Hybrid Simulations for the Seismic Evaluation of Resilient Highway Bridge Systems

Yingjie Wu
Selim Günay
Khalid M. Mosalam

Department of Civil and Environmental Engineering
University of California, Berkeley

PEER Report No. 2020/11
Pacific Earthquake Engineering Research Center
Headquarters at the University of California, Berkeley
December 2020
Disclaimer

The opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the study sponsor(s), the Pacific Earthquake Engineering Research Center, or the Regents of the University of California.
Hybrid Simulations for the Seismic Evaluation of Resilient Highway Bridge Systems

Yingjie Wu
Selim Günay
Khalid M. Mosalam

Department of Civil and Environmental Engineering
University of California, Berkeley

PEER Report No. 2020/11
Pacific Earthquake Engineering Research Center
Headquarters at the University of California, Berkeley
December 2020
ABSTRACT

Bridges often serve as key links in local and national transportation networks. Bridge closures can result in severe costs, not only in the form of repair or replacement, but also in the form of economic losses related to medium- and long-term interruption of businesses and disruption to surrounding communities. In addition, continuous functionality of bridges is very important after any seismic event for emergency response and recovery purposes. Considering the importance of these structures, the associated structural design philosophy is shifting from collapse prevention to maintaining functionality in the aftermath of moderate to strong earthquakes, referred to as “resiliency” in earthquake engineering research. Moreover, the associated construction philosophy is being modernized with the utilization of accelerated bridge construction (ABC) techniques, which strive to reduce the impact of construction on traffic, society, the economy and on-site safety. This report presents two bridge systems that target the aforementioned issues. A study that combined numerical and experimental research was undertaken to characterize the seismic performance of these bridge systems.

The first part of the study focuses on the structural system-level response of highway bridges that incorporate a class of innovative connecting devices called the “V-connector,” which can be used to connect two components in a structural system, e.g., the column and the bridge deck, or the column and its foundation. This device, designed by ACII, Inc., results in an isolation surface at the connection plane via a connector rod placed in a V-shaped tube that is embedded into the concrete. Energy dissipation is provided by friction between a special washer located around the V-shaped tube and a top plate. Because of the period elongation due to the isolation layer and the limited amount of force transferred by the relatively flexible connector rod, bridge columns are protected from experiencing damage, thus leading to improved seismic behavior. The V-connector system also facilitates ABC by allowing on-site assembly of prefabricated structural parts including those of the V-connector.

A single-column, two-span highway bridge located in Northern California was used for the proof-of-concept of the proposed V-connector protective system. The V-connector was designed to result in an elastic bridge response based on nonlinear dynamic analyses of the bridge model with the V-connector. Accordingly, a one-third-scale V-connector was fabricated based on a set of selected design parameters. A quasi-static cyclic test was first conducted to characterize the force-displacement relationship of the V-connector, followed by a hybrid simulation (HS) test in the longitudinal direction of the bridge to verify the intended linear elastic response of the bridge system. In the HS test, all bridge components were analytically modeled except for the V-connector, which was simulated as the experimental substructure in a specially designed and constructed test setup. Linear elastic bridge response was confirmed according to the HS results. The response of the bridge with the V-connector was compared against that of the as-built bridge without the V-connector, which experienced significant column damage. These results confirmed the effectiveness of this innovative device.

The second part of the study presents the HS test conducted on a one-third-scale two-column bridge bent with self-centering columns (broadly defined as “resilient columns” in this
study) to reduce (or ultimately eliminate) any residual drift. The comparison of the HS test with a previously conducted shaking table test on an identical bridge bent is one of the highlights of this study. The concept of resiliency was incorporated in the design of the bridge bent columns characterized by a well-balanced combination of self-centering, rocking, and energy-dissipating mechanisms. This combination is expected to lead to minimum damage and low levels of residual drift. The ABC is achieved by utilizing precast columns and end members (cap beam and foundation) through an innovative socket connection. In order to conduct the HS test, a new hybrid simulation system (HSS) was developed, utilizing commonly available software and hardware components in most structural laboratories including: a computational platform using Matlab/Simulink [MathWorks 2015], an interface hardware/software platform dSPACE [2017], and MTS controllers and data acquisition (DAQ) system for the utilized actuators and sensors. Proper operation of the HSS was verified using a trial run without the test specimen before the actual HS test.

In the conducted HS test, the two-column bridge bent was simulated as the experimental substructure while modeling the horizontal and vertical inertia masses and corresponding mass proportional damping in the computer. The same ground motions from the shaking table test, consisting of one horizontal component and the vertical component, were applied as input excitations to the equations of motion in the HS. Good matching was obtained between the shaking table and the HS test results, demonstrating the appropriateness of the defined governing equations of motion and the employed damping model, in addition to the reliability of the developed HSS with minimum simulation errors. The small residual drift and the minimum level of structural damage at large peak drift levels demonstrated the superior seismic response of the innovative design of the bridge bent with self-centering columns. The reliability of the developed HS approach motivated performing a follow-up HS study focusing on the transverse direction of the bridge, where the entire two-span bridge deck and its abutments represented the computational substructure, while the two-column bridge bent was the physical substructure. This investigation was effective in shedding light on the system-level performance of the entire bridge system that incorporated innovative bridge bent design beyond what can be achieved via shaking table tests, which are usually limited by large-scale bridge system testing capacities.
ACKNOWLEDGMENTS

This report would not have been possible without the insight and advice of several contributors, including individuals, companies, and organizations whose time, expertise, and services were essential to the completion of the conducted experiments.

The financial supports from the Taisei Chair in Civil Engineering at UC Berkeley (UCB), Graduate Student Instructor funding, and Penzien Fellowship from the Department of Civil and Environmental Engineering of UCB are acknowledged. The technical and financial support of ACII, Inc., Irving, California, founded by Dr. Su Hao, is recognized for the work related to the V-connector study, which was made available via the support of the NCHRP-IDEA program by the U.S. Transportation Research Board (TRB).

The resilient bridge bent study was primarily sponsored by the Transportation Systems Research Program (TSRP) of the Pacific Earthquake Engineering Research Center (PEER). The design of the test specimen was based on the early development of Professor José I. Restrepo and Dr. Arpit Nema. Their technical and practical support are greatly appreciated.

Laboratory support efforts provided by both the Structures Lab on the UCB campus and at PEER were essential to the completion of the two test programs discussed in this report. The authors thank all lab engineers and technicians for their help throughout the experimental setup and test preparation. The help of several undergraduate/graduate/intern students from UCB in the specimen construction and instrumentation is also recognized. The authors also thank Ms. Claire Johnson, PEER Technical Editor, for editing this report.

Any opinions, findings, and conclusions or recommendations expressed in this report are those of the authors and do not necessarily reflect the views of PEER or the Regents of the University of California, Berkeley.
CONTENTS

ABSTRACT .. iii

ACKNOWLEDGMENTS ...v

TABLE OF CONTENTS ... vii

LIST OF TABLES ... xiii

LIST OF FIGURES ... xv

1 INTRODUCTION ...1
 1.1 General ..1
 1.2 Resilience Concept ..2
 1.3 Problem Statement and Objectives ..3
 1.3.1 V-Connector ...4
 1.3.2 Resilient Column ...4
 1.3.3 Connection to Hybrid Simulation ...5
 1.4 Organization of the Report ...6

2 BACKGROUND AND LITERATURE REVIEW ...9
 2.1 Seismic Isolation ...9
 2.2 Self-Centering Hybrid Systems ...11
 2.3 Hybrid Simulation Fundamentals ..15
 2.3.1 Advantages ..17
 2.3.2 Components and Procedures ...19
 2.3.3 Integration Methods ...20
 2.3.3.1 Explicit vs. Implicit ..20
 2.3.3.2 Iterative vs. Noniterative ...21
 2.3.3.3 Special Requirements ..22
 2.3.4 History of Development ..23

3 DEVELOPMENT OF EXPERIMENTAL PROGRAM I: V-CONNECTOR25
 3.1 Introduction ...25
 3.2 Specimen Design ..26
 3.3 Test Setup ...29
3.4 Experimental Program ..32
 3.4.1 Quasi-Static Testing ..32
 3.4.2 Hybrid Simulation Trial Testing ..32
 3.4.3 Hybrid Simulation Testing ..33

3.5 Loading Protocol ...33
 3.5.1 Gravity Load ..33
 3.5.2 Cyclic Load Pattern ..33

3.6 Construction of Test Specimen ...37

3.7 Material Properties ..40

3.8 Instrumentation ..41
 3.8.1 Load Measurement ...41
 3.8.2 Displacement Measurement ...41
 3.8.3 Strain Measurement ...43
 3.8.4 Laser Scan Setup ...45

4 V-CONNECTOR PHASE I: QUASI-STATIC CYCLIC TEST ...47

4.1 Pre-Test Finite-Element Analysis ...47
 4.1.1 Prototype Bridge Description ..47
 4.1.2 Model Description ...50
 4.1.2.1 Bridge Component Modeling ..50
 4.1.2.2 V-connector Modeling ...51
 4.1.3 Prototype Bridge Analysis ...53
 4.1.3.1 Ground Motions ...53
 4.1.3.2 Design Parameters ...53
 4.1.3.3 Analysis Results ...54

4.2 Quasi-Static Cyclic Test ...56
 4.2.1 Progression of Testing ..56
 4.2.2 Test Results ..56
 4.2.2.1 Force Measurement ...56
 4.2.2.2 Displacement and Rotation Measurements ...58
 4.2.2.3 Force-Displacement Relationship ...64
 4.2.2.4 Strain Behavior ...65

4.3 Model Calibration ...67
 4.3.1 Hysteretic Material Model ..67
 4.3.2 Parallel Material Model ...68
5 V-CONNECTOR PHASE II: HYBRID SIMULATION ... 71

5.1 Hybrid Simulation Details ... 71
5.1.1 Hybrid Simulation System ... 71
5.1.2 Substructuring ... 72
5.1.3 Numerical Integration .. 73
5.1.4 Test Setup and Geometric Transformation ... 74
5.1.5 Simulation Errors ... 75
5.1.6 Loading ... 76

5.2 Hybrid Simulation Trial Test ... 78
5.2.1 Geometric Transformation and Scaling Check .. 78
5.2.2 Control Quality Check ... 79

5.3 Hybrid Simulation Test ... 81
5.3.1 Test Results .. 81
5.3.1.1 Displacement History ... 81
5.3.1.2 Force History ... 82
5.3.1.3 Force-Displacement Relationship ... 84
5.3.1.4 Damage Inspection ... 84
5.3.2 The Effectiveness of the V-connector ... 86

6 DEVELOPMENT OF EXPERIMENTAL PROGRAM II: RESILIENT BRIDGE BENT ... 89

6.1 Introduction .. 89

6.2 Specimen Design .. 90
6.2.1 Columns ... 90
6.2.2 Foundation/Cap Beam ... 91

6.3 Test Setup .. 93

6.4 Experimental Program ... 99
6.4.1 Hybrid Simulation System Verification Test .. 99
6.4.2 Hybrid Simulation Phase I .. 100
6.4.3 Hybrid Simulation Phase II ... 100

6.5 Loading Protocol .. 100
6.5.1 Gravity Load .. 100
6.5.2 Earthquake Load .. 101

6.6 Construction of the Test Specimen ... 101

6.7 Material Properties .. 104
6.7.1 Steel..104
 6.7.1.1 Reinforcing Steel ... 104
 6.7.1.2 Prestressing Steel .. 105
 6.7.1.3 Shell Steel .. 106
6.7.2 Grout..107
6.7.3 Concrete ...108

6.8 Instrumentation...111
 6.8.1 Load Measurements ...111
 6.8.1.1 Load Cell ... 111
 6.8.1.2 Pressure Jack ... 112
 6.8.2 Displacement Measurements ..113
 6.8.3 Strain Measurements ..117
 6.8.3.1 Columns .. 117
 6.8.3.2 Cap Beam .. 121
 6.8.4 Cameras..123

