures in a very dark enclosure and is designed
for night-time measurements in order to eliminate as much light pollution as possible per the com-
puter vision algorithm. During those 3 sec of exposure time, the image sensor is capturing light.
In laboratory tests, the camera module was still during those 3 sec, but this bridge experiences
significant pedestrian and vehicle traffic. It was observed that the bridge–despite its large I-beam
substructure–vibrates substantially. This vibration is substantial enough that the laser beam is no-
ticeably not still on the camera screen while the image is captured. This would of course introduces
error in our measurement values as discussed later.

Deployment Results

We deployed the system and operated it for several days. Despite removing the camera module
twice at the onset in order to fix and debug the unit, all of the data transmitted successfully was
saved on the server. This data was isolated from monitoring service interruptions as the trajectory
of the laser beam and the position of the camera module were not changed. For instance, if a
technician is sent to open either of the modules to inspect the hardware, the system can be merely
rebooted (power-cycled) after the inspection is completed; any subsequent data transmitted to the
server is completely valid and merely appended to any previous data already collected. In the worst
case scenario, all data files (captured images and data log files) are saved onto the Raspberry Pi’s
SD card. This card may be removed by hand, and its information accessed separately. Figure 3.39
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presents the displacement measurement data collected over the course of a week. Note that these
plotted changes in position were calculated by designating a single datum as a reference (the first
point in a sequence of captured images) and subtracting that datum from each subsequent value.
In this case, the reference point is the first data point collected by the system after installation,
and every subsequent point should closely match that reference point if no significant movement
occurred.

Figure 3.39: Complete one week displacement dataset.

Despite our laboratory test findings that demonstrated that our computer vision algorithm is most
accurate when fed images taken at night, convergent results were taken by our monitoring system
during the day. In this context, “convergent” means that the day-time measurements match the
night-time measurements. This may be due to a variety of factors, which are not limited to: (1)
the lack of light even in daytime underneath the bridge to begin with; and (2) cloudy weather
conditions. To bolster these two possibilities, we note that on the mornings of May 4th and May
6th, there are three data points that digressed significantly from previous readings. This can be
attributed to the morning hour sun conditions at the bridge, in which there was direct sunlight
shining on the screen. If we remove these points, we are left with the data in Figure 3.40. We also
present the tilt values measured using the digital accelerometers in the camera and laser modules
over the course of the same week in Figure 3.41 that matched the “cleaned” dataset presented in
Figure 3.40.

In Figures 3.40 and 3.41, we connected the data points to better visualize the point-to-point
changes in the measurement values, choosing the first reading as the reference point that was
gathered on May 3rd. We note that there seems to be two significant shifts in position of the
laser beam centroid: first on May 4th, and then on May 6th. Initially, it was thought that this
was attributed to the use of C-clamps to install the prototype under the bridge. The bridge shakes
vigorously even in response to pedestrian crossings, so it would not be unusual if the clamps may
have slipped once or twice. To confirm this assumption we studied the tilt readings; the camera
module did not experience any significant tilt on May 4th or May 6th. If shaking of the bridge had
caused the module to slip, we would expect some change in the tilt reading.
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Figure 3.40: “Cleaned” one week displacement dataset.

Figure 3.41: Complete one week tilt (pitch) dataset.

94



We acknowledge variability in the laser module tilt readings. These large readings are not
real, but instead are due to jitter and fluctuations in the digital accelerometer mounted in the laser
module. We can confirm this because 5o of tilt of the laser module (the largest deviation in laser
module rotation, as seen in Figure 3.41) would result in translations of over 3 cm on the camera
module, which is not seen in Figure 3.40. To account for this electronic fluctuation in the camera
module, the first few samples of the accelerations are sampled and then averaged. In the laser
module, this was not done. Ultimately, more long-term testing and evaluation is required to fully
validate this prototype for field deployment. Note, from mid-day May 6th and onward, the camera
module measured very consistent readings by tracking an approximately -2.5 mm position with
sub-millimeter precision.

This system was operational until May 15th, nearly two weeks after installation. At that time,
it was seen that the camera module was still fully powered, but the laser module had nearly been
drained its battery supply. This was due to a combination of factors: (1) the immensely cloudy
and rainy weather that the test bridge experienced during the latter half of the deployment period;
and (2) the laser module’s solar panel was mounted in a very shaded region and posed a significant
drain on the battery. As was observed post-installation, this panel saw direct sunlight for only
a very limited period of time during the day. Worth noting is that the laser module was able to
sustain itself for this long with sub-optimal weather conditions and the less than optimal location
of the solar panel mounting lends confidence to the power consumption estimates and calculations
performed in Section 3.2.5. This, combined with reasonable displacement and rotation measure-
ments, demonstrates the viability of this prototype, and warrants building on the limitations noted
herein as a jumping off point for Phase III.
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4 Summary, Conclusions, and Future
Directions

Below is a discussion of the performance of this system in terms of the projected laser target
method, the embedded programming that implements the measurement method for monitoring,
and the monitoring system in general.

4.1 DISCUSSION OF PROJECTED LASER TARGET METHOD

This method was proposed in order to improve upon the issues encountered by the many previous
research teams who used vision-based methods. These issues included the necessity of special
camera equipment to zoom and capture a far-away target and eliminate artifacts from ambient
light conditions. By deconstructing the painted target, we proposed to bring what was on the
canvas much closer to the camera in the form of a translucent acrylic screen inserted into a fixed
camera chamber that projects the pattern via a laser beam from far away. This would absolve
the need for special camera equipment and reduce the effects of ambient light by enclosing the
camera’s field of view into a chamber.