7 HYBRID SIMULATION OF A RESILIENT BRIDGE BENT DESIGN:
 PHASE I..125
 7.1 Shaking Table Test Summary ...125
 7.1.1 Prototype Bent Development..126
 7.1.2 Input Ground Motions...131
 7.1.3 Test Results..131
 7.1.3.1 Hysteretic Responses ... 131
 7.1.3.2 Drift Ratios ... 132
 7.1.3.3 Deformations .. 134
 7.2 Development of the New HSS ..136
 7.2.1 System Description ..136
 7.2.2 Substructuring ..140
 7.2.3 Simulink Implementation..140
 7.2.3.1 Numerical Integration .. 142
 7.2.3.2 Displacement Interpolation ... 144
 7.3 Hybrid Simulation System Verification Test ..147
 7.3.1 Control Quality Check ..148
 7.3.2 Interpolation Check ..149
 7.3.3 Overall Check ...150
 7.4 Hybrid Simulation Test ...151
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.4</td>
<td>Parametric Study</td>
<td>216</td>
</tr>
<tr>
<td>8.4.1</td>
<td>Simplified Bridge Bent Modeling</td>
<td>216</td>
</tr>
<tr>
<td>8.4.2</td>
<td>Effect of the Abutment Initial Stiffness in the Transverse Direction</td>
<td>218</td>
</tr>
<tr>
<td>8.4.3</td>
<td>Effect of the Abutment Yield Strength in the Transverse Direction</td>
<td>220</td>
</tr>
<tr>
<td>9</td>
<td>CONCLUSIONS AND FUTURE EXTENSIONS</td>
<td>223</td>
</tr>
<tr>
<td>9.1</td>
<td>Summary</td>
<td>223</td>
</tr>
<tr>
<td>9.2</td>
<td>Conclusions</td>
<td>225</td>
</tr>
<tr>
<td>9.3</td>
<td>Recommendations for Future Studies</td>
<td>226</td>
</tr>
<tr>
<td>REFERENCES</td>
<td></td>
<td>231</td>
</tr>
<tr>
<td>APPENDIX A</td>
<td>Design of the Rigid Blocks of the V-Connectors</td>
<td>239</td>
</tr>
<tr>
<td>APPENDIX B</td>
<td>Bridge Bent Construction</td>
<td>249</td>
</tr>
<tr>
<td>APPENDIX C</td>
<td>Bridge Bent Assembly and Test Setup</td>
<td>257</td>
</tr>
<tr>
<td>APPENDIX D</td>
<td>Matlab Function Blocks Implementation</td>
<td>267</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Summary of the specimen cross section’s reinforcement.</td>
<td>27</td>
</tr>
<tr>
<td>3.2</td>
<td>Relative loading history deformation amplitudes (n = 13).</td>
<td>35</td>
</tr>
<tr>
<td>3.3</td>
<td>Proposed loading protocol for the V-connector cyclic testing.</td>
<td>35</td>
</tr>
<tr>
<td>3.4</td>
<td>Compressive strength test results for the concrete.</td>
<td>40</td>
</tr>
<tr>
<td>4.1</td>
<td>Structural and geometrical information of the prototype bridge.</td>
<td>49</td>
</tr>
<tr>
<td>4.2</td>
<td>Selected ground-motion records and scale factors.</td>
<td>53</td>
</tr>
<tr>
<td>4.3</td>
<td>Similitude relationships for design parameters and design forces.</td>
<td>55</td>
</tr>
<tr>
<td>4.4</td>
<td>Target and actual obtained displacements with relative errors.</td>
<td>58</td>
</tr>
<tr>
<td>4.5</td>
<td>Errors in the displacement measurements.</td>
<td>64</td>
</tr>
<tr>
<td>4.6</td>
<td>Relative errors in the rotation measurements.</td>
<td>64</td>
</tr>
<tr>
<td>5.1</td>
<td>Summary of the response spectrum analysis results of the prototype bridge.</td>
<td>76</td>
</tr>
<tr>
<td>6.1</td>
<td>Measured mechanical properties of the steel.</td>
<td>107</td>
</tr>
<tr>
<td>6.2</td>
<td>Compressive strength test results for the grout.</td>
<td>108</td>
</tr>
<tr>
<td>6.3</td>
<td>Compressive strength test results for the concrete.</td>
<td>109</td>
</tr>
<tr>
<td>6.4</td>
<td>Stress–strain compressive test results for the concrete.</td>
<td>110</td>
</tr>
<tr>
<td>7.1</td>
<td>Input ground motion sequence for the shaking table test.</td>
<td>131</td>
</tr>
<tr>
<td>7.2</td>
<td>Ground motions used in phase I of the hybrid simulation experiment.</td>
<td>156</td>
</tr>
<tr>
<td>7.3</td>
<td>Summary of peak and residual drift ratios from the HS test.</td>
<td>163</td>
</tr>
<tr>
<td>8.1</td>
<td>Test matrix for phase II HS experiment.</td>
<td>204</td>
</tr>
<tr>
<td>8.2</td>
<td>Selected ground motions for each intensity level.</td>
<td>205</td>
</tr>
<tr>
<td>8.3</td>
<td>Different stiffness values for the parametric study.</td>
<td>218</td>
</tr>
<tr>
<td>8.4</td>
<td>Different yield strength values for the parametric study.</td>
<td>220</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 1.1	Damaged bridges after 1994 Northridge earthquake (source: FEMA photo library). ...	2
Figure 1.2	Schematic representation of the seismic resilience concept [Bruneau et al. 2003]. ...	3
Figure 1.3	Hybrid simulation in the context of resilient bridge subsystems. ...	6
Figure 2.1	The concept of seismic isolation [Hao 2018] ...	10
Figure 2.2	Lead core rubber bearing (source: Google Images). ..	10
Figure 2.3	(a) Single friction pendulum bearing; and (b) triple friction pendulum bearing (source: Google Images). ...	11
Figure 2.4	Hysteretic response of (a) conventional ductile system; (b) pure rocking system; and (c) hybrid rocking system [Guerrini et al. 2015]. ...	12
Figure 2.5	(a) Industrial chimney at New Zealand’s Christchurch Airport; and (b) South Rangitikei railway bridge (source: Google Images). ...	13
Figure 2.6	(a) Steel frame with post-tensioning energy-dissipating connections; and (b) geometric configuration and free body diagram of exterior post-tensioning energy-dissipating connection [Christopoulos et al. 2002]. ...	13
Figure 2.7	Unbonded post-tensioned wall with six precast segments [Pérez et al. 2003] ..	13
Figure 2.8	Reinforcement details of the damage resistant, re-centering columns [Schoettler et al. 2013]. ...	15
Figure 2.9	(a) PEER single shaking table with six-degrees-of-freedom; and (b) four shaking table systems from Tongji University, China (source: Google Images). ...	16
Figure 2.10	Reduced-scale buildings subjected to shaking table tests at Tongji University, China (source: Google Images). ...	16
Figure 2.11	Numerical and physical components of a structural system in hybrid simulation [Mosalam and Günay 2013]. ...	17
Figure 2.12	Economic convenience of hybrid simulation ..	19
Figure 2.13	Key components of a hybrid simulation system [Schellenberg et al. 2009]. ...	20
Figure 2.14	Newton-Raphson iterative algorithm ..	22
Figure 3.1	Components of a typical V-connector [Hao 2018] ..	26
Figure 3.2	Dimensions and reinforcement details for the top block ...	27
Figure 3.3	Dimensions and reinforcement details for the bottom block ...	28
Figure 3.4	Local reinforcement around the V-tube in the bottom block ...	28
Figure 3.5	Schematic 3D view of the test setup ..	29
Figure 3.6	Elevation view of the test setup ..	29
Figure 3.7 Side and plan view of the test setup. ... 30
Figure 3.8 Test setup for the V-connector experiments... 32
Figure 3.9 Deformation-controlled loading history used in the quasi-static test. 34
Figure 3.10 V-tube geometry of the V-connector... 36
Figure 3.11 Final loading protocol used for the quasi-static cyclic loading test. 36
Figure 3.12 A view of test in progress under cyclic loading .. 36
Figure 3.13 (a) Reinforcing bar cage; (b) formwork; (c) concrete casting; and (d) finishing state of the top block .. 37
Figure 3.14 (a) Reinforcing bar cage; (b) formwork; (c) concrete casting; and (d) finishing state of the bottom block. ... 38
Figure 3.15 V-connector assembly sequence: (a) placing the Teflon washer; (b) adding the top steel pad; (c) inserting the V-pin; (d) attaching the hinge stop; and (e) setting up the top block. .. 39
Figure 3.16 Completed specimen configuration .. 40
Figure 3.17 Typical actuator load cell. .. 41
Figure 3.18 (a) WPs on the eastside instrumentation frame; and (b) target point attached to the reinforced concrete block surface ... 42
Figure 3.19 Instrumentation layout for displacement measurements: (a) WPs in plan view; and (b) WPs in north/south elevation view ... 42
Figure 3.20 Instrumentation layout for displacement measurements: (a) east/west elevation view; and (b) plan view of block’s vertical instrumentation .. 42
Figure 3.21 Layout schematics of instrumentation for relative vertical displacement of the top block with respect to the bottom block: (a) east/west elevation view; and (b) north/south elevation view. ... 43
Figure 3.22 Photographs of instrumentation for relative vertical displacement of the top block ... 43
Figure 3.23 Strain gauges used for reinforcing bars instrumentation where several chemical and mechanical layers were added to protect the gauges. ... 44
Figure 3.24 Strain gauges layout of the top block’s longitudinal and transverse reinforcement. ... 44
Figure 3.25 Strain gauges layout of the bottom block’s longitudinal and transverse reinforcement. ... 45
Figure 3.26 Experimental setup and point-cloud collection: (a) global view of the setup with six HDLTs; and (b) location of scanner with respect to the specimen; (c) collected point cloud with real world colors; and (d) collected point cloud with intensity colors. .. 46
Figure 3.27 Vertices of the high-definition laser targets: (a) point clouds of targets and estimated vertices; and (b) vertices imported to the Matlab [Mathworks 2018] environment ... 46
Figure 4.1 The Jack Tone Road On-Ramp Overcrossing: (a) picture (source: Google Maps); and (b) elevation (source: Caltrans structural drawings) ... 48
Figure 4.2 Nodal and element designation of the prototype bridge [Kavianijopari 2011] 50
Figure 4.3 Column modeling scheme [Kavianijopari 2011] .. 51
Figure 4.4 Abutment modeling detail: backfill soil springs [Kavianijopari 2011] ... 51
Figure 4.5 Schematic representation of the V-connector location ... 52
Figure 4.6 Hysteresis loop of a friction pendulum system ... 52
Figure 4.7 Idealized hysteretic response of the V-connector and its decomposition 52
Figure 4.8 Flow chart for seeking acceptable V-pin stiffness K_v (M_x and ϕ_x and M_y and ϕ_y are the respective bending moments and corresponding curvatures about X- and Y-axes) .. 54
Figure 4.9 Column moment-curvature relationships in (a) longitudinal direction (X); and (b) transverse direction (Y) .. 54
Figure 4.10 Hysteretic behavior of the V-connector in (a) longitudinal direction (X); and (b) transverse direction (Y) .. 54
Figure 4.11 Cyclic test setup and progression of loading in the global X-direction .. 55
Figure 4.12 Time history of the gravity load applied during the cyclic test .. 55
Figure 4.13 Time history of both north and south lateral actuators load-cell measurements and the corresponding resultant forces in the global X-direction (F_x) for all cyclic loading groups .. 55
Figure 4.14 Lateral displacement time history computed from different measurements 55
Figure 4.15 Time history of the Temposonic measurements of both north and south actuators and the resultant displacement in the global X- and Y-directions (U_x and U_y) for all cyclic loading groups .. 55
Figure 4.16 Comparison between laser scan data and conventional (Temposonic) measurements 56
Figure 4.17 Transformation of the vertical displacement ... 56
Figure 4.18 Vertical displacement from laser scans compared to conventional measurements: (a) time when scans were performed; and (b) vertical displacements comparison .. 56
Figure 4.19 Geometry of the top block for performing the rotation calculations .. 56
Figure 4.20 Top block’s rotation time history plots: (a) rotation around the X-axis; and (b) rotation around the Y-axis .. 56
Figure 4.21 Rotation comparison of the top block (L: Left, R: Right, B: Bottom, T: Top): (a) rotation around the X-axis; and (b) rotation around the Y-axis. .. 63

Figure 4.22 Force-displacement relationship for all cyclic loading groups in the loading direction. .. 65

Figure 4.23 Notation of loading direction and layout of instrumented longitudinal bars: (a) top block; and (b) bottom block. .. 66

Figure 4.24 Notation of loading direction and layout of instrumented transverse bars: (a) top block; and (b) bottom block. .. 66

Figure 4.25 Time histories of the strains in longitudinal reinforcing bars for all loading cycles: (a) top block; and (b) bottom block... 66

Figure 4.26 Time histories of the strains in transverse reinforcing bars for all loading cycles: (a) top block; and (b) bottom block... 67

Figure 4.27 Hysteretic material in OpenSees. .. 68

Figure 4.28 Comparison of hysteresis curves from the test and the hysteretic material modeling approach. .. 68

Figure 4.29 Components of the parallel material: (a) Steel01 material with isotropic hardening; and (b) elastic-perfectly plastic gap material. ... 69

Figure 4.30 Comparison of hysteresis curves from the test and the parallel material modeling approach. .. 69

Figure 5.1 Employed hybrid simulation system in the V-connector study.................................. 72

Figure 5.2 Experimental and analytical substructures. ... 73

Figure 5.3 Alpha Operator-Splitting integration algorithm for the conducted HS test of the V-connector. ... 74

Figure 5.4 Geometric transformation of input displacements and measured forces between the global and local DOFs [Moustafa 2015]. ... 75

Figure 5.5 Response spectra of the ground motions used in the pre-test analysis.................... 77

Figure 5.6 Deformation amplitudes of the full-scale V-connector using different models: (a) parallel material; and (b) hysteretic material.. 77

Figure 5.7 Actuator displacement history plots for the longitudinal direction only ground-motion test. .. 78

Figure 5.8 Geometric transformation and scaling check of the hybrid simulation system: (a) displacement check; and (b) force check.. 79

Figure 5.9 Transformed command (cmd) vs. feedback (fbk) displacements of the actuators in the loading direction... 80

Figure 5.10 Command (cmd) vs. feedback (fbk) displacement for (a) north actuator; and (b) south actuator... 80

Figure 5.11 Lateral displacement time history plots computed from different measurements. .. 81
Figure 5.12 Time history plots of both north and south actuators Temposonic measurements and the resultant displacements in the global longitudinal and transverse directions (U_x and U_y) for the HS test.. 82
Figure 5.13 Time history plots of the applied gravity load during the HS test.. 83
Figure 5.14 Time history plots of both north and south actuators load-cell measurements and the resultant forces in the global longitudinal direction (F_x) for the HS test...... 83
Figure 5.15 (a) Force-displacement relationship obtained from the HS test; and (b) comparison of force-displacement relationships from the HS and the quasi-static cyclic tests. .. 84
Figure 5.16 Damage conditions of the different V-connector components: (a) Teflon washer; (b) bottom surface of the stainless-steel plate; and (c) V-pin.. 85
Figure 5.17 Damage conditions of the different V-connector components: (a) ball hinge; and (b) hinge holder. .. 86
Figure 5.18 (a) Moment-curvature relationship at the bottom of the bridge column during the HS test; and (b) comparison of column response with and without the V-connector. .. 87
Figure 5.19 Comparison of (a) column base overturning moment; and (b) base shear during the MCE (EQ6) with and without the V-connector... 87
Figure 6.1 Innovative design features of the investigated bridge subsystem. ... 90
Figure 6.2 Dimensions and reinforcement details for the column [Nema 2018]... 91
Figure 6.3 Dimensions and reinforcement overview for the foundation (modified from Nema [2018])... 92
Figure 6.4 Dimensions and reinforcement overview for the cap beam (modified from Nema [2018])... 93
Figure 6.5 Substructuring in Phase I of the hybrid simulation. ... 94
Figure 6.6 Different layout of the horizontal actuator(s)... 94
Figure 6.7 Moment capacity and moment demand calculations of the bridge bent from the shaking table test. ... 95
Figure 6.8 Schematic 3D view of the test setup of the HS experiments... 96
Figure 6.9 Elevation view of the test setup of the HS experiments.. 96
Figure 6.10 Side and plan view of the test setup of the HS experiments. ... 97
Figure 6.11 The lateral supporting system for (a) the shaking table test; and (b) the hybrid simulation experiments... 98
Figure 6.12 Completed test setup and loading directions for the hybrid simulation experiments................................. 99
Figure 6.13 Improper actuator tracking and its consequences [Mosalam and Günay 2013].100
Figure 6.14 (a) Segmented column steel shells; and (b) finished column reinforcing bar cages. ... 102
Figure 6.15 Concrete placing setup: (a) erect the column steel shells; and (b) column reinforcing bar cages installation. ... 102
Figure 6.16 Final completed columns... 103
Figure 6.17 (a) Completed foundation reinforcing bar cage; and (b) completed cap beam reinforcing bar cage. ... 103
Figure 6.18 (a) Reinforcing bar cages and formworks before concrete casting; and (b) concrete curing using curing blankets. ... 104
Figure 6.19 (a) Final completed foundation; and (b) and cap beam. 104
Figure 6.20 (a) Stress–strain curves for all three reinforcing bar coupons; and (b) average stress–strain relationship and yield point. ... 105
Figure 6.21 (a) Stress–strain curves for all three PT bar coupons; and (b) average stress–strain relationship and yield point. ... 105
Figure 6.22 Test coupons made from the removed strips.. 106
Figure 6.23 (a) Material property test setup for shell steel; and (b) observed necking during the test.. 106
Figure 6.24 (a) Stress–strain curves for all three shell steel coupons; and (b) average stress–strain relationship and yield point. ... 107
Figure 6.25 (a) Compressive strength test setup for grout; and (b) typical mode of failure. 108
Figure 6.26 (a) Slump test; and (b) sample concrete cylinders for material testing (cap beam and foundation). ... 109
Figure 6.27 (a) Stress–strain compressive test setup for the concrete; and (b) the typical mode of failure of the tested cylinders... 110
Figure 6.28 Stress–strain curves for (a) column concrete; and (b) foundation/cap beam concrete.. 111
Figure 6.29 Horizontal and vertical actuator load cells.. 112
Figure 6.30 (a) Hydraulic pressure jacks on top of the test specimen; and (b) the two-stage pump... 112
Figure 6.31 (a) Pressure jack calibration setup; and (b) load-pressure curves for the two used pressure jacks... 113
Figure 6.32 (a) WPs on the northside of the instrumentation frame; and (b) WPs between the cap beam and the foundation... 114
Figure 6.33 Layout of WPs on the instrumentation frames: (a) east/west elevation view; (b) north/south elevation view; and (c) plan view. ... 115
Figure 6.34 Layout of WPs between the two end members (cap beam and foundation). 116
Figure 6.35 (a) LVDTs installed at the bottom interface; and (b) those at the top interface. 116
Figure 6.36 Layout of the LVDTs at the rocking interfaces: (a) east–west elevation view; and (b) north–south elevation view

Figure 6.37 Strain gauges layout of the east column

Figure 6.38 Strain gauges layout of the west column

Figure 6.39 Rosette strain gauges on the steel shell

Figure 6.40 Strain gauges layout on the stirrups of the cap beam

Figure 6.41 Strain gauges layout on the longitudinal reinforcement of the cap beam

Figure 6.42 (a) DSLR camera on the north side; and (b) GoPro cameras at west column bottom; (c) east column bottom; and (d) west column top

Figure 7.1 Test setup used for the shaking table test: (a) view from the northeast; and (b) view from the northwest (photo credit: Robert Cerney, laboratory technician)

Figure 7.2 Elevation and plan views of the MAOC bridge (source: Caltrans structural drawings)

Figure 7.3 Elevation view of a typical bent of the MAOC bridge (source: Caltrans structural drawings)

Figure 7.4 Left: cross section representation of the as-built column; and right: the re-centering column [Nema and Restrepo 2020]

Figure 7.5 Prototype bent derived from the MAOC bridge for designing the test specimen

Figure 7.6 Comparison of axial loads between the edge columns in the MAOC bridge and the columns in the modified prototype bent [Nema 2018]

Figure 7.7 Overlaid hysteretic responses from EQ1 to EQ9 [Nema 2018]

Figure 7.8 Peak and residual drift ratios [Nema 2018]

Figure 7.9 Peak and residual interface rotations of the south column: (a) south column bottom; and (b) south column top [Nema 2018]

Figure 7.10 South column interface rotations in (a) EQ8 and (b) EQ9 [Nema 2018]

Figure 7.11 Specimen response in terms of gap openings at the bottom interface of the south column and the overall deformations at the peak drifts (EQ9): (a) south column interface, north side, Δ = 5.4%; (b) south column interface, south side, Δ = -7.5%; (c) south column interface, north side, end of excitation; (d) south column interface, south side, end of excitation; (e) specimen deformation, Δ = 5.4%; and (f) specimen deformation, Δ = -7.5%

Figure 7.12 Main components and connectivity of the developed hybrid simulation system

Figure 7.13 Built-in Simulink DAC and ADC blocks

Figure 7.14 (a) DS1104 R&D Controller Board; and (b) CP1104 connector panel with ADC and DAC channels (source: Internet)
Figure 7.15 Selection of DS1104R&D Controller Board for real-time execution.............. 138
Figure 7.16 Simulink configuration settings... 139
Figure 7.17 Screenshot of the ControlDesk software interface .. 139
Figure 7.18 Experimental and analytical substructures for Phase I HS testing.............. 140
Figure 7.19 Developed Simulink model for Phase I HS test.. 141
Figure 7.20 Detailed implementation inside the “If” action box...................................... 142
Figure 7.21 Implemented Explicit Newmark Integration algorithm in the HSS.............. 143
Figure 7.22 Matlab function block for performing the Explicit Newmark Integration in
algorithm in the HSS ... 144
Figure 7.23 Simulink blocks for calculating the number of interpolation steps between two
time steps in the HSS... 145
Figure 7.24 Simulink blocks for resettable counter and “if” actions in the HSS.............. 146
Figure 7.25 Typical displacement interpolation between time step i and $i+1$ in the HSS... 146
Figure 7.26 Calculation of intermediate displacement values in the HSS..................... 147
Figure 7.27 Schematic representation of the HS trial run.. 148
Figure 7.28 Command (cmd) vs. feedback (fbk) displacements for the horizontal actuator.148
Figure 7.29 Command (cmd) vs. feedback (fbk) displacements for the vertical actuator.... 149
Figure 7.30 (a) Original and interpolated (with $N = 6$) displacement time histories from the
horizontal direction; and (b) zoom-in view .. 149
Figure 7.31 (a) Original and interpolated (with $N = 22$) displacement time histories from the
vertical direction; and (b) zoom-in view .. 150
Figure 7.32 Hybrid simulation verification test in (a) horizontal direction; and (b) vertical
direction .. 150
Figure 7.33 Force-displacement plot during the gravity loading..................................... 151
Figure 7.34 Connection detailing of the vertical actuator’s top clevis to the cap beam: (a) top
clevis connection; and (b) view from the top of the cap beam.................................... 152
Figure 7.35 (a) FFT and half-power bandwidth results in the horizontal direction; (b)
illustration of the half-power bandwidth method [Chopra 2011]................................. 153
Figure 7.36 Accelerometers measuring vertical accelerations on top of the test specimen in
the shaking table test [Nema 2018] .. 154
Figure 7.37 FFT and half-power bandwidth results in the vertical direction..................... 154
Figure 7.38 Vertical acceleration comparison with $T_v = 0.076$ sec and $\zeta = 11.1\%$ 155
Figure 7.39 (a) Displacement time history; (b) resisting force time history; (c) acceleration
time history; and (d) force-displacement relationship comparisons of EQ2 in the
horizontal direction .. 157
Figure 7.40 (a) Displacement time history; (b) resisting force time history; (c) acceleration time history; and (d) force-displacement relationship comparisons of EQ3 in the horizontal direction... 158

Figure 7.41 (a) Displacement time history; (b) resisting force time history; (c) acceleration time history; and (d) force-displacement relationship comparisons of EQ4 in the horizontal direction... 159

Figure 7.42 (a) Displacement time history; (b) resisting force time history; (c) acceleration time history; and (d) force-displacement relationship comparisons of EQ5 in the horizontal direction... 160

Figure 7.43 (a) Displacement time history; (b) resisting force time history; (c) acceleration time history; and (d) force-displacement relationship comparisons of EQ6 in the horizontal direction... 161

Figure 7.44 (a) Displacement time history; (b) resisting force time history; (c) acceleration time history; and (d) force-displacement relationship comparisons of EQ7 in the horizontal direction... 162

Figure 7.45 Column end rotations from (a) EQ6; and (b) EQ7... 163

Figure 7.46 Specimen response at peak drifts (EQ3): (a) west column interface, west side, $\Delta = 1.85\%$; (b) west column interface, west side, $\Delta = -1.34\%$; (c) east column interface, east side, $\Delta = 1.85\%$; (d) east column interface, east side, $\Delta = -1.34\%$; (e) specimen deformation, $\Delta = 1.85\%$; and (f) specimen deformation, $\Delta = -1.34\%$... 164

Figure 7.47 Specimen response at peak drifts (EQ5): (a) west column interface, west side, $\Delta = 3.9\%$; (b) west column interface, west side, $\Delta = -2.87\%$; (c) east column interface, east side, $\Delta = 3.9\%$; (d) east column interface, east side, $\Delta = -2.87\%$; (e) specimen deformation, $\Delta = 3.9\%$; and (f) specimen deformation, $\Delta = -2.87\%$. ... 165

Figure 7.48 Specimen response at peak drifts (EQ7): (a) west column interface, west side, $\Delta = 4.14\%$; (b) west column interface, west side, $\Delta = -3.3\%$; (c) east column interface, east side, $\Delta = 4.14\%$; (d) east column interface, east side, $\Delta = -3.3\%$; (e) specimen deformation, $\Delta = 4.14\%$; and (f) specimen deformation, $\Delta = -3.3\%$. ... 166

Figure 7.49 Strain histories of (a) longitudinal reinforcing bars; and (b) stirrups of the cap beam in EQ7... 167

Figure 7.50 Strain histories of the energy dissipators in (a) east column top; and (b) west column bottom... 168

Figure 7.51 Horizontal strains of the steel shell on (a) east column, east side; and (b) west column, east side. ... 169

Figure 7.52 Vertical strains of the top embedded steel shell on (a) east column; and (b) west column... 170

Figure 7.53 Strains of the embedded steel shell on (a) west column top, west side; and (b) west column bottom, east side... 171
Figure 7.54 Idealized stress–strain distribution along the embedded steel shell. 171
Figure 7.55 Time histories of PT bar forces in EQ7.. 172
Figure 7.56 Time histories of the PT bar strains for (a) east column; and (b) west column in EQ7... 173
Figure 7.57 Stress vs. average strain for both PT bars in EQ7 .. 174
Figure 7.58 Elastomeric bearings in series with the PT bars [Guerrini et al. 2015]. 174
Figure 8.1 Schematic representation of the utilized bridge model. 176
Figure 8.2 Configuration of typical seat-type abutment [Kavianijopari 2011]. 177
Figure 8.3 Effective abutment stiffness for seat-type abutment [Caltrans 2013]. 178
Figure 8.4 Force-displacement relationship of the longitudinal abutment response. 178
Figure 8.5 Force-displacement relationship of the transverse abutment response. 179
Figure 8.6 Force-displacement relationship of the vertical abutment response............. 179
Figure 8.7 Nodes and elements numbering of the bridge model. 181
Figure 8.8 Local and global DOFs numbering for element i. 181
Figure 8.9 Demonstration of resisting force calculation.. 186
Figure 8.10 (a) Force-displacement relationship; and (b) state determination procedure of the longitudinal abutment response.. 188
Figure 8.11 (a) Force-displacement relationship; and (b) state determination procedure of the transverse abutment response... 188
Figure 8.12 (a) Force-displacement relationship break-down; and (b) state determination procedure of the vertical abutment response.. 189
Figure 8.13 Detailed implementation inside the “if” action box 195
Figure 8.14 Matlab function block for the predicted displacement calculation. 197
Figure 8.15 Matlab function block for the resisting force vector calculation................. 199
Figure 8.16 Matlab function block for performing the Alpha-OS numerical integration. ... 200
Figure 8.17 Transverse stiffness estimation of the bridge bent from Phase I, EQ7. 201
Figure 8.18 Displacement time history comparisons of the bridge bent (prototype scale) in (a) horizontal; and (b) vertical directions... 202
Figure 8.19 Force-displacement relationship comparisons of the bridge bent (prototype scale) in (a) transverse; and (b) vertical directions.. 202
Figure 8.20 Displacement time history comparisons of the abutment (prototype scale) in (a) transverse; and (b) vertical directions.. 203
Figure 8.21 Force-displacement relationship comparisons of the abutment (prototype scale) in (a) transverse; and (b) vertical directions.. 203
Figure 8.22 Original site location (source: Google Maps) and the corresponding target spectra. ... 205
Figure 8.23 Selected site location (source: Google Maps) and the corresponding target spectra. ... 205
Figure 8.24 (a) Target response spectra in log-log plot; selected ground motions for (b) SLE; (c) DBE; and (d) MCE. ... 206
Figure 8.25 (a) Horizontal displacement time history; and (b) vertical force time history of the bridge bent (prototype scale). ... 207
Figure 8.26 Bridge model with 10 deck subdivisions including recorded nodes during Phase II HS experiment. ... 207
Figure 8.27 (a) Displacement time history; and (b) resisting force time history comparisons of the bridge bent (specimen scale) in the transverse direction. 208
Figure 8.28 Acceleration time history comparison of the bridge bent in the transverse direction. ... 209
Figure 8.29 (a) Horizontal force-displacement relationship of the bridge bent (specimen scale) from Phase II HS testing; and (b) comparison with Phase I HS testing. 209
Figure 8.30 (a) Displacement time histories from different bridge locations (nodes) in the transverse direction (prototype scale); and (b) deformed shape of a simply supported beam under uniformly distributed load. 211
Figure 8.31 (a) Displacement time history; and (b) force-displacement relationship of the abutment (prototype scale) in the transverse direction. 211
Figure 8.32 Displacement time history; and (b) force-displacement relationship of the abutment (prototype scale) in the vertical direction. 212
Figure 8.33 (a) Displacement time history comparison of the bridge bent (specimen scale) between Test 1 and Test 2 of Phase II HS testing. 213
Figure 8.34 (a) Displacement time history; and (b) force-displacement relationship of the bridge bent (specimen scale) in the transverse direction for the three combined motions. 214
Figure 8.35 (a) Displacement time history; and (b) force-displacement relationship of the abutment (prototype scale) in the transverse direction for the three combined motions. 214
Figure 8.36 (a) Displacement time history; and (b) force-displacement relationship of the abutment (prototype scale) in the vertical direction for the three combined motions. 215
Figure 8.37 (a) Horizontal; and (b) vertical ground-motion records for the MCE level. 215
Figure 8.38 (a) Hysteretic curve of the bridge bent from phase I, EQ7; and (b) model calibration of the bridge bent (specimen scale). 217
Figure 8.39 Schematic representation of the bridge with updated bridge bent modeling. ... 217
Figure 8.40 Composition of transverse bridge stiffness. 218
Figure 8.41 Transverse displacement time histories of the bridge bent (prototype scale) for different stiffness values in (a) EQ7; and (b) the three combined motions...... 219

Figure 8.42 Hysteretic responses in the transverse direction of the abutment (prototype scale) for different stiffness values in (a) EQ7; and (b) the three combined motions........... 219

Figure 8.43 Transverse residual displacement of the bridge bent vs. the abutment stiffness (prototype scale) for (a) EQ7; and (b) the three combined motions............... 220

Figure 8.44 Transverse displacement time histories of the bridge bent (prototype scale) for different yield strength values in (a) EQ7; and (b) the three combined motions.
.. 221

Figure 8.45 Hysteretic responses in the transverse direction of the abutment (prototype scale) for different yield strength values in (a) EQ7; and (b) the three combined motions. .. 221

Figure 8.46 Transverse residual displacement of the bridge bent vs. the abutment yield strength (prototype scale) for (a) EQ7; and (b) the three combined motions.... 222

Figure 9.1 OpenSees model of the bridge bent [Nema 2018].. 228

Figure 9.2 (a) Internal; and (b) external energy dissipators [Guerrini et al. 2015]......... 229
1 Introduction

1.1 GENERAL

In 2014, the U.S. Geological Survey reported that at least 40% of the U.S. can be expected to experience earthquakes with the potential to damage highway bridges within their lifetime; see Figure 1.1. This problem is compounded by the fact that many bridges across the country are already considered structurally deficient [ASCE 2017]. These bridges often serve as key links in local and national transportation networks, and any closures will have severe costs not only for repair or replacement, but also in the form of economic losses and other consequences related to medium- and long-term interruption of businesses, disruption of communities, and hampering of emergency response operations.