Ultimately, laboratory tests proved the projected laser target method was successful in meet-
ing its goals, albeit under certain conditions; the largest limitation was the strength and focus of
the laser beam. Eliminating the need for special camera equipment created the need for a higher-
quality laser emitter. The selected 100 mW laser that we chose for this project had enough wattage
to project a strong enough beam at a distance in excess of 60 ft, but unfortunately the lens that
forms the cross-hair shape (see Figure 4.1) is not of high enough quality to produce a focused
beam at that distance.

Figure 4.1: Typical cross-hair laser lens.

To this end, there are two straight-forward options to increase the effective range of this
system:
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1. Use a higher quality laser with a focus on the abilities of the laser beam at high range,
respective to the desired range

2. Impose certain camera settings in order to account for the lens distortions; and

3. Explore the use of a non-cross-hair laser beam.

The first option requires higher monetary investment compared to the setup developed herein.
We explored the second option and found it produced sub-millimeter results at 60 ft; see Section
3.3.3. Manipulating the camera settings to resolve this hardware limitation is a clumsy solution at
best. We recommend using a higher quality, more expensive laser.

The third option would be a promising route for future investigation. The motivation of using
a cross-hair beam came from many sources, one of which was the study by Olaszek (1999), which
implemented a cross-hair patterned target. This in turn led to the development of the edge-detection
computer vision method, as implemented for the purpose of this vision-based method.

Another tack might be to use a mere dot, which would resolve many of the issues resulting
from focus and strength limitations of the laser. The laser beam, as produced in the laser diode, is
inherently circular; the lens used to create the cross-hair beam is expected to always have shorter
effective range than a lens that focuses the already circular beam into a finer beam. This would
necessitate the creating a different computer vision algorithm to calculate the centroid of the laser
point.

That being said, a similar image subtraction approach would probably be just as adequate
in removing light artifacts. In addition, one could explore the use of many laser points instead
of just one, and then approach this projected laser target method with more of a structured light
motivation, following the work done by Myung et al. (2011) and Jeon et al. (2011). These methods
also have the advantage of utilizing affine transforms to produce measurements of more DOFs other
than merely one vertical displacement, including rotations. This would eliminate our reliance on
accelerometers to measure the tilt of the modules.

In addition, the projected target method throws significant challenges when implemented in
non-dark conditions. Regardless of how focused or strong a laser beam, be it a cross-hair or simple
dot, if the acrylic screen is “saturated” with light and the laser beam can impart no significant
increase in brightness on the screen from baseline conditions, no computer vision algorithm can
realistically discern the position of that beam. This is a hard limitation in the projected laser target
method. One can step around this limitation is by taking measurements in the shade or at night
(and reworking the camera settings as needed), as we ultimately did in our field deployment.

To create a more light-robust method may require more information concerning the light
conditions in the camera chamber as well as the outside world. With some measurement of the
internal and external light conditions, some automatic modification could be made of the camera
settings. A brief investigation into this during the course of this study was done by installing a
photo-resistor (such as the one in Figure 4.2) in the 3D printed camera chamber and attempting to
correlate the amount of light in the chamber with the convergence of the computer vision algorithm.
“Convergence” in this case means if the computer vision algorithm was able to discern a reasonable
centroid or not.
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This photo-resistor produced inconsistent values and was very sensitive to its mounting ori-
entation within the camera chamber. Even if light conditions were accurately read, extensive work
would have to be made to develop and implement the feedback control of the camera settings to
match certain light settings.

Figure 4.2: Analog photo-resistor.

4.2 DISCUSSION OF EMBEDDED PROGRAMMING FOR MONITORING

The embedded programming of the computational unit for this monitoring system was developed to
implement the tasks necessary to perform the projected laser target method. The embedded system
was designed according to the framework posed by Wang et al., a computational unit interfacing
with communications and a sensor interface [Wang et al. (2007)]. To this end, we developed two
sets of embedded programming for this project; one for each phase (I for laboratory deployment
and II for field deployment). A software suite that implemented synchronous communications
as well as time synchronization, adept for lab-space deployment using TCP/IP across a wireless
router, was developed in Phase I but was not extensively tested nor evaluated.

A second software suite was developed for Phase II that implemented asynchronous commu-
nication using BLE technology to allow for communication between modules in the monitoring
system and synchronous 2G GSM communication to transmit data to a server. This set of software
was designed to be robust, by handling errors to prevent fatal program executions, and resilient, in
that any data (including error codes) not transmitted during one program execution would be saved
for future transmission. This software was tested and debugged in a laboratory setting, and its
error-handling capabilities were evaluated. It can be expected that the same behavior will follow
suit when the system is deployed in an outdoor setting as the hardware has not been changed, nor
has the software; it was placed into a metal box and located outdoors.

This was validated as it was confirmed that when data was not transmitted to the server
from the deployed system, be it due to transmission issues or another safely-handled error, the
data (be it complete or incomplete) would always be transmitted the next time a successful data
connection was made with the server from the monitoring system. In no case did the system ever
become unresponsive due to a fatal error encountered by the embedded program in either the laser
or camera module during its run time. “Unresponsive” in this case means that the system does not
respond to a wake-up signal. Recall that the camera module is designed to always return to an idle
state in which the Pi is powered off. When a wake-up signal is received, the Pi is power-cycled,
effectively re-booting the Pi. Much like when one may “turn their computer on-and-off again” to
correct for any hardware or software failures that may have occurred, this corrects for many of the
common problems that may be encountered by embedded systems, such as segmentation faults.

It is noteworthy to consider that this embedded system could be extended to other monitor-

99



ing applications. The BLE implementation could be adapted for communication between computa-
tional units performing tasks not related to this projected laser target method. The sensing interface
could include other sensors. Being asynchronous or synchronous in nature, the communications
could be implemented using other technology. Ultimately, the flexibility of this embedded system
lies in its state machine design. If a proposed system can be broken down into a finite number of
operational states, one could always piece those states together using transitions that rely on input
signals (internal or external in source) that may be delivered through wired or wireless means, and
then output actions and/or information.