In structural engineering practice, designing structures to respond elastically without damage under different levels of earthquakes has generally been considered infeasible for economic reasons. As a result, current bridge seismic design provisions like the California Department of Transportation (Caltrans) Seismic Design Criteria [2013] (SDC) or the American Association of State Highway and Transportation Officials (AASHTO) LRFD Bridge Design Specifications [2012] allow ductile behavior of the columns beyond the elastic limit and permit damage or even closure of ordinary bridges provided that collapse is prevented. The damage at a design-level ductility usually involves the formation of localized flexural plastic hinge regions at the top and/or bottom of the columns, featured by yielding of the reinforcement and concrete spalling. In some cases, the reinforcement is vulnerable to buckling and fracture as it tries to accommodate deformations imposed by the ductile design provisions.

Although the concept of structural damage is widely accepted in design practice, communities with a commitment to resilient design are expecting strategic structures and bridges to survive moderate to strong earthquakes with little or no disturbance to traffic and business. Considering that a significant number of bridges are located in earthquake-prone regions, the impact and cost of earthquake-induced damage on these structures have raised serious questions on whether the current seismic design philosophy can satisfy the needs of modern society. In addition, because of their importance in the transportation networks, bridges are often located in densely populated urban areas, where the impact of construction work on traffic, environment, society, and the economy could be considerable. Lengthy on-site bridge construction projects are also exposing construction workers to increased risk. Therefore, minimizing the construction time...
becomes an essential endeavor to reduce the aforementioned consequences on the public, construction workers, and the environment.

With the intent of reducing permanent damage in the event of an earthquake, the design philosophy is now shifting from collapse prevention to maintaining functionality in the aftermath of moderate to strong earthquakes. In addition to performance, the construction philosophy is also being modernized with the utilization of accelerated bridge construction (ABC) techniques to reduce impacts on traffic, society, the economy, and on-site safety during construction.

Figure 1.1 Damaged bridges after 1994 Northridge earthquake (source: FEMA photo library).

1.2 RESILIENCE CONCEPT

As part of the conceptualization of a framework to enhance the seismic resilience of communities [Bruneau et al. 2003], seismic resilience has been defined as the ability of a system to reduce the chances of a shock, to absorb such a shock if it occurs (abrupt reduction of performance), and to recover quickly after a shock (re-establish normal performance). More specifically, a resilient system is one that shows:

- Reduced failure probabilities;
- Reduced consequences from failures, in terms of lives lost, damage, and negative economic and social consequences; and
- Reduced time to recovery (restoration of a specific system or a set of systems to their “normal” level of functional performance).

A broad measurement of resilience that captures these key features can be expressed by the concepts illustrated in Figure 1.2. A measurement denoted with $Q(t)$, which varies with time, can be defined to represent the quality of a community’s infrastructure. Specifically, performance can range from 0% to 100%, where 100% means no degradation in quality and 0% means total quality loss. If an earthquake or another disaster occurs at time t_0, it could cause damage to the infrastructure such that the quality measurement $Q(t)$ is immediately reduced (from 100% to 50%); see example in Figure 1.2. Restoration of the infrastructure is expected to occur over time, as indicated in the figure, until time t_1 when it is completely repaired and back to normal operation (indicated by the quality metric going back to 100%). Hence, loss of the community’s resilience R
with respect to a specific earthquake can be measured by the size of the expected degradation in quality over time. Mathematically, it is defined by:

$$R = \int_{t_0}^{t_1} [100 - Q(t)] dt \quad (1.1)$$

Resilience for both physical and social systems can be further defined as consisting of the following properties:

- **Robustness**: strength, or the ability of elements, systems, and other units of analysis to withstand a given level of stress or demand without suffering degradation or loss of function;
- **Redundancy**: the extent to which elements, systems, or other units of analysis are substitutable, i.e., capable of satisfying functional requirements in the event of disruption, degradation, or loss of functionality;
- **Resourcefulness**: this can be conceptualized as the ability to apply materials (i.e., monetary, physical, technological, and informational) and human resources in the process of recovery to meet established priorities and achieve goals; and
- **Rapidity**: the capacity to meet priorities and achieve goals in a timely manner in order to contain losses, recover functionality, and avoid future disruption.

Figure 1.2 addresses the first and last properties of resilience, namely, robustness and rapidity. The main focus of this study deals with the robustness aspect of resilience; however, it should be noted that there exists a much bigger picture in terms of resilience, and research in this domain will continue for the years to come.

Figure 1.2 Schematic representation of the seismic resilience concept [Bruneau et al. 2003].

1.3 PROBLEM STATEMENT AND OBJECTIVES

This study presents two bridge subsystems aimed at providing seismic resiliency and fast bridge construction. The first of these systems is an innovative connection device that elongates the period of the structure by introducing an isolation layer between the bridge column and the footing, or the bridge column and the bridge deck or the cap beam. The second system consists of enhanced response features including self-centering, rocking, and energy dissipation. The commonality of
these two systems are reduced downtime and increased functionality after severe earthquakes, either by keeping the bridge components in the elastic range of response and/or significantly reducing any residual displacements. Although these systems have significant potential for enhanced seismic response, they can only be fully utilized if they can be modeled and their response properly predicted in the design phase of bridges.

A blind prediction competition recently conducted by the Pacific Earthquake Engineering Research Center (PEER) from the shaking table test of the second system [Nema 2018; Günay et al. 2020] demonstrated a large variation of the response predictions by researchers and practitioners. Therefore, there is an essential need to characterize the seismic response of these enhanced feature systems and improve their modeling and response predictions. For this purpose, a combined numerical and experimental research was undertaken.

1.3.1 V-Connector

The first part of the research focuses on the structural system response of reinforced concrete (RC) highway bridges incorporating a class of innovative connecting devices called the “V-connector” [Hao 2018]; hybrid and analytical simulations were used to validate the design concept and goals. The research objectives included:

- Developing a set of design parameters to provide guidance on V-connector manufacturing;
- Characterization of the hysteretic behavior of the V-connector by a quasi-static cyclic test;
- Developing and calibrating an analytical model for the V-connector based on the cyclic test results;
- Conducting a hybrid simulation (HS) test of a complete prototype bridge employing a V-connector; and
- Comparing the responses of the prototype bridge with and without the V-connector and validating its effectiveness in improving the behavior of the bridge system under earthquake loading.

1.3.2 Resilient Column

The second part of the research investigated the system-level response of bridges with enhanced response features, including self-centering, rocking, confinement, and energy dissipation of columns. For this purpose, a one-third-scale two-column bridge bent with enhanced response features was designed and subjected to a series of shaking table tests [Nema 2018]. The bridge bent was observed to deliver good seismic performance with very small residual drift. In this research, an identical bridge bent was constructed, with the experimental and analytical work completed in two phases. The research objectives included:
• Developing a new hybrid simulation system (HSS), utilizing software and hardware components commonly available in most structural engineering laboratories;

• Validating the developed HSS and implemented algorithms;

• Conducting HS test on the identically constructed bridge bent and comparing the test results against the shaking table test to verify the considered HS approach;

• Incorporating a full bridge system into the HS test to explore whether similar good performance could be achieved when the system-level response is considered; and

• Investigating the effect of different parameters on the bridge response and interpreting the test observations through parametric studies.

1.3.3 Connection to Hybrid Simulation

Hybrid simulation is a mixed computational/physical testing technique, with the idea of splitting a structure into analytical and experimental substructures. Analytical substructures are generally those that can be modeled with confidence, while experimental substructures are those that are difficult to model due to lack of prior knowledge, complicated geometry and boundary conditions, material inelastic behavior, etc. In the context of resilient bridge subsystems described above, there is generally limited data on the response of bridge subsystems for these new technologies. Furthermore, testing a complete bridge in any of the existing structural laboratories or shaking tables around the world is not feasible. Therefore, HS comes forward as a very convenient approach to simulate the seismic response of resilient bridges. The experimental substructures can include either a new connection device, as is the case in the V-connector study, or a bridge bent with innovative and resilient features, such as a well-balanced combination of self-centering, rocking, and energy dissipation, while the analytical substructure originates from the same prototype bridge for both studies. Refer to Figure 1.3 for the overall approach adopted herein for HS of the considered innovative designs.
1.4 ORGANIZATION OF THE REPORT

This report consists of nine chapters and four appendices. Chapter 1 presents a general introduction of the problem statement, methodology, concept, and main objectives of the study. Chapter 2 provides the necessary background. Some previous studies that focused on resilient structural systems (mainly in the form of re-centering behavior) and HS are reviewed and summarized. The experimental study and discussions comprising the core of this report are presented in Chapter 3 through Chapter 8 and can be divided into two parts, one for each subsystem.

The V-connector’s study is documented in Chapters 3 to 5. In Chapter 3, the idea of the V-connector and its components are first introduced. Following the introduction are the test specimen’s design and construction, test setup, loading protocol, material properties, and instrumentations used during the V-connector’s experimental program. Chapter 4 briefly summarizes the pre-test analyses carried out before embarking on the experimental program. And then discusses the experimental observations and results obtained from the quasi-static cyclic test of the V-connector, together with the analytical model calibration. The HS tests, including the HS trial test and the actual HS test conducted on the V-connector, and the test results are presented in Chapter 5.

Documentation of the study of the self-centering, rocking, and energy-dissipating columns (or resilient columns for short) spans Chapters 6 to 8. Similar to the discussions presented in Chapter 3, the development of the second experimental program is presented in Chapter 6, including the innovative features of the resilient columns. Chapter 7 starts by briefly presenting the shaking table test conducted by Nema [2018], followed by a detailed description of the development and verification of the new HSS for Phase I of the HS study of the resilient columns, and a comparison of the HS results to the shaking table results.
Chapter 8 discusses the system-level HS of the resilient bridge bent by incorporating a full bridge system. The modeling and implementation details, including background on the formulation of the structural dynamic problems, are discussed. Important findings from the system-level testing, together with the parametric study for interpretation of the test results, are presented. A brief summary, main conclusions, and future directions based on the entire study are presented in Chapter 9. Several appendices are included at the end of the report and provide additional details of specimen design and construction, procedures of specimen assembly and test setup, and for future reference, Matlab functions utilized in the development of the HSS.
2 Background and Literature Review

Several early studies and approaches that focused on seismic-resistant and earthquake-protective systems were reviewed during the course of this research to understand the state-of-the-art technologies being employed. In addition, to successfully conduct the extensive experimental programs, some previously conducted theoretical and experimental works were reviewed, especially those related to the HS tests of different bridge components. For completeness, this chapter briefly summarizes some of the more relevant studies, which are categorized into three subsections: seismic isolation, self-centering hybrid systems, and HS fundamentals.

2.1 SEISMIC ISOLATION

Seismic isolation technology has seen a large increase in application globally to improve the performance of buildings and bridges and avoid significant structural damage during ground shaking. By effectively delivering safe structures, it can also minimize economic losses due to downtime and repair costs. The idea of seismic isolation is to utilize specially designed devices—such as bearings—to isolate the structural parts that are directly exposed to ground motions (e.g., bridge columns), thereby reducing the inertia forces transferred into the remaining parts of the structure (e.g., bridge superstructure); see Figure 2.1. Accordingly, the seismic deformations are concentrated in the isolators, which usually provide simultaneous supplemental energy dissipation.

Currently, there are two major classes of isolation bearings in practical applications: elastomeric (rubber) bearings and friction sliding bearings. Rubber bearing isolation systems are well researched, and their usage as an earthquake-protective technology is worldwide. Among rubber bearings, there are linear elastic bearings (often used with external energy-dissipating devices), lead-core rubber bearings (Figure 2.2), crystallizing rubber bearings, and high-damping rubber bearings. To maintain stability under large lateral displacements, bearing diameters increase in size, which leads to stiffer bearings, thus making isolation of light structures difficult. In addition, its capacity to resist strong earthquakes is hampered by the limited lateral resistance because it relies on the elastic modulus of the rubber and the friction between rubber layers and steel plates, which is dependent on the axial loads.
In contrast, the behavior of frictional sliding bearings is nominally independent of axial loads. There are two commonly used types of sliding bearings: flat sliding bearings, which are used in combination with elastomeric systems, and friction pendulum bearings. The single friction pendulum (SFP) bearing shown in Figure 2.3(a) was first proposed by Zayas et al. [1987]. The bearing consists of a frictional slider supported on a spherical concave surface. The term pendulum refers to the motion of the slider on the bearing under excitation. This bearing has a bilinear backbone curve that results from the linear stiffness associated with the pendulum motion and the constant frictional force. The hysteretic characteristics of the SFP bearing are similar to a lead-plug rubber (LPR) bearing, or linear rubber bearing in combination with an external hysteretic device, but the initial stiffness of the friction pendulum is often larger, and the transition between initial and second stiffness is typically more sudden in the SFP bearing. To obtain enough lateral
resistance, sufficient depth for the concave surface is necessary, which results in a large-diameter bearing seat to assure the smoothness of the sliding motion and, subsequently, larger column diameters and extra cantilever abutments. This significantly increases the construction cost for a bridge. In addition, resonate vibration of superstructure on SFP bearings may occur under external excitation. To avoid this, the contact surface must have a high friction coefficient to dissipate vibration energy, sufficient strength to carry the weight of the superstructure, and be sustainable with regard to the heat caused by the friction.

In an effort to create a more adaptable bearing with smoother transitions, Earthquake Protection Systems (EPS) developed the triple friction pendulum (TFP) bearing; see Figure 2.3(b). The bearing has four stacked spherical sliding surfaces with two identical pairs, creating three distinct pendulum mechanisms. As motion occurs on all four sliding surfaces, the TFP bearing allows for the same displacement capacity with a bearing that is less than half as large in diameter as the SFP bearing. Additionally, as stated above, the sudden changes between sliding and non-sliding stages in the SFP bearing may trigger transient dynamic responses at the frequency of the supported structures. By creating more measured transitions in stiffness, the TFP bearing reduces these undesirable transient responses.

![Figure 2.3](image)

Figure 2.3 (a) Single friction pendulum bearing; and (b) triple friction pendulum bearing (source: Google Images).

2.2 SELF-CENTERING HYBRID SYSTEMS

Structural systems that are able to rock and come back to their original configuration under lateral forces while dissipating energy through specific devices are referred to as self-centering hybrid systems. Figure 2.4 compares the typical hysteretic response of these systems to conventional ductile systems and purely rocking systems. A conventional ductile system [Figure 2.4(a)] offers large energy dissipation—represented by “large” hysteretic loops—at the expense of structural integrity and significant residual displacement. A purely rocking system [Figure 2.4(b)] is characterized by nonlinear elastic behavior with self-centering capability; however, the insufficient energy dissipation will result in excessive peak displacement demand [Makris and Roussos 1998].

The self-centering hybrid system shown in Figure 2.4 (c) provides a trade-off between the above two extremes. By proper tuning of the self-centering forces and energy dissipation, it can produce a “flag-shaped” hysteretic response with very small residual displacement but a peak displacement capacity comparable to that of a conventional ductile system. Because of its excellent low-damage seismic performance and suitability for fast and high-quality construction using prefabricated components, this system has excited significant research in the past few decades.
The earliest reported implementation of re-centering systems was in an industrial chimney built in 1977 at the airport in Christchurch, New Zealand [Sharpe and Skinner 1983]; see Figure 2.5(a). The chimney employed a passive rocking mechanism coupled with hysteretic dampers to meet architectural and engineering requirements. A similar system was implemented in the “stepping” railway bridge over the South Rangitikei River, New Zealand, where rocking is combined with torsional hysteretic energy-dissipating devices [Cormack 1988]; see Figure 2.5(b).

Apart from the South Rangitikei River Bridge, the early development of self-centering hybrid systems focused mainly on applications in buildings. The analytical work of Priestley and Tao (1993) started with the aim of preserving prestressing forces under large ductility, and then studied the behavior of partially unbonded prestressing tendons in precast moment frame connections. Subsequently, MacRae and Priestley [1994] conducted experimental work on the beam–column subassemblies featuring unbonded post-tensioning details. The system was later improved by incorporating mild steel reinforcement across the joints to provide hysteretic energy dissipation [Stone et al. 1995]. The promising results from these studies led to the PREcast Seismic Structural System (PRESSS) program, in which a series of precast self-centering systems were investigated [El-Sheikh et al. 1999; Kurama et al. 1999]. This program culminated with the simulated seismic test of a 60%-scale, five-story structure [Nakaki et al. 1999; Priestley et al. 1999] incorporating a hybrid coupled wall designed to provide lateral resistance in one direction, and moment frames with/without unbonded tendons in the other direction.

The concept of hybrid re-centering systems has been extended to many other structural systems for buildings. Christopoulos et al. [2002] extended the concept of unbonded post-tensioning combined with energy dissipation to steel moment frames; see Figure 2.6. Pérez et al. [2003] conducted experiments on vertically stacked wall segments prestressed with unbonded tendons; see Figure 2.7. Holden et al. [2003] tested a precast hybrid wall incorporating mild steel energy dissipators, carbon fiber tendons, and steel-fiber reinforced concrete. In addition, various energy-dissipating solutions like milled bars in grouted ducts [Restrepo and Rahman 2007], viscous and mild steel external dissipators [Marriott et al. 2009], flexural external dissipators [Toranzo et al. 2009], and steel plate fuses [Eatherton and Hajjar 2014] have been explored.
Figure 2.5 (a) Industrial chimney at New Zealand’s Christchurch Airport; and (b) South Rangitikei railway bridge (source: Google Images).

Figure 2.6 (a) Steel frame with post-tensioning energy-dissipating connections; and (b) geometric configuration and free body diagram of exterior post-tensioning energy-dissipating connection [Christopoulos et al. 2002].

Figure 2.7 Unbonded post-tensioned wall with six precast segments [Pérez et al. 2003].
Interests in the application of self-centering hybrid systems to bridges has also increased over the past twenty years. A pioneering study on the application of rocking systems to bridges was carried out by Mander and Cheng [1997], including both theoretical development and experimental validation of hybrid bridge columns. Hewes and Priestley [2002] studied both experimentally and analytically the performance of segmented rocking bridge columns with unbonded prestressing steel under different levels of initial prestress and varying thickness of steel jackets confining the plastic end regions of the columns. A number of analytical studies were subsequently carried out that considered potential applications of self-centering solutions to bridge columns [Kwan and Billington 2003a, 2003b; Sakai and Mahin 2004; Palermo et al. 2005; Heiber et al. 2005; Ou et al. 2006; and Palermo and Pampanin 2008]. To explore different energy-dissipating solutions, Marriott et al. [2009; 2011] developed analytical models utilizing multiple springs to model the rocking interface and conducted uni- and bi-directional quasi-static cyclic tests on monolithic and hybrid columns. Guerrini et al. [2015] tested dual-shell hybrid bridge columns under cyclic loading and shaking table excitation. Their work considered both external and internal energy dissipation, and the option for improving deformability of the post-tensioning bar by the addition of polyurethane pads.

An extensive shaking table test program has been conducted by many researchers at PEER under the support of the Caltrans’ Transportation Systems Research Program (TSRP). Figure 2.8 shows different reinforcing details of the considered resilient specimen designs. The precast/pretensioned column was developed at the University of Washington with a precast plastic hinge shell made of Hybrid Fiber Reinforced Concrete (HyFRC) and a socket connection in the footing [Haraldsson et al. 2013]. The dual steel-shell column was designed by Guerrini and Restrepo [2013] at the University of California, San Diego. Previous examples of this system demonstrated its seismic resistance with alternative energy-dissipating mechanisms [Guerrini et al. 2012]. The HyFRC rocking column was developed by Trono et al. [2013] at the University of California, Berkeley (UCB). This design combined with prior development and testing of the HyFRC material and its application in a rocking column with re-centering capabilities [Kumar et al. 2011]. The Carbon Fiber Reinforced Polymer (CFRP) column was designed by Mosalam et al. [2013] at UCB. It did not contain re-centering capabilities but was an example of CFRP to enhance concrete confinement in conventional design, with the intent of reducing post-earthquake repair costs by eliminating or delaying concrete spalling in the plastic hinge region.

All these columns were tested along with a conventionally designed RC column at a one-third scale under tri-axial base excitation. The test results demonstrated that innovative column designs can resist seismic loading with re-centering capabilities at and beyond repeated design-level demands. Furthermore, the tests showed that these designs eliminate or reduce concrete repair needs compared with conventionally designed columns. Both of these features attest to the advanced seismic performance achieved through incorporation of damage-resistant materials and improved designs.
2.3 HYBRID SIMULATION FUNDAMENTALS

Currently, there are several well-established methods for evaluating the seismic behavior of structural systems or structural components. The first and the most common technique is the quasi-static testing method, where the investigated structure is subjected to a pre-defined history of loading (forces or displacements) applied by actuators. By imposing the same loading history on a series of specimens, the effect of systematic changes in material properties, details, boundary conditions, loading rates, and other factors can be readily identified. While such tests are relatively easy and economical to execute, the applied loading patterns are generally inadequate for resembling the constantly changing loads that a structure undergoes during an actual seismic event, raising questions about whether the specimens were under- or over-tested for specific situations.

The second method of assessing the seismic behavior of structural components or structures is to use shaking tables; see Figure 2.9. Such tables are able to simulate conditions that closely resemble a particular earthquake. They provide important data on the dynamic response by considering the inertial and energy-dissipating characteristics of the tested structure and the consequences of geometric nonlinearities, localized yielding and damage, and component failure. Although shaking table tests provide much more complete response data, a complete structural system is generally required. The limited capacity and size of most available shaking tables place significant restrictions on the size, weight, and strength of a specimen that can be tested. As a result, reduced-scale or highly simplified specimens are commonly considered, and the specimens need to be carefully constructed following the laws of similitude [Harris and Sabnis 1999]; see Figure 2.10. These factors call into question the results of many shaking table tests. On the other hand, controlling real-time dynamic component tests, which require additional actuators besides the shaking tables, is particularly challenging and is still an open topic for research.
The third method for determining the response of structures to ground motions is the HS test method, formerly known as the pseudo-dynamic test method or the online computer-controlled test method. It is an efficient and effective methodology that combines all the advantages of experimental testing and analytical simulations. A structure is divided into several substructures, which are either modeled analytically in the computer or experimentally tested (Figure 2.11), with the experimental and analytical substructures interacting during the simulation by enforcing the
displacement compatibility and force equilibrium at shared nodes to advance the step-by-step numerical integration, which is used to solve the governing differential equations of motion.

Basically, HS uses an online numerical portion of the structural system to update the input signal at each time step based on the force feedback from the physical portion. During the simulation, the physical portion of the overall hybrid model is tested in the laboratory using computer-controlled actuators, while the numerical portion is simultaneously analyzed on one or more computers. As such, HS can be viewed as an advanced form of actuator-based testing, where the loading histories for the physical components of the model are determined during the process of an experiment. Alternatively, HS can also be considered as a conventional finite-element analysis, where physical models of some portions of the structure are embedded in the numerical model. Combining the realistic representation of dynamic excitation in shaking table tests—which are expensive and/or restrictive for full-scale testing—with the ability to test large-scale structures in the simpler quasi-static testing—which provide only limited representation of the dynamic excitation—HS has emerged as a cost-effective alternative for structural and mechanical testing.

![Image of analytical and experimental simulations](image)

Figure 2.11 Numerical and physical components of a structural system in hybrid simulation [Mosalam and Günay 2013].

2.3.1 Advantages

Because the HS testing technique combines analytical with experimental approaches to investigate a structural system and can be executed on expanded time scales of up to two orders of magnitude
slower than the actual time scale, many advantages are gained. Some of the most important advantages are summarized below:

- In HS, the loading (the right-hand side of the equations of motion) is defined analytically, which provides the means to investigate the behavior of a structure excited by a wide range of loading conditions. These loading conditions can be simulated by incorporating them into the analytical portion of the hybrid model without changing the physical portion of the experiment.

- The HS method gives the researcher the ability to subdivide a large structure into subassemblies where the behavior is (1) well understood and can be modeled reliably using finite element models; and (2) highly nonlinear and/or numerically difficult to simulate and is thus obtained from a physical test in a laboratory. This reduces modeling uncertainties by replacing numerical models with actual physical components.

- Dynamic testing and simulation of full-scale specimens and structures is possible if the HS method is implemented for structural systems using a commonly available quasi-static, displacement-based test facility where the HS is executed on an extended time scale. The sizes and weights of the physical subassemblies are only limited by the available laboratory resources: the testing space, the strength of the strong floor/reaction systems (walls or frames), and/or the capacities of the transfer systems (e.g., actuators). Large-scale testing additionally eliminates the scaling difficulties encountered in shaking table tests.

- Because HS can be executed on extended time scales, quasi-static testing equipment including the actuators, the servo-valves, and the hydraulic power supply are generally sufficient. Oftentimes such equipment is readily available at existing testing facilities. This and the possibility of physically testing only the critical components of a structural system make HS both economical and convenient; see Figure 2.12.

- Experimental and analytical subassemblies can be geographically distributed, allowing researchers to take advantage of the different capabilities available in different laboratories.
2.3.2 Components and Procedures

To perform HS, four key components, including software and hardware, are necessary. These interacting components are shown in Figure 2.13 and described next.

The first component is a discrete model of the structure to be analyzed on a computer, including the static and the dynamic loadings. The finite-element method (FEM) is used to discretize the problem spatially, and a time-stepping integration algorithm is then used for the time discretization. The resulting equations of motion for the finite number of discrete degrees-of-freedom (DOFs) are a system of second-order ordinary differential equations in time, as shown in Equation (2.1):

\[\begin{align*}
M\dddot{U}_{i+1} + C\ddot{U}_{i+1} + P_{r}(U_{i+1}) &= P_{i+1} - P_{0,i+1} \\
U_{j=0} &= U_0 \\
\dot{U}_{j=0} &= \dot{U}_0
\end{align*} \]

(2.1)

where \(M \) is the mass matrix assembled from the nodal and element mass matrices; \(\dddot{U} \) is the acceleration vector at the structural DOFs; \(C \) is the damping matrix; \(\ddot{U} \) is the velocity vector at the structural DOFs; \(P_r \) is the assembled element resisting force vector (which depends on the displacements); \(P \) is the externally applied nodal load vector, \(P_0 \) is the assembled “equivalent” element load vector; and subscript \(i \) indicated the \(i^{th} \) time step.

The second required component is a transfer system consisting of controllers and actuators, so that the incremental displacements determined by the time-stepping integration algorithm can be applied to the physical portions of the structure. Quasi-static testing equipment is typically used for this purpose.

The third major component is the physical specimen test setup. This includes the specimen being tested in the laboratory and the support system (e.g., reaction wall or frame) against which the actuators of the transfer system can react.
The fourth component is a data acquisition (DAQ) system including displacement transducers and load cells. This DAQ system is responsible for measuring the response of the test specimen and returning the resisting forces to the time-stepping integration algorithm to advance the solution to the next analysis step.