4.3 DISCUSSION OF MONITORING SYSTEM AND RECOMMENDATIONS

Below is a discussion of the monitoring system that first details the limitations of the current system
and what immediate improvements can be made to the current system. The second discussion
focuses on future extensions of the project.

4.3.1 Limitations of the Current System and Immediate Recommendations

The monitoring system developed herein works in the context of the specific setting chosen. We
deployed it under a bridge on the UCB campus. We requested and gathered measurement data
points for several days that were convergent under the correct lighting conditions, and were able
to track a “baseline” zero-displacement reference with sub-millimeter precision. “Convergent” in
this context, merely means that the computer vision algorithm output a reasonable pixel value for
the centroid of the laser beam. That being said, certain limitations have been observed. They are:

1. High power draw of the cellular module battery;

2. Limitations of the 2G coverage;

3. Limitations of the BLE connectivity; and

4. Remote accessibility of data and system settings.

High Power Draw of the FONA

The embedded system developed herein accommodated the specific use case of monitoring the
gradual settlement of bridge foundations through static measurements taken at long periods. How-
ever, recall that due to limitations as discussed in the power consumption portion of Section 3.2.5
specifically concerning the cellular module’s separate battery, the interval of time between mea-
surements is limited to six hours. This is done to ensure the cellular module’s battery is always
sufficiently charged; unfortunately, it increases the overall power consumption of the camera mod-
ule. To compensate for this, we used two solar panels in parallel instead of one. This is not a
long-term solution. If this problem had been caught earlier in the project development, we would
have endeavored to (1) use a less power consuming cellular module; or (2) design a more elegant
way of monitoring the battery state.

Concerning Approach (1), a prerequisite for the device is that it must be operating at all
times: it must be able to receive incoming messages/calls at all times. The SIM800 series of GSM
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chips, as is included in the Adafruit FONA used herein, is a very common chip for implementing
GSM communications in embedded systems. It may be the case that there are other GSM boards
that employ it in a much less power consuming way compared to the Adafruit.

Concerning Approach (2), if we were to keep the Adafruit FONA, there are certainly other
ways of ensuring that its separate power supply is always charged sufficiently. Instead of appending
the task of checking the battery state of the FONA to the list of tasks that the Raspberry Pi must
perform as described herein, this could be delegated to the Arduino instead. Because turning on the
Pi automatically takes a measurement, we are bound by our current method to take a measurement
every time we want to check the battery state. We only chose this approach is because the TX/RX
serial lines of the FONA are wired to the Pi only in the current prototype. Adafruit programmed a
unique AT command that directly returns the charge of the battery when the command is issued to
the FONA, making this a very convenient way to employ to determine the charge of the battery.

Changing the wiring of the data lines is possible but with the caveat that it is important
to ensure that the Pi has exclusive access to the data lines when it is on, and the Arduino has
exclusive access to the data lines when the Pi is off with no overlap. To implement this, one could
use a relay. The ones we already use in our power delivery board are DPDT (double pole double
throw), meaning that there are two output ports that alternate in their states: when one is on, the
other one is off, and vice versa. One could merely use one of these relays to share access to the
FONA data lines between the two computational boards. In addition, the state machine deployed
on the Arduino must be changed, i.e., whenever the Arduino regains access of the FONA, a serial
connection to the FONA must be established in order to communicate with the FONA.

BLE Communication Limitations

This issue did not have any serious ramifications in our field tests. In the few cases where the
camera module failed to connect to the laser module, the camera module handled that error, saved
its code into memory, and then we wait for the next measurement. That being said, in our test
bridge, the distance between modules is approximately 12 ft, and nowhere near the approximate
70 ft tested earlier with no issues. We acknowledge that this BLE range is a limitation on the range
of our monitoring system, coupled with the strength of the laser, as mentioned in Section 4.1. If
one were to mount this device farther than 70 ft, a longer range communication technology must
be employed.

2G Communication Limitations

It was already mentioned that the 2G coverage underneath the test bridge was unexpectedly sub-
par. We remedied this by mounting our module closer to the edge of the bridge and tried using a
longer lead-wire for the antenna of the FONA. This is not a comprehensive solution to this problem.
More permanent solutions exist: (1) use a stronger antenna or perhaps a 2G signal booster; and/or
(2) migrate this communication pathway to a newer infrastructure, such as 3G or 4G. Concerning
Solution (1), the stronger antenna is expected to be passive (see Figure 4.3), meaning that it should
not consume significantly more power than the antenna currently employed in the prototype. Using
a signal booster will be a non-trivial increase in the power consumption.

The motivation for Solution (2) is two-fold; newer cellular technology will not only carry
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Figure 4.3: Auxiliary antenna.

more data faster (thus allowing the system to transmit more data to the server than merely a few
bytes of data), but it is also expected to out-last 2G in terms of carrier adoption as 2G technology
has existed In the United States since the 1990s. Many carriers already have phased out of 2G [30];
T-Mobile is the last carrier providing 2G GSM coverage. To this end, it may be advantageous to
upgrade the cellular module of this prototype to employ 3G technology if not newer. In addition,
with newer cellular technologies, we can expect to benefit from improved coverage and range.

Remote Accessibility of Data and System Settings

Another immediate limitation of our system is due to our very limited use case: the technician is
only meant to install the unit, boot it up, and then leave it. The data is then expected to merely
appear at the server after a measurement is requested. More access to the system would be helpful,
e.g., a feature that could re-boot the entire camera module or laser module remotely in the case of
an unanticipated hardware issue. The fact that both of the modules return to their respective idle
states is our means of ensuring that a forced re-boot is not required. Instead of transmitting only
the final measurement, perhaps the two photos used to generate those measurements could also be
transmitted to the server. If some measurements stray from the baseline, an engineer would find it
useful to see the raw photos to determine if the aberrant measurement was due to light pollution or
actual settlement.