The HS conducted in this study made use of two different hybrid simulation systems. One system is based on the existing platform including the Open System for Earthquake Engineering Simulation (OpenSees) [McKenna et al. 2000] and the Open-source FRamework for Experimental Setup and COntrl (OpenFRESCO) [Schellenberg et al. 2008]. The other system is a newly developed HSS based on the computation platform Matlab/Simulink [MathWorks 2015] and the interface platform dSPACE [2017]. Details of these two systems including the components, the communications, and the execution procedures can be found in Chapter 5 and 7 herein.

Figure 2.13 Key components of a hybrid simulation system [Schellenberg et al. 2009].

2.3.3 Integration Methods

The equations of motion that arise in structural dynamics problems are generally solved through the application of numerical time-stepping integration algorithms. Over the years, a vast number of methods have been developed to numerically solve problems in structural dynamics and other engineering disciplines.

2.3.3.1 Explicit vs. Implicit

For an explicit algorithm, the new solution at time \(t_{i+1} = t_i + \Delta t \) (assuming a constant time step \(\Delta t \) throughout the time history) can be entirely expressed by known terms such as the current solution state at time \(t_i \) and the \(k - 1 \) previous solution states.

\[
U_{i+1} = f \left(U_i, \dot{U}_i, \ddot{U}_i, \ldots, U_{i-k+1}, \dot{U}_{i-k+1}, \ddot{U}_{i-k+1} \right)
\]

 Explicit integration methods are usually conditionally stable, meaning that the time step size has to be smaller than a critical value to yield a stable solution. This critical value is called the
stability limit, which is an important property of an algorithm and is dependent on the integration method. For explicit methods, the new solution at the end of a time step can often be determined in a single calculation step without the knowledge of the tangent stiffness matrix. The advantages of such methods are that they are computationally very efficient, easy to implement, and fast in their execution. However, for structures with very high natural frequencies (stiff or infinitely stiff problems), the integration time step would have to be small enough to satisfy the stability condition; therefore, the application of explicit methods to HS becomes impractical.

For an implicit algorithm, the new solution at time $t_{i+1} = t_i + \Delta t$ not only depends on the known terms at the current and previous time steps, but also on itself; therefore, implicit algorithms contain algebraic formulas that must be solved in order to determine the new solution at the end of a time step.

$$U_{i+1} = f(U_{i+1}, \dot{U}_{i+1}, \ddot{U}_{i+1}, U_i, \dot{U}_i, \ddot{U}_i, \ldots, U_{i-k+1}, \dot{U}_{i-k+1}, \ddot{U}_{i-k+1}) \quad (2.3)$$

Implicit integration methods are generally unconditionally stable, making them ideal candidates for stiff and infinitely stiff problems. In addition, only the accuracy of the algorithm needs to be considered when determining the time step size. The downside of these methods is that they are computationally more demanding because they require iterative solution schemes, and they can introduce spurious loading cycles on the physical parts of the hybrid model.

2.3.3.2 Iterative vs. Noniterative

Another important aspect of the integration method is how many function calls they need to make per time step to determine the new solution at t_{i+1}. For the classic direct integration methods in structural dynamics, a function call is considered to be the determination of the effective forces P_{eff} for given displacements, velocities, and accelerations.

The classic explicit integration methods, which directly solve the second-order differential equations, are noniterative methods because they require only one function call per analysis time step. In contrast, implicit algorithms contain algebraic formulas that need to be solved in order to determine the new solution at the end of a time step. One common approach to solve the nonlinear implicit equations is to utilize the well-known Newton-Raphson algorithm to iteratively determine the solution; see Figure 2.14. The number of function calls is thus directly related to the number of iterations performed per analysis time step. The main disadvantage of implicit methods is that they can be computationally very demanding and far more difficult to implement than explicit methods. For example, each iteration step requires the solution of a system of linear algebraic equations that involves the Jacobian determinant. In general, the formation of the Jacobian matrix and the solution of a large linear system of equations are computationally expensive.
2.3.3.3 Special Requirements

Since the hybrid model is an aggregation of numerical and experimental portions of a structure, several terms that form the equations of motion are assembled from not only analytical elements but experimental ones as well. Because experimental elements represent physical specimens in a laboratory, they behave differently from numerical elements, and it is not feasible to execute certain actions that can otherwise be performed on analytical elements. This fact leads to a range of special requirements that need to be addressed by the integration methods in order to produce reliable and accurate results in a HS. The two most important requirements are as follows:

- **As few iterations as possible**: In HS, parts of the resisting force vector, \(P_r \), is assembled from forces measured in real-time in the laboratory. This leads to the requirement that the method should make as few function calls as possible for each integration time step, since every function call triggers the acquisition of the resisting forces from the laboratory setup. The process of acquiring the nonlinear resisting forces from the test structure means that the calculated displacements need to be applied to the specimen by means of a transfer system, and the corresponding forces need to be measured with load cells. This process can be time consuming and introduce experimental errors into the numerical integration algorithm. The classic explicit integration methods—which require only one function call per analysis time step as mentioned previously—would be ideal in this case.

- **Avoid loading-unloading cycles to the experimental elements**: The displacement increments calculated by iterative procedures are required to be strictly increasing or strictly decreasing within an integration time step. While this requirement is not necessary for analytical elements, it is essential for experimental elements that represent physical specimens in a laboratory. Without this restriction, the displacement commands during the iteration process can overshoot the converged displacements. This unintended loading-
unloading cycle does not represent the true structural behavior; it is an artifact generated by the numerical algorithm. Contrary to the numerical portions of the hybrid model, for which the response depends on only the committed displacements at convergence, the response of the physical portions is truly path dependent and, consequently, affected by all iterations.

For the HS conducted in this study, two explicit integration methods were utilized: the Explicit Newmark method and Alpha Operator-Splitting (Alpha-OS) method. Details of these integration algorithms can be found in Chapter 5 and 7 herein.

2.3.4 History of Development

Starting with the conception of the method in mid-1970s [Takanashi et al. 1975], there has been considerable amount of work related to both development of the methodology and applications on a large variety of problems. A brief discussion on the history of development of the HS method is included herein for completeness.

In HS, proper consideration of substructuring methods to partition the structure into its analytical and experimental substructures is essential. The presence of the experimental substructures in the numerical integration restricts the use of common integration methods utilized in purely analytical simulations. Therefore, adoption of integration methods that meet the requirements of HS introduced by the presence of experimental substructures is needed. Experimental errors are commonly introduced by the presence of a transfer system—e.g., controllers, actuators, reaction systems, and DAQ systems—to apply the computed quantities (most commonly the displacements) to the experimental substructure and measure the corresponding responses (most commonly the forces). These experimental errors require evaluation of their effects and development of methods to eliminate these effects.

In addition to the experimental errors, there are inherent errors as part of the simulation due to structural modeling and numerical methods. Accordingly, considerable HS research has been conducted on substructuring (e.g., Dermitzakis and Mahin [1985]; Thewalt and Mahin [1987]; Nakashima and Masaoka [1999]; and Mosqueda et al. [2010]), integration methods (e.g., Shing et al. [1991]; Chang [1997]; Combescure and Pegon [1997]; Bonelli and Bursi [2004]; Bonnet et al. [2008]; Chen et al. [2009]; and Schellenberg et al. [2009]) and simulation errors (e.g., Shing and Mahin [1983]; Horiuchi et al. [1999]; Horiuchi and Konno [2001]; Mosqueda [2003]; Elkhoraibi and Mosalam [2007a, 2007b]; Chen and Ricles [2009, 2010]; Hessabi and Mercan [2012], and Chae et al. [2013]). In addition, research has been conducted on geographically distributed HS (e.g., Mosqueda [2003]; Stojadinovic et al. [2006]; Schellenberg et al. [2009]; Kwon et al. [2008]; and Kim et al. [2012]) and real-time HS (e.g., Nakashima et al. [1992]; Lee et al. [2007]; Mercan and Ricles [2007]; Bursi et al. [2008]; Ji et al. [2009]; Günay and Mosalam [2014, 2015]; and Mosalam and Günay [2014]), which are extensions of the HS method to cover a broader range of applications.

In addition to the many studies geared towards development of the method, HS has been efficiently and effectively used for the evaluation and design of a variety of structures, including buildings (e.g., Ji et al. [2009]; Hashemi and Mosqueda [2014]; and Lai and Mahin [2013]), bridges
(e.g., Terzic and Stojadinovic [2013]; Kim et al. [2011]) and other structures (e.g., Mosalam and Günay [2014]; Günay and Mosalam [2014]; and Whyte and Stojadinovic [2013]). Given that it is generally not possible to test a full-scale structure, recent research has used HS to experimentally validate different protective systems and other new design and retrofit methods (e.g., Karavasilis et al. [2011]; Lin et al. [2013]; Cha et al. [2013]; Friedman et al. [2014]; and Schellenberg et al. [2017]).
3 Development of Experimental Program I: V-Connector

This chapter discusses the development of the experimental framework for studying the first proposed bridge subsystem: the V-connector. The test program included investigation of the structural behavior of the V-connector itself and as part of the bridge system. The design of the test specimen, test setup, and boundary conditions considered loading protocol, specimen construction, material testing, and instrumentation techniques used for the experiments are also presented.

3.1 INTRODUCTION

Increasing the resilience of a bridge system requires enhancing the behavior of bridge columns. To achieve improved performance of bridge columns, a subsystem called “V-connector” was designed, constructed, and tested physically and computationally in collaboration with ACII, Inc. This connection device is expected to absorb and dissipate the energy produced by an earthquake so that the bridge experiences minimal damage during strong ground shaking and expedites the return to normal operating procedures.

The components of a V-connector are depicted in Figure 3.1. It consists of (1) a V-shaped guiding tube that is embedded inside the bottom part of the connection, e.g., the column or the foundation; (2) a vertical stabilization pin and elastic rod with one end inserted into the V-shape guiding tube (V-pin); (3) a ball-shaped hinge on top of the stabilization pin that is free to rotate when there is a relative motion between the two connection parts; (4) a Teflon washer whose major function is to provide friction-induced energy dissipation when subjected to earthquakes; and (5) a top pad made of stainless steel on top of the Teflon washer. The geometry of the V-tube is specially designed to ensure the V-pin has enough room to deform and guide the deformation of the V-pin such that the plastic strain will not concentrate at the bottom of the rod and cause failure. The reason for choosing Teflon as the material of the sliding interface is to create a sliding surface with a low friction coefficient, isolating the superstructure from earthquake excitation. This sliding surface replaces the original connection between the column and deck with a more flexible connection, leading to a reduction in the lateral stiffness and shifting the natural period of the structure to a longer period.
For a typical bridge structure, this configuration reduces the peak pseudo-acceleration, thus reducing the demand on the structure. Because of these response modifications, the bridge components are not expected to experience damage, leading to an improved seismic behavior. In addition, the Teflon pad provides enough vertical stiffness so that the bridge deck can still accommodate daily service loads; ABC can also be achieved by incorporating on-site assembly of precast structural elements.

![Figure 3.1 Components of a typical V-connector [Hao 2018].](image)

3.2 SPECIMEN DESIGN

The test specimen in the V-connector study consisted of two RC blocks and one set of V-connectors sandwiched in between, all developed at one-third scale from a hypothetical prototypical geometry. The concrete blocks were designed as elastic rigid blocks to apply the lateral displacements to the V-connector. A brief summary of the design and cross-section reinforcement of the concrete blocks is presented below.

To calculate the design loads for the concrete blocks, an OpenSees [McKenna et al. 2000] model of a selected prototype bridge (see Chapter 4 for more details) with a V-connector between the column and the deck was developed and subjected to a set of selected ground motions. The V-connector was modeled by an idealized hysteretic behavior based on its intrinsic behavior. The axial and shear forces of the V-connector obtained from the conducted nonlinear dynamic analysis results were scaled down according to the proper similitude relationships and used to design the concrete blocks. The design included axial and shear design for each block in accordance with ACI 318 [2011]; see Appendix A for details of the specimen design loads and calculations of the required reinforcement. Reinforcement quantities of the top and bottom block are summarized in Table 3.1, and cross sections of the blocks are shown in Figure 3.2 and Figure 3.3. Several special considerations were considered, including: (1) in the top block, four 1.5-in.-diameter electrical metallic tubing (EMT) conduits were horizontally placed for the prestressing rods; and (2) in the bottom block, four 2-in.-diameter vertical EMT conduits and two 2-in.-diameter horizontal EMT conduits were used for anchoring and lifting purposes, respectively. In addition, some extra localized reinforcing bars were placed inside the bottom block to strengthen the concrete around the V-tube; see Figure 3.4.
The V-connector set was designed and manufactured by ACII, Inc., according to the design parameters based on the pre-test analysis results. The criteria for choosing the design parameters were to keep the bridge column elastic under a selected set of ground motions. Chapter 4 describes the details of this design procedure.

Table 3.1 Summary of the specimen cross section’s reinforcement.

<table>
<thead>
<tr>
<th>Top block</th>
<th>Bottom block</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 #7 longitudinal bars</td>
<td>48 #8 longitudinal bars</td>
</tr>
<tr>
<td>32 #4 transverse bars with standard hooks at both ends</td>
<td>50 #4 transverse bars with standard hooks at both ends</td>
</tr>
<tr>
<td>4 #4 hoops @ 7-in. spacing</td>
<td>5 #4 hoops @ 7-in. spacing</td>
</tr>
<tr>
<td>#5 bars surrounding the V-tube</td>
<td></td>
</tr>
</tbody>
</table>

Figure 3.2 Dimensions and reinforcement details for the top block.
Figure 3.3 Dimensions and reinforcement details for the bottom block.

Figure 3.4 Local reinforcement around the V-tube in the bottom block.
3.3 TEST SETUP

The objective of the test was to investigate the behavior of the V-connector under combined vertical and lateral load; therefore, vertical and lateral loading systems were required. All loads were applied at the top block, while the bottom block was directly anchored to the strong floor. Figure 3.5 shows a schematic representation of the test setup, including the loading systems and boundary supports. The detailed test setup and the relative locations of the loading actuators and supports are shown in different views in Figure 3.6 and Figure 3.7.
As illustrated in the figures above, the gravity load was applied at the top block through two vertical hydraulic actuators and a steel spreader I-beam bolted to the top block using four rods. The actuators pull downwards on the spreader I-beam through pinned connections from one end and react against the laboratory strong floor—also through pinned connections—at the other end.
Due to practical considerations, the span of the spreader beam had to be limited to avoid excessive flexibility, while maintaining a constant and stable vertical load. In addition, a 1-in. hydrostone layer was applied between the spreader beam and the concrete top block to avoid any stress concentration due to concrete surface imperfections and to achieve a uniform vertical load application.