Finally, there are certain settings that are hard-coded into the embedded program on both of
the modules, including the amount of query time allowed for connections to wait before returning
a failed connection error and camera settings. If the engineer wanted to alter any of these settings,
a technician would have to access the devices on site. A useful modification would be the ability
to change these settings remotely. This could be implemented by sending the information through
SMS messages to the camera module as the wake-up signal. Currently, the system is blind to the
actual contents of the wake-up signal, but it could potentially read the saved SMS message and act
on it. If the SMS message contains changes for the laser module, this information could be passed
to the laser module via BLE.

4.3.2 Long-Term Directions

Modifications to the Projected Laser Target Method

It has already been mentioned previously that an extension could be made to this project by mod-
ifying the projected laser target method, itself. Instead of projecting a cross-hair laser beam, the
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method could instead adopt more heavily from the structured light methods used by Myung et al.;
see Myung et al. (2011) and Jeon et al. (2011). This study projected multiple laser dots, measuring
the six DOFs that describe the camera module’s position in space. Although this approach may
be too complex for this project, we could use a single laser dot instead of a cross-hair beam. This
would have the added benefit of simplifying the computer vision algorithm from an edge-detection
method to something perhaps less complex and more robust.

If one were to use four dots, more DOFs could be explained, allowing the project to eliminate
the need of the digital accelerometers to measure tilt. Investigate the accuracy of the competing
methods would be prudent. Our current prototype and a modified prototype that employs a system
of kinematic equations fed by measurements extracted from images of several laser dots to measure
more degrees-of-freedom is worth investigation.

Implementation using Other Hardware

A critical limitation is the scalability of our prototype. We addressed the goal of this project by
utilizing affordable and readily available hardware to implement our monitoring system. Meeting
this deliverable was at a cost. It takes a non-trivial amount of time to duplicate our system, ensure
that the hardware is integrated and then assemble it in a robust manner. The prototype deployed
in our field tests is not easily replicated to produce more than a few units at a time. The mounting
fixtures for the hardware securely had to be custom laser cut from sheets of acrylic. The hardware
had to be assembled onto the mountings and even when wired together must be validated to ensure
that not one of the many connections is done incorrectly or poorly. To conduct this validation,
the software for the various computational units must be installed and compiled onto the boards.
Finally, the camera modules themselves must be calibrated to determine the scale factor between
pixels and engineering length units.

A large step to streamlining this process, and perhaps even improving the robustness of the
system, is to design our own custom integrated circuit (IC) board that contains only the components
that are absolutely necessary from all of the various hardware we used. For instance, for the
Arduino, many of the LEDs and GPIO pins are unused, as well as the ADC converter. To this
end, many hobbyists have created their own “Arduinos” by buying the micro-processor chip itself
and building their own IC boards around it. If we extended this to both the Pi and Arduino, and
perhaps the cellular board, as well, we would eliminate many of the hardware issues that arose due
to broken components and faulty connections. Designing our own boards would vastly improve
the quality control of the product and the organization of the many wired connections that currently
exist in our prototype.

If a custom IC board is not used, one could also use other boards that are designed for
the deployment of embedded systems, such as the Berkeley Mote. These custom devices may
be compact and designed specifically for these applications. Note: these custom devices require
a higher skill level and learning curve compared to the system developed herein. Along with
budgetary restraints, these reasons contributed to us not adopting these other boards. Many groups
do indeed use these devices to great success, as summarized by Lynch and Loh (2006).
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Appendix A: Discussion of Tilt Error
Contribution

Jeon et al. (2011) realized in their development of a servo-ing system for their structured light
approach, the limitation of projecting lasers a far distance onto a target is directly related to the
target size. When one projects a laser beam far away from a target, small angle changes of the laser
emitter will result in a large translation on the receiving end. Our projected laser method measures
one-dimensional displacement by taking pictures of the interior face of the acrylic screen, making
it blind to the tilt of both the laser emitter and camera modules. The effects of laser tilt and camera
tilt are illustrated in Figures A.1 and A.2, respectively.

Figure A.1: Contribution of laser tilt to perceived translation.

Figure A.2: Contribution of camera tilt to perceived translation.

In Figure A.1, we split the total measured displacement into two parts: “true” settlement δs
and the contribution from an angular perturbation θ of the laser emitter, δθ = Ltan(θ). This means
that a screen of vertical dimension h, which can capture translational displacement of [−h

2
, h
2
],

would only be able to capture an angular displacement of [−arctan( h
L
, arctan( h

L
)]. Thus, if we

had a screen 100 mm tall, we would only capture ±0.286o of laser tilt projected across 20 m. The
issue of camera tilt is of lesser concern, as the rotation arm of the camera screen is much smaller
than the rotation arm of the laser beam. The perceived settlement, as defined in A.2 as δtilt versus
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the true settlement of δo, is certainly nontrivial if the camera is tilted enough. How much may be
considered “enough” depends on the rotation arm, but due to the extreme difference in rotation
arms, our team decided to manage these two error contributions as discussed below.

We used accelerometers to measure the angular position of both the camera and laser mod-
ules; there is no other way to obtain a tilt reading beyond a sensor measurement as the projected
laser target method is blind to rotational influences. However, the resolution of typical digital
accelerometers is not fine enough to measure the tilt of the modules to the precision required
to correct any errors in the perceived settlement due to module tilt. For instance, at 20 m, an
accelerometer on the laser emitter must be able to measure 0.00286o to account for 1 mm of trans-
lational displacement on the camera screen.