As shown schematically in Figure 3.5, the lateral load was applied at the top block using two lateral hydraulic actuators that reacted against the laboratory steel reaction frame. The setting of the lateral actuators allowed for applying both cyclic loading during the quasi-static testing and the computed displacement input during the HS. To provide stability during the unidirectional lateral loading, the actuators were located in one horizontal plane but connected to the top block at two inclined directions. Accordingly, two special considerations were required: (1) a geometric transformation was needed to transform the desired input displacements to the local actuator axes; and (2) a connection device between the top block and the actuators had to be designed to facilitate the two inclined lateral connections of the actuators. Based on the attachment points of the actuators to the reaction frame and the distance between the frame and the top block, a steel bracket was designed and fabricated to fulfill the task; see Figure 3.7. The end pin connections of the lateral actuators were achieved through three-dimensional (3D) ball-bearing clevises. The pinned nature ensured the application of only lateral forces without any vertical loads or bending moments. The steel bracket and four small steel anchor plates were installed on the two opposite sides of the top block and connected by four prestressing rods running through the block. The actuators were then bolted to the steel bracket. Thus, when the actuators extended, the force was transferred to the block as bearing directly on the front face. When the actuators retracted, the force was transferred through the prestressing rods to the other face of the block, and bearing was achieved from the back side.

As previously discussed, the specimen was directly attached to the laboratory strong floor where a hydrostone layer was applied between the bottom block and the strong floor. Subsequently, four prestressing rods were used to prestress the specimen down to the strong floor. The hydrostone and prestressing provided the necessary horizontal and vertical reactions and guaranteed enough friction resistance between the strong floor and the bottom face of the bottom block during lateral loading. The final assembled test setup is shown in the photograph of Figure 3.8.
3.4 EXPERIMENTAL PROGRAM

3.4.1 Quasi-Static Testing
The first test on the specimen was conducted under combined constant gravity loading and a pre-defined unidirectional cyclic lateral loading. The goal was to characterize the V-connector’s hysteretic behavior under a certain level of axial load. Based on the observed behavior and test results, the prototype bridge was reanalyzed with an updated V-connector modeling, and the scale factors for the ground motions used in the HS test were chosen accordingly. Detailed description of the cyclic test and results are discussed in Chapter 4.

3.4.2 Hybrid Simulation Trial Testing
The second test on the specimen was a trial HS. The main objective was to validate the HSS that would be used in the real HS test. Two main aspects of the system were verified: (1) the back-and-forth communication between the physical and computational components of the hybrid system, including the geometric transformation between global DOFs used in the computational model and local DOFs of the actuators; it was necessary to ensure that the computed input displacements passed to the actuators and the resulting forces fed back to the computational platform as measured by the actuators’ load cells were scaled down or up properly according to the length scale factor of one-third; and (2) verification of the actuator’s control quality. Both aspects were successfully verified through a test run with one of the three ground motions used in the real HS test, but with a reduced-scale factor so as not to induce any damage or nonlinearity to the specimen. The test was conducted using the same constant gravity load as in the quasi-static cyclic test and the real HS test.
3.4.3 Hybrid Simulation Testing

The third and final test in the experimental program was the HS test of the same specimen. The main objective of this test was to investigate the system-level performance of the prototype bridge under earthquake excitation using the V-connector. All bridge components were analytically modeled except for the V-connector, which served as the experimental substructure. A selected set of three ground motions with increasing intensity was applied one by one in a concatenated manner. Through all the HS runs, the constant gravity load similar to that applied in the cyclic test was used.

3.5 LOADING PROTOCOL

Two different types of lateral loading techniques were utilized in the experimental program: (1) a quasi-static cyclic loading with a prescribed load pattern; and (2) an online computed lateral earthquake response applied through HS runs (for simplicity’s sake, the vertical component of the ground motion was not considered). While the lateral loading was applied either during a cyclic loading test or a HS run using slow-rate displacement control, a constant gravity load was also applied during all tests through force control. A lateral loading rate of 0.02 in./sec was used in the cyclic test while 0.01 in./sec was adopted in the HS. For the cyclic test, the lateral loading was an offline protocol adopted from the FEMA 461 [2007] guidelines; however, the input for the lateral loading in the HS test was computed and updated online based on a multi-DOF computational model subjected to the three selected earthquake records. More details about the gravity load levels and the FEMA 461 [2007] cyclic load pattern are presented below, while the HS loading details are discussed in Chapter 5.

3.5.1 Gravity Load

As discussed earlier, a constant gravity load of 200 kips was applied through two vertical actuators and a spreader I-beam placed on the top block. The total gravity load was split evenly between the two actuators. The vertical gravity load was applied first through force control before any lateral loading and remained essentially constant during all tests.

The criteria for choosing the value of the gravity load were based on pre-test analysis results. Since the energy-dissipating mechanism of the V-connector is provided by its intrinsic friction, which mainly depends on pressure, the axial force of the bridge column under gravity loading was extracted from the analysis. After proper scaling, this axial force served as the gravity load applied on the V-connector to achieve the desired pressure. It was decided not to vary the gravity load level during the HS test because the axial force fluctuation is negligible without vertical ground excitations.

3.5.2 Cyclic Load Pattern

The parameters of the cyclic loading patterns were the number and amplitude of the cycles in different groups. Several past studies considered cyclic loading histories and patterns for quasi-static tests only [Leon and Deierlein 1996; Krawinkler 1996; and Clark et al. 1997]. Krawinkler
[2009] compared several loading histories adopted from different standards and studies for seismic acceptance testing and performance-based design. Loading histories from ATC-24 Protocol [1992], SAC Protocol [Clark et al. 1997], SPD Protocol [Porter and Cherif 1987], CUREE [Krawinkler et al. 2000], ISO [1998], and FEMA 461 [2007] were compared. Based on Krawinkler’s comparison, these protocols are similar and are expected to produce similar performance assessments. Consequently, the FEMA 461 [2007] loading protocol was adopted in this study because it is the most current and is similar to other loading protocols.

Figure 3.9 presents a conceptual diagram of the recommended loading history in FEMA 461 [2007] section 2.9.1. The loading history consists of repeated cycles of increasing stepwise deformation amplitudes. Two cycles were applied at each amplitude.

![Figure 3.9 Deformation-controlled loading history used in the quasi-static test.](image)

The loading history is defined as follows:

\[\Delta_0 = \text{the targeted smallest deformation amplitude of the loading history. It must be safely smaller than the amplitude at which the lowest damage state is first observed;} \]

\[\Delta_m = \text{the targeted maximum deformation amplitude of the loading history. It is an estimated value of the imposed deformation at which the most severe damage level is expected to initiate;} \]

\[n = \text{the number of steps (or increments) in loading history, generally 10 or larger;} \] and

\[a_i = \text{the amplitude of the cycles, as they increase in magnitude, i.e., the first amplitude, } a_1, \text{ is } \Delta_0 \text{ (or a value close to it), and the last planned amplitude, } a_n, \text{ is } \Delta_m \text{ (or a value close to it).} \]

The amplitude of step \(i + 1 \) (not of each cycle, since each step has two cycles) is given by Equation (3.1):

\[a_{i+1} = 1.4a_i \] (3.1)
where a_i is the amplitude of the preceding step; and a_n is the amplitude of the step close to the target, Δ_m. If it is desired that the largest amplitude, a_n, be exactly equal to Δ_m, then the ratios a_i/a_n shall be as shown in Table 3.2.

Based on the V-connector’s V-tube geometry (Figure 3.10), the targeted maximum deformation amplitude Δ_m for the V-connector was 4 in. Therefore, from the information above, the proposed loading protocol is shown in Table 3.3. The first three loading stages were not executed because the deformation amplitudes were too small. An additional loading stage corresponding to $0.875\Delta_m$ was executed in order to better characterize the hysteretic behavior of the V-connector in the intermediate stage. A plot summarizing the lateral loading cycles that were applied during the full quasi-static test is shown in Figure 3.11. A photograph of the loaded specimen during the test is shown in Figure 3.12.

Table 3.2 Relative loading history deformation amplitudes ($n = 13$).

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_i/a_n</td>
<td>0.018</td>
<td>0.025</td>
<td>0.035</td>
<td>0.048</td>
<td>0.068</td>
<td>0.095</td>
<td>0.133</td>
<td>0.186</td>
<td>0.26</td>
<td>0.364</td>
<td>0.51</td>
<td>0.714</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Table 3.3 Proposed loading protocol for the V-connector cyclic testing.

<table>
<thead>
<tr>
<th>Loading stage</th>
<th>Number of cycles</th>
<th>Loading type</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0.048\Delta_m = 0.19$ in.</td>
<td>2</td>
<td>Displacement-controlled</td>
</tr>
<tr>
<td>$0.068\Delta_m = 0.27$ in.</td>
<td>2</td>
<td>Displacement-controlled</td>
</tr>
<tr>
<td>$0.095\Delta_m = 0.38$ in.</td>
<td>2</td>
<td>Displacement-controlled</td>
</tr>
<tr>
<td>$0.133\Delta_m = 0.53$ in.</td>
<td>2</td>
<td>Displacement-controlled</td>
</tr>
<tr>
<td>$0.186\Delta_m = 0.75$ in.</td>
<td>2</td>
<td>Displacement-controlled</td>
</tr>
<tr>
<td>$0.260\Delta_m = 1.06$ in.</td>
<td>2</td>
<td>Displacement-controlled</td>
</tr>
<tr>
<td>$0.364\Delta_m = 1.46$ in.</td>
<td>2</td>
<td>Displacement-controlled</td>
</tr>
<tr>
<td>$0.510\Delta_m = 2.00$ in.</td>
<td>2</td>
<td>Displacement-controlled</td>
</tr>
<tr>
<td>$0.714\Delta_m = 2.86$ in.</td>
<td>2</td>
<td>Displacement-controlled</td>
</tr>
<tr>
<td>$0.875\Delta_m = 3.50$ in.</td>
<td>2</td>
<td>Displacement-controlled</td>
</tr>
<tr>
<td>$1.000\Delta_m = 4.00$ in.</td>
<td>2</td>
<td>Displacement-controlled</td>
</tr>
</tbody>
</table>
Figure 3.10 V-tube geometry of the V-connector.

Figure 3.11 Final loading protocol used for the quasi-static cyclic loading test.

Figure 3.12 A view of test in progress under cyclic loading.
3.6 CONSTRUCTION OF TEST SPECIMEN

The specimen construction process was carried out using an on-site assembly of precast structural elements while keeping in mind the ABC philosophy. The concrete blocks in the test specimen were constructed at the Structural Laboratory on the UCB campus, with ready concrete mix being delivered to the laboratory site in one lift. The V-connector set was designed, manufactured, and delivered to the laboratory by ACII, Inc. The specimen was constructed in two phases. A brief description of the different construction phases is presented below.

Phase I of the construction included laying out the formworks for the two concrete blocks, furnishing the transverse and longitudinal reinforcement, constructing the steel cages, placing all the steel cages in place, and casting of the concrete. Note that the V-tube was placed inside the bottom block’s steel cage with some extra strengthening reinforcement and cast together with the bottom block. Figure 3.13 and Figure 3.14 show the reinforcing bar cages, the formworks, and the concurrently concrete casting of the two blocks. Curing blankets in addition to the chemical E-CURE were used for curing during the first week after concrete was cast to avoid shrinkage cracks.

![Figure 3.13](a) Reinforcing bar cage; (b) formwork; (c) concrete casting; and (d) finishing state of the top block.)
The second phase involved assembling the V-connector set. First, the Teflon washer was placed on top of the embedded V-tube. The top steel pad with hinge holder was then placed on top of the Teflon washer. Next, the V-pin together with the hinge were inserted into the V-tube. The hinge stop, which was designed to prevent the V-pin from being pulled out during lateral loading, was bolted to the hinge holder. This completed the V-connector assembly procedure. The final step was to set the top block in place and attach the top steel pad to it though a bolted connection. Figure 3.15 shows all the above-mentioned steps for the assembly procedure, and Figure 3.16 shows the final specimen configuration before finishing the rest of the test setup.
Figure 3.15 V-connector assembly sequence: (a) placing the Teflon washer; (b) adding the top steel pad; (c) inserting the V-pin; (d) attaching the hinge stop; and (e) setting up the top block.
3.7 MATERIAL PROPERTIES

The different sizes of reinforcing steel used in the top and bottom blocks (see Table 3.1) was Grade 60, following ASTM A706 [2016]. The concrete type of the blocks was normal-weight concrete, with a specified strength of 5 ksi. The material for different V-connector parts was Duplex 2205 steel, based on the inputs from the manufacturer.

Since the top and bottom blocks were overly designed (see Appendix A), the material testing was not of major concern for the V-connector study. Therefore, only compressive strength tests of the concrete were conducted using 6-in.-diameter × 12-in.-high standard cylinders on the seventh day of curing and the day of the cyclic test. The cylinder samples were collected from the same batch of concrete when casting the blocks and were cured in the same indoor laboratory conditions. They were capped with a sulfur compound at both ends before being tested on the Universal Testing Machine in accordance with ASTM C39 [2005]. The test results for the concrete are listed in Table 3.4.

<table>
<thead>
<tr>
<th>Material</th>
<th>Age (day)</th>
<th>Compressive strength (ksi)</th>
<th>Mean</th>
<th>St. Dev.</th>
<th>COV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top/bottom block concrete</td>
<td>7</td>
<td>4.665</td>
<td>0.016</td>
<td>0.0035</td>
<td></td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>6.394</td>
<td>0.109</td>
<td>0.017</td>
<td></td>
</tr>
</tbody>
</table>
3.8 INSTRUMENTATION

A wide array of sensors was installed to monitor the response of the specimen during the test. A summary of the different types of instrumentation and their layout is presented below. All the sensor data was sampled at 100 Hz.