This gap in information must be accounted for. We assumed that both the laser module
and camera module will not rotate appreciably after installation. They will be fixed firmly; for
highway overpasses this is a reasonable assumption to make. Washer’s study (2010) used tilt
meters to measure bridge column rotations and found that the major contribution to bridge piers
was temperature fluctuation, with daily temperature cycles inducing a very trivial amount of tilt
¡¡lo, all centered about zero. If static settlement measurements are taken daily at about the same
time every day, these influences should not be of concern. That being said, the tilt measurements
from both the camera and laser modules should not be ignored. They will be reported to the
engineer in addition to the settlement estimate extracted from the projected laser image. We will
merely not use the measured tilt to correct for any induced perceived settlement in the settlement
estimate. The engineer may use their own intuition and judgement to determine if the reported
settlement estimate and tilt measurement may warrant an on-site inspection.

Figure A.3: Measured relative displacement.

Installation of the laser and camera modules is important. To reduce the perceived settlement
errors induced by camera tilt, the camera module must be installed as close to perpendicular to
the direction of settlement as possible. This ensures that any translational displacement caused by
motion of the camera is due to the vertical settlement of that module. The laser module need not
be installed such that the beam is perpendicular to the plane of the camera screen; the beam must
simply not rotate following installation. So long as the laser beam imparts a pattern onto the screen
when the initial reference frame is captured, the translational motion of either the laser or camera
module will be correctly tracked by the projected laser method. This is illustrated in Figure A.3.
Note that in this figure, the tracked displacement δobs is due to the vertical motion of the laser δtrue.
Similar tracking can be made if the laser is still and the camera module moved down.
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If both modules were to shift vertically, the effects on the measured displacement could be
additive or subtractive. This is illustrated in Figure A.4, where both the camera and laser have
shifted downwards, but the vertical motion of the laser, δlaser is not equal to δobs, the measured dis-
placement. Instead, the displacement of the camera module δcam has affected δobs in the following
manner:

δobs = δcam − δlaser (A.1)

This emphasizes that we are, in fact, measuring a relative settlement. Indeed, there is a reference
point for the sequence of motion tracked according to the motion-tracking method adopted, seen
in Figure 1.13, but there is not a reference point in physical space. The motions of each module are
coupled by Equation (A.1). With the chosen projected laser target method, there is no other means
for measuring either δlaser or δcam to solve for the other. Therefore, this method can only track the
relative settlement of one element to another, i.e., those elements being the mounting locations of
the camera and laser modules.

Figure A.4: Coupled measured relative displacement.
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Appendix B: Microcontroller Selection:
Raspberry Pi

A Raspberry Pi is a system on chip (SoC), which is a chip that integrates all components of a
computer, such as the central processing unit (CPU), memory, input/output ports, and secondary
storage [31]. In other words, a Raspberry Pi is a small computer. The latest model, the Raspberry
Pi 3B+, Figure B.1, employs a Broadcom BCM2837 chip, which features a quad-core Cortex-A53
64-bit processor, with a maximum clockspeed of 1.4 GHz, with 1 GB of SDRAM memory. This
device has more than enough computational ability to perform the required computational tasks.
Wang et al. were able to implement Fast Fourier Transforms, wavelet transforms, and various other
algorithms on a much simpler computing unit, the 8-bit ATmega128 micro-controller, which only
has a clock of 8 MHz and 128 kB on in-system flash memory [Wang et al. (2007)].

Figure B.1: Raspberry Pi 3B+, Google Images.

The input/output abilities of the Raspberry Pi must be considered. Per its specifications, the
BCM2837 SoC contains the following peripherals “which may safely be accessed by the ARM
[processor]”: timers, interrupt controller, GPIO, USB, I2S, I2C master, I2C/SPI slave, SPI0, SP11,
SPI2, PWM, and two UART busses [6]. A useful diagram that illustrates some of these features is
included in Figure B.2 [32].

The timers and interrupt controller are adequate to ensure that whatever measurement tasks
we intend to perform will be implemented correctly and on time. The 40 general input/output
(GPIO) pins are a crucial component of the Raspberry Pi design that allows us to interface with a
slew of sensors and communication devices. A GPIO pin is, by definition, a pin that does not have
a specific function. The function of a GPIO pin is customizable and can be controlled by software.
In the case of the Raspberry Pi, the BCM2837 architecture employs a subset of the GPIO pins
to implement various data and communications protocols. For instance, some of the GPIO pins
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Figure B.2: Raspberry Pi 3B+ peripherals block diagram [32].

are dedicated to I2C/SPI functionality. This communication protocol is particularly useful for
interfacing with many digital sensors and peripherals, like accelerometers. Some GPIO pins are
also dedicated to a UART bus (there exist two on the Raspberry Pi 3B+), which is a physical circuit
on the Raspberry Pi board that transmits and receives serial data, thus allowing the Raspberry Pi to
interface with various serial communication devices, such as Bluetooth and Wi-Fi. Some of these
various GPIO functions can be seen plainly in Figure B.3. For instance, Pin 2 outputs DC power
at 5V, and pins 8 and 10 implement a pair of serial transmitting/receiving, which is used by one of
the two UART busses.

Figure B.3: Raspberry Pi 3B+ GPIO diagram.
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Note: the Raspberry Pi 3B+ has “built-in” Bluetooth Low Energy and Wi-Fi capabilities.
These features are actually implemented not by the BCM SoC but through a separate commu-
nications chip, the Cypress CYW43455 802.11ac and Bluetooth/Bluetooth Low Energy combo
chip. This separate SoC is connected to the BCM SoC via UART data lines, as evidenced by the
functional block diagram found in the Cypress CYW43455 documentation [19] and reproduced in
Figure B.4.

Figure B.4: Cypress communications chip block diagram [19].

The Raspberry Pi 3B+ contains its own Linux distribution as its operating system. Because of
this Linux OS, specifically called “Raspbian,” users can easily program on the Raspberry Pi using
high-level programming languages such as Python. This is perhaps one of the most appealing
features of the Raspberry Pi, as all of the useful scientific and computational code packages that
are supported through open-source Python ultimately allow a user to make the most out of the
various resources a Raspberry Pi offers in a reasonable amount of time without extensive training.
For instance, we are able to employ the computer vision Python module, OpenCV.

The last crucial detail that must be considered is the expected power consumption of the
Raspberry Pi. It would be impractical to choose a computing module that would not be deploy-
able due to unreasonable power consumption. To investigate this, we initially examined online
resources on the empirical power consumption of various Raspberry Pi models running under dif-
ferent conditions. Nominal power consumption is tabulated in Table B.1.

Table B.1: Nominal Raspberry Pi baseline power consumptions [33].

Raspberry Pi Model
Power Consumption
Idle 400% CPU Load

3B+ 350 mA (1.9 W) 950 mA (5.0 W)
3B 260 mA (1.4 W) 730 mA (3.7 W)
2B 220 mA (1.1 W) 400 mA (2.1W)

Choosing the Raspberry Pi 3B+ versus an earlier model resulted in higher baseline power
consumption, where the baseline is defined as the Raspberry Pi board running without any attached
peripherals such as a keyboard or mouse [33]. The key advantage of the Raspberry Pi 3B and 3B+
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is that they both have built-in Bluetooth and WiFi capabilities. For either a laboratory or outdoor
deployment, these wireless communication options are key. We opted for the 3B+ as it is the
latest and most updated board. We disregarded its increased clock speed, which may be useful for
higher sampling rates. We acknowledge that while the Raspberry Pi has immense online support
and documentation, the quality and reliability of that documentation and support may be sub-par;
therefore, we selected the most updated board to take advantage of any revisions made by the
developers at the official Raspberry Pi Foundation that may not be explicitly documented in both
official and unofficial sources.
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Appendix C: Micro-Controller Selection:
Arduino

As opposed to the Raspberry Pi, which is essentially a computer, the Arduino is a micro-controller.
A system-on-chip like the Raspberry Pi may actually contain a micro-controller as one of its com-
ponents. The micro-controller must have a processor that has access to memory and various in-
put/output peripherals. It does not have an operating system and does not have the large amount of
memory and storage, as does the Raspberry Pi. What the Arduino makes up for in lack of features
and built-in hardware is its low power consumption and accessibility to lower-level programming
of its hardware. A typical Arduino (model: UNO) consumes around 15 mA of current at about 5
VDC. This is significantly less than the Raspberry Pi 3B+. The Arduino UNO Rev3, see Figure
C.1, features the ATmega328P processor, an 8-bit processor that includes timers and interrupt ca-
pabilities, 32 kB of programmable flash memory, a real-time clock with separate oscillator, various
input/output pins, and a 10-bit ADC. It also supports master/slave SPI serial communication, I2C
serial communication, and UART functionality.

Figure C.1: Arduino UNO Rev3.

The key operational difference between the two computational units is that the Raspberry
Pi has many layers of abstraction between the user and the hardware as provided by the operating
system. On the Arduino, the user can code in a variant of C and C++, and directly compile the code
onto the micro-controller itself. These low-level languages allow the user to directly control tasks
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such as memory allocation and task scheduling. Even at this level, Wang et al. (2007) were able
to perform many complex mathematical procedures on the very same micro-controller that the Ar-
duino uses. This proved to be a disadvantage in this project. Again, we emphasize that this project
was not aimed at pushing the limits of various hardware options but developing an application of
embedded systems designed to deploy an existing measurement method for monitoring purposes.
The Raspberry Pi, with its many layers of abstraction through the helpful operating system and
support for Python programming, is very appealing, compared to the low-level functionalities of
the Arduino.

Note: the Raspberry Pi nominally consumes over 20 times the amount of current that the
Arduino consumes. For long-term monitoring purposes, adequate power delivery is a significant
challenge. Moreover, the Raspberry Pi, does not completely “shutdown” unlike an actual com-
puter. Even when turned off, the board still consumes power, driving various LEDs and low-level
components. The only way to ensure the Raspberry Pi consumes no power is to cut its power
supply. We therefore employed both computing units for this project, as illustrated in a subset of
Figure 2.1 and repeated in Figure 2.3 for clarity. The Arduino, due to its ability to interface with
various peripherals and perform basic processing based on inputs from those peripherals, was des-
ignated as controlling the power supply to the Raspberry Pi. The Arduino delivered power to the
Raspberry Pi only when the Raspberry Pi was taking measurements; for most of the system’s op-
eration, the Raspberry Pi is barely on. More details on power consumption are included in Section
2.3.4.
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Appendix D: Phase II: Enclosure Design

The specifications of the exterior enclosure was designed to meet the conditions needed in field ap-
plications of the system. After prototyping with 3D printed enclosures, we settled on an electrical
box from a local supplier as it is designed for outdoor use and has a 3R NEMA rating. This box
provided a degree of protection for the electronics enclosed, and the knockouts as well as padlock-
able latch offered security for the components. The enclosure has outer dimensions of 8×8×6 in.;
we used identical boxes for the camera module and laser module.