3.8.1 Load Measurement

Load was measured to assist in the control of both the vertical and lateral actuators and to measure the total forces applied to the specimen for capacity estimation. Four load cells were used to measure the actuator forces: two for the vertical actuators and another two for the lateral ones. The vertical actuators were used to apply the gravity load under load control. Thus, the load-cell measurement was indispensable in monitoring the level of the applied load. The lateral actuators were run in displacement control. Load-cell measurement was a crucial factor in estimating the total applied forces applied during the cyclic test. In addition, the measured lateral resisting forces were used in the HS test as a feedback to perform the numerical integration. The load cells were calibrated in compression using the Universal Testing Machine at UCB.

![Figure 3.17 Typical actuator load cell.](image)

3.8.2 Displacement Measurement

The displacements were measured using long- and short-range displacement transducers. The long-range displacement transducers were linear wire potentiometers (WPs) with two ranges of stroke, namely ±7.5 in. and ±15 in. Four ±7.5 in. WPs were triangulated to measure the movements of the top block at two elevations in the direction of the applied lateral load. Another two WPs, with a range of ±15 in., were installed on the northside of the top block. These long-range displacement transducers have an accuracy of 0.10% of its full range, i.e., 0.015-in. resolution for a range of ±7.5 in. and 0.03 in. resolution for a range of ±15 in. Thin steel strings (piano wires) were utilized to connect the cords of the transducers to the target points mounted on the blocks. Figure 3.18(a) shows a typical example of installation details of the WPs on the instrumentation frame. A typical target point for the WPs on the top block is shown in Figure 3.18(b). The six long-range displacement transducers are presented in Figure 3.19 and Figure 3.20(a).
Figure 3.18 (a) WPs on the eastside instrumentation frame; and (b) target point attached to the reinforced concrete block surface.

Figure 3.19 Instrumentation layout for displacement measurements: (a) WPs in plan view; and (b) WPs in north/south elevation view.

Figure 3.20 Instrumentation layout for displacement measurements: (a) east/west elevation view; and (b) plan view of block’s vertical instrumentation.
The short-range displacement transducers were linear variable differential transformers (LVDTs) with range of ±1.5 in. These transducers were used to measure the vertical displacements and rotations, if any, of the top block. The accuracy of these LVDTs is 0.05% of the full range (0.0015 in. resolution), i.e., much better than that of the WPs. They were installed at each corner of the top block; see Figure 3.20(b) and Figure 3.21. As shown in Figure 3.22, flat aluminum plates with polished surfaces were leveled and placed on top of the bottom block such that the spring-loaded tips of the instrument could slide smoothly when the top block moved horizontally relative to the stationary bottom block.

![Diagram of instrument installation](image)

Figure 3.21 Layout schematics of instrumentation for relative vertical displacement of the top block with respect to the bottom block: (a) east/west elevation view; and (b) north/south elevation view.

![Photographs of instrumentation](image)

Figure 3.22 Photographs of instrumentation for relative vertical displacement of the top block.

3.8.3 Strain Measurement

Strains of the reinforcing bars were measured using foil gauges mounted on the reinforcement surface. The utilized post-yielding gauge size was 0.20 in. × 0.08 in., with a rated deformation

43
capability of 15%. The reinforcing bar surface deformation in the region surrounding the gauge location was removed and polished. The strain gauge was glued to the surface and covered by three protective coatings: wax, SB tape (made of butyl rubber), and epoxy. Figure 3.23 shows the steps of installing the strain gauges on the reinforcing bars. Note that instrumenting these bars with strain gauges is critical in RC components or subassembly testing. Thus, proper attention is required to minimize the chances of damaging strain gauges during construction.

A total number of twenty strain gauges were installed: ten in the top block and ten in the bottom block. Each block had six strain gauges on the longitudinal reinforcement and four on the transverse. The strain gauge arrangements on the longitudinal and transverse reinforcement of the top and bottom block are shown in Figure 3.24 and Figure 3.25, respectively. Based on the design, the blocks should remain elastic, and no reinforcement yielding should be expected, as was verified later.

Figure 3.23 Strain gauges used for reinforcing bars instrumentation where several chemical and mechanical layers were added to protect the gauges.

Figure 3.24 Strain gauges layout of the top block’s longitudinal and transverse reinforcement.
In addition to the conventional instrumentations mentioned above, a terrestrial laser scanner was used to measure any displacement and rotation during the quasi-static cyclic test. A laser scanner is an optical instrument that emits laser beams toward objects surrounding the scanner and measures time-of-flight (TOF) duration of the laser beams reflected back. The distance to each point in space is computed by multiplying this duration by the speed of light. A collection of these points with their spatial coordinates results in the so-called point cloud. ScanStation C10 from Leica Geosystems was used for the point-cloud collection. This technology was used in this study to complement and compare conventional instrumentation data to that collected by the laser scanner. While the accuracy of individual point distance acquisition is ±4 mm, this accuracy can be improved significantly by estimating the vertex of a special flat pattern of the high-definition laser target (HDLT), which is commonly used for stitching individual scans into a combined point cloud. Earlier studies have shown that the accuracy of the laser target acquisition can be close to ±0.5 mm or better [Takhirov 2010]. Photographs of the previously discussed experimental setup and the details of the point-cloud collection are presented in Figure 3.26.

Scans from the same location were performed before and during the test. A total of nine scans were conducted, with three of them performed before the test. The initial data manipulation was conducted in Cyclone [Leica Geosystems 2018]. They were exported as ASCII files, and the final data reduction was conducted in the Matlab [MathWorks 2018] environment. The vertices of the HDLTs were estimated from the point cloud; see Figure 3.27.
Figure 3.26 Experimental setup and point-cloud collection: (a) global view of the setup with six HDLTs; and (b) location of scanner with respect to the specimen; (c) collected point cloud with real world colors; and (d) collected point cloud with intensity colors.

Figure 3.27 Vertices of the high-definition laser targets: (a) point clouds of targets and estimated vertices; and (b) vertices imported to the Matlab [Mathworks 2018] environment.
4 V-connector Phase I: Quasi-Static Cyclic Test

This chapter presents the details of the quasi-static cyclic test conducted on the V-connector. This test was conducted under constant gravity load and 11 unidirectional lateral loading groups. The complete set of all loading groups was performed in one day.

Before doing the cyclic test, a pre-test finite-element analysis was conducted with two main objectives: (1) estimate the expected axial and lateral forces during cyclic and HS test and choose the scale factor for the V-connector based on the laboratory limitations; and (2) develop a set of expected design parameters for the reduced-scale V-connector manufacturing. The pre-test analysis is divided into three sections. The first section briefly describes the prototype bridge used in this study. The second section is dedicated to the prototype bridge modeling using OpenSees [McKenna et al. 2000]. The third section describes the parametric studies and analysis results of the prototype bridge. These results served as the basis of selecting the design parameters of the V-connector.

The post-processing of the cyclic test results consists of three main parts. Part one discusses the global behavior of the V-connector in terms of lateral forces, displacements, rotations, and force-displacement relationship in the loading direction. Some of the response quantities measured by conventional instrumentations were compared against those obtained from the laser scans. Part two focuses on an original design goal: to verify that the local behavior of the top and bottom blocks in terms of reinforcement strains remained elastic during the test. Part three presents an updated V-connector modeling, which is tuned based on the test data. This is an improvement on the idealized model as discussed in the pre-test analysis. The prototype bridge was reanalyzed with the calibrated V-connector modeling, which serves as the basis for selecting the ground-motion scale factors in the subsequent HS test.

4.1 PRE-TEST FINITE-ELEMENT ANALYSIS

4.1.1 Prototype Bridge Description

The prototype was derived from the Jack Tone Road On-Ramp Overcrossing built in 2001, an existing bridge located in the city of Ripon, California, at the intersection of Route 99 and Jack Tone Road (identification number 10-SJ-099-2.34-RIP); see Figure 4.1. It has two spans, with a total length of 67.2 m (220.4 ft), and span lengths of 33.105 m (108.58 ft) and 34.095 m (111.82
The bridge is skewed about 33° and crosses one lane of traffic on a seven-lane highway. The bridge superstructure is a three-cell continuous prestressed RC box-girder. The bent has a half-cap beam integral with the deck and a single RC circular column in the middle. The column of the bent is 1.68 m (5.51 ft) in diameter and is supported on 25 HP 305×79 steel piles. The longitudinal reinforcement ratio ρ_l of the column is approximately 2%. The abutments are seat-type, with four elastomeric bearing pads per abutment; see Table 4.1 for a comprehensive description of the bridge.

The 3D OpenSees model for the as-built bridge was originally developed by Kavianijopari [2011], which identified the seismic behavior of RC bridges with seat-type abutments under earthquake loading, especially with respect to abutment skew angle. In order to represent the bridge behavior in the test, the V-connector was incorporated into the 3D model of the bridge between the column and the bridge deck; the dynamic results from this model were used to decide on the key design parameters of the V-connector.

Figure 4.1 The Jack Tone Road On-Ramp Overcrossing: (a) picture (source: Google Maps); and (b) elevation (source: Caltrans structural drawings).
Table 4.1 Structural and geometrical information of the prototype bridge.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Value/Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>General bridge description</td>
<td>Ordinary standard single-column bridge with 2 spans</td>
</tr>
<tr>
<td>Total length of bridge (L_{Total})</td>
<td>220.4 ft (67.2 m)</td>
</tr>
<tr>
<td>Number of spans and length of each deck span</td>
<td>2 spans: 108.58 ft (33.105 m) and 111.82 ft (34.095 m)</td>
</tr>
<tr>
<td>Total deck width (W_{deck})</td>
<td>27.13 ft (8.27 m)</td>
</tr>
<tr>
<td>Deck depth (d_d)</td>
<td>4.64 ft (1.415 m)</td>
</tr>
<tr>
<td>Deck cross-sectional geometry*</td>
<td>$A = 97.546 \text{ ft}^2 (9.067 \text{ m}^2)$; $J = 341.442 \text{ ft}^4 (2.954 \text{ m}^4)$; $I_x = 180.328 \text{ ft}^4 (1.558 \text{ m}^4)$; $I_y = 3797.9 \text{ ft}^4 (32.81 \text{ m}^4)$; $A_{sx} = 18.92 \text{ ft}^2 (1.759 \text{ m}^2)$; $A_{sy} = 27.584 \text{ ft}^2 (2.564 \text{ m}^2)$; $S_x = 83.35 \text{ ft}^3 (2.362 \text{ m}^3)$; $Z_x = 115.143 \text{ ft}^3 (3.263 \text{ m}^3)$; $S_y = 279.97 \text{ ft}^3 (7.934 \text{ m}^3)$; $Z_y = 521.832 \text{ ft}^3 (14.788 \text{ m}^3)$</td>
</tr>
<tr>
<td>Number and clear height of each column (H_{col})</td>
<td>1 column: 19.68 ft (6 m)</td>
</tr>
<tr>
<td>Column diameter (D_c)</td>
<td>5.51 ft (1.68 m)</td>
</tr>
<tr>
<td>Deck centroid ($D_{c.g.}$)</td>
<td>2.48 ft (0.756 m) from bottom</td>
</tr>
<tr>
<td>Location and size of expansion joints</td>
<td>No expansion joints specified</td>
</tr>
<tr>
<td>Support details for boundary conditions</td>
<td>Fixed foundations</td>
</tr>
<tr>
<td>Concrete material properties for concrete of superstructure (f_c', E_c)**</td>
<td>Elastic deck: $f_c' = 5 \text{ ksi (34.5 MPa)}$; $E_c = 4030.5 \text{ ksi (27800 MPa)}$</td>
</tr>
<tr>
<td>Concrete and reinforcing material properties of the column</td>
<td>Concrete: $f_c' = 5 \text{ ksi (34.5 MPa)}$; Steel: ASTM A706</td>
</tr>
<tr>
<td>Reinforcement details of column cross section***</td>
<td>Longitudinal reinforcement: 44 #11 (bundles of 2), $\rho_l = 2%$; Transverse reinforcement: Spiral. #6 @ 3.34 in.</td>
</tr>
<tr>
<td>Abutment general geometry</td>
<td>Simplified abutment model</td>
</tr>
<tr>
<td>Number and properties of abutment bearing pads</td>
<td>4 elastomeric bearing pads used per abutment</td>
</tr>
</tbody>
</table>

*A is the cross-sectional area;
J is the cross-sectional torsional constant;
I_x and I_y are the second moment of areas w.r.t the weak & strong axes;
A_{sx} and A_{sy} are the shear areas along the weak & strong axes;
S_x and S_y are the elastic section moduli w.r.t the weak & strong axes;
Z_x and Z_y are the plastic section moduli w.r.t the weak & strong axes.

**f_c' and E_c are the compressive strength and the elastic modulus of the concrete; and

***ρ_l is the longitudinal reinforcement ratio of the column.
4.1.2 Model Description

In the 3D spine-line model of the prototype bridge developed in OpenSees [McKenna et al. 2000], the line elements were located at the centroid of the cross sections following the alignment of the bridge. A representative bridge model used in the analysis is shown in Figure 4.2. The model comprises of the seat type abutments, the column, the superstructure, and the V-connector.

![Nodal and element designation of the prototype bridge](image)

Figure 4.2 Nodal and element designation of the prototype bridge [Kavianijopari 2011].

4.1.2.1 Bridge Component Modeling

The prestressed concrete box girder system was modeled using elastic beam–column elements along the spine of the bridge deck as flexural yielding of deck during seismic response is not expected. In contrast, progression of column yielding and damage is expected under strong ground motions. Thus, one single nonlinear force-based beam–column element with five quadrature points and fiber section was used to represent the column. This is usually considered to provide adequate accuracy. As mentioned earlier, all components were modeled in the centerline of the elements. Therefore, a rigid element with length equal to the distance between the superstructure’s cross section centroid and the column top was assigned on top of the nonlinear element to model the portion of the column embedded in the superstructure; see Figure 4.3.

The abutment model consists of several zero-length springs modeled both in series and in parallel to approximate the behavior in each direction. The longitudinal response was modeled using five nonlinear springs in series with gap elements, as shown in Figure 4.4. The nonlinear springs and the gap elements represent the passive backfill response and the expansion joint, respectively. In the transverse direction, a strut-and-tie model was employed to simulate the shear key component. The vertical response was modeled by two parallel springs simulating the
elastomeric bearing pads and the stem wall. Details of the abutment modeling techniques can be found in Kavianijopari [2011].

![Figure 4.3] Column modeling scheme [Kavianijopari 2011].

![Figure 4.4] Abutment modeling detail: backfill soil springs [Kavianijopari 2011].

4.1.2.2 V-connector Modeling

The V-connector was added to the prototype bridge between the column and the rigid link connecting the column and the superstructure, as shown