In regards to the interior of the enclosure, we designed a custom mounting fixture, dubbed
affectionately the “cradle,” to affix the hardware to, which was then dropped into the metal box.
The custom, quarter-inch-thick acrylic plate was designed to accommodate the mounting of all
the parts and replicate the camera chamber within the camera box by leaving a clear field of view
from the camera to the acrylic screen. The location of the screen on the lid of the camera box was
aligned with the camera, and the camera was installed a prescribed distance from the screen to best
replicate the camera chamber used in prototyping in the camera box. On the laser side, a two-axis
laser mount was custom designed to allow a field technician to aim the laser at the screen. This
design was found to be more secure and durable than off-the-shelf mounts intended for indoor use.
Additionally, all of the wiring was secured and bare connections were protected using heat-shrink
tubing. Any exterior wiring was protected using conduit tubing.

Figure D.1: Phase II: internal and external views of camera and laser enclosures.
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Figure D.1 shows the custom cut acrylic laser mount, which can swivel in order to allow the
technician to aim the laser beam. On top of this fixture, we attached the purchased laser mount,
whose hole was enlarged to accommodate the laser diode. Also note the mounting holes on the top
of bottom flaps of the enclosures.

The enclosure was designed for ease of installation, and the cradle was setup to be dropped
into the metal box with minimal adjustments necessary. In the field, the technician is expected to
have the means for mounting the two enclosures to the bridge piers with concrete screws passing
through the top and bottom eye-holes of the enclosures, which are expected to be aligned such that
the laser beam has a clear line of sight to the camera screen. After securing both the enclosures
to the bridge piers, the field technician powers up the laser independently from the power delivery
system of the laser module and then adjusts the line of sight of the laser to align the cross-hairs on
the screen of the camera module. Any final adjustments should be made to secure the solar panel,
as well as any peripheral antennas extending from the box. After ensuring that the lid is free of
wires and is not obstructed by any parts, the technician closes the latch and affixes an appropriate
padlock to prevent any tampering with the internal system.
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Appendix E: Computer Vision Algorithm and
Server/Website

Although this report was not concerned with the development of the computer vision algorithm, it
is discussed briefly in Section 2.3.5; some of its limitations when deployed using our monitoring
system are discussed in Section 3.3. In addition, the server and website were also not discussed in
detail herein beyond general functionality. Below is a brief discussion of how the computer vision
algorithm’s outputs interacted with the server and website, and how to navigate and use the website
developed for this project. The website serves as a user interface for users to configure, retrieve
data from, and transmit signals using the server.

Figure E.1: Computer vision algorithm outputs.

The computer vision algorithm uses image subtraction to correct for light artifacts. After
de-noising the image and applying a Sobel operator [34] to the pixel values of the image, it fits
two regression curves to selected regression points in the image domain. The intersection of these
regression curves is the desired pixel coordinates of the centroid of the laser beam, [px, py]; see Fig-
ure E.1. These coordinates are then passed to the camera module program as data and transmitted
to the server along with other information. This server was written using the Django framework
and information is pushed to it from the camera module using HTTP put requests. At all times,
the camera module has hard-coded settings, which include information such as a “name” for that
particular sensor pair, the URL address for the server, and the password for access into the server.
For instance, for the system that was deployed in Phase II of this project, the settings relevant to
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the transmission of data to the server are:

BRIDGE NAME = ’bridge-1’
SERVER = "http://apps2.peer.berkeley.edu/caltrans/sensors/...
...+BRIDGE NAME+"/update/"
PASSWORD = "djioewfj34jod2jdoi3jr0jl983jsa"

We can access the website using a web browser through the URL address:
http://apps2.peer.berkeley.edu/caltrans, which directs us to the login page, as
seen in Figure E.2. To access the main page of the website requires using a particular username
and a corresponding password to login as an administrator; see Figure E.3. To illustrate how to
configure and use a new monitoring system, click on the “Bridges” button, which leads to a menu
page; see Figure E.4. On this page, a new system can be added by clicking on the button on the
top right corner. Once a new system has been initialized, we can configure its settings from the
menu page by clicking on its name; see Figure E.5. On this page, we can set the phone number
that corresponds with the SIM card on that system’s FONA 2G cellular board. We can also set the
unique calibration value for that camera module. Once this is initialized, we can return to the menu
page and interact with that system by selecting it from the menu and using the drop-down menu to
access certain actions; see Figure E.6. The two actions that are most important are as follows: (1)
taking a measurement, which sends out an SMS message to the FONA; and (2) retrieving all of the
data received from that system. Action (2) returns a .csv file that can be saved locally.

Figure E.2: Login page of website.

126



Figure E.3: Main page of website.

Figure E.4: “Bridges” menu page of website.

Figure E.5: System configuration page of website.
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Figure E.6: Drop-down menu actions on website.
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Appendix F: Phase II: Bill of Materials
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Table F.1: Phase II: Bill of Materials.

Item Description Component Unit Price x Price
Raspberry Pi 3B+ Camera module 35 1 35
32 GB SD Card for Raspberry Pi Camera module 10 1 10
Arduino UNO Rev3 Cam. & Laser module 20 2 40
100 mW Laser Diode Laser module 50 1 50
Raspberry Pi Camera v1 Camera module 15 1 15
5VDC Latching DPDT Relay Both modules 5 3 15
HM-10 BLE Laser module 10 1 10
2G GSM Adafruit FONA Camera module 50 1 50
2G Ting SIM card for FONA Camera module 5 1 5
1200 mAh 3.7V Li-Poly battery for FONA Camera module 15 1 15
GSM Quad Band Antenna 3 dBi uFL, for FONA Camera module 5 1 5
uFL extension to extend antenna Camera module 5 1 5
Tripp Lite Class 1 BLE dongle Camera module 15 1 15
Voltaic Systems 10W Solar Panel Power supply, both 50 3 150
V44 12000 mAh battery pack Power supply, both 70 2 140
Assorted USB cables & jumper cables Both modules 20 1 20
Breadboard Both modules 5 2 10
Metal utility box Weighmann 8x8x6 with Latch Enclosures, both 115 2 230
Hardware Mounting Frame (“Cradle”) Laser Cut Acrylic Enclosures, both 10 2 20
Acrylic Laser Mount Laser Cut Acrylic Las. module enclosure 5 1 5
Acrylic Screen Opaque Red Acrylic Cam. module enclosure 5 1 5
Farhop 12mm Laser Holder Bored out to 13mm Las. module enclosure 15 1 15
Assorted fasteners and hardware Enclosures, both 20 1 20
Total price 885
Total for enclosures 295
Total for power supply 290
Total for embedded system 300
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Appendix G: Additional Figures and Tables
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Table G.1: Phase I deployment power delivery system.

Component Description Details

5V Latching DPDT Relay A switch, controlled by Arduino, for Pi power delivery
Located on breadboard:
G6AK-234P-ST-US-DC5 part

1N457 Small Signal Diode Stops back EMF from Relay coils Located on breadboard, left of Relay

Relay Coil Line 1 Wired from Arduino pin 13 to Relay coil 1
Can be driven ”high” or ”low” by Arduino.
Located on breadboard: Brown Wire

Relay Coil Line 2 Wired from Arduino pin 12 to Relay coil 2
Can be driven ”high” or ”low” by Arduino
Located on breadboard: Green wire

pinsync Line Wired from Pi GPIO18 pin to Arduino pin 2
Can be driven ”high” or ”low” by Pi
Located on breadboard: White wire

pinpower Line Wired from Pi GPIO23 pin to Arduino pin 3
Can be driven ”high” or ”low” by Pi
Located on breadboard: Orange Wire

Two Pull Down Resistors Pull floating voltages to GND
Located on breadboard:
Orange and White wires junction

System power source See: barrel plug feeding into top power rails
Provide power to the entire system
Can source power from battery or other

Raspberry Pi power source See: barrel plug connected to PWR from relay PWR controlled by relay
Arduino power source See: barrel plug connected to bottom rail Always on.
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Figure G.1: Phase I power delivery system.
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Figure G.2: Phase I file organization and dependencies, camera module
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Figure G.3: Phase I file organization and dependencies, laser module

(a) Camera chamber (b) Camera chamber & hardware (c) Camera chamber on tripod

Figure G.4: Version 1 camera module.
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(a) Laser mounting (b) Laser mounting, with hardware

Figure G.5: Version 1 laser module.

(a) Camera chamber (b) Laser mounting

Figure G.6: Version 2 modules
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(a) Specimen mount for camera (b) Camera mounted on specimen

Figure G.7: Possible specimen mounting configuration.
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Figure G.8: Asynchronous BLE communications.
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Figure G.9: Phase II deployment: Raspberry Pi camera module transition diagram.
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Figure G.10: Phase II deployment: Arduino laser module state diagram.
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Figure G.11: Phase II deployment: power delivery system for camera module.
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Figure G.12: Phase II deployment: power delivery system for laser module.
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Table G.2: Phase II enumerated system error codes (transmitted by camera module).

1-10: Sensor/GPIO related
11-25: Communication related
26-30: Image algorithm related
31+: Other
Error Code Origin State Description
1 Pre-INIT 0 GPIO Pin Error
2 IMAGE I Camera Malfunction
3 IMAGE II Camera Malfunction
4 C ACCEL Accelerometer Malfunction
5 SERVER Battery pin reading error
6 SERVER Battery pin GPIO error
11 INIT I No connection to RPI L
12 IMAGE I COMM Wrong Ack. from RPI L
13 IMAGE I COMM No msg received from RPI L
14 L ACCEL No msg received from RPI L
15 L ACCEL pitch L data type error suspected

16 SERVER
Runtime Warning:
Value not pushed to server

17 SERVER Value not pushed to server

18 SERVER
No active connection
FONA not put to sleep

19 SERVER
No active connection
FONA put to sleep

20 INIT 0 Could not initialize BLE dongle
21 SERVER SMS messages not deleted
26 PROCESS Image Processing Error
31 Pre-INIT 0 Run File Error
32 INIT 1 General error
33 IMAGE COMM COMM General error
34 L ACCEL General error
35 L ACCEL pitch L received not numeric

36 SERVER
Active connection made
FONA not put to sleep

37 L ACCEL Error terminating BLE processes

143



Table G.3: Example of error catching with actions and corresponding data log.

Actions performed Corresponding data log
Recall data = [run count, p x, p y, pitch C, pitch L, errors]
In this test, hardcoded: [p x,p y] = [1,2]
unplugged accelerometer
unplugged FONA only
RPIlaser unplugged
RPIlaser unplugged during first photo
RPIlaser unplugged during second photo
RPIlaser has unplugged accelerometer
unplugged FONA only

Note: all above actions also include unplugging FONA

0,1,2,None,17.2557430000,4,18
1,1,2,0.327253738789,17.1295340000,18
2,None,None,None,None,11
3,None,None,None,None,13
4,1,2,0.326877493335,11.0077240000,18
5,1,2,0.323774445807,None,14,18
6,1,2,0.330329407426,None,14,18
7,1,2,0.332966050035,11.0066180000,18

Plugged in FONA data log cleared

Unplugged FONA and moved the RPIlaser far away

9,None,None,None,None,11
10,None,None,None,None,11
11,1,2,0.338712969875,11.0003760000,18
Note: runs 9 and 10 could not connect

Plugged in FONA data log cleared
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Figure G.13: Phase II: file organization on the Raspberry Pi in the camera module.
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Appendix H: Codes

All Phase I and Phase II codes can be accessed through Github:
https://github.com/hteng1995/peer caltrans bridge settlement
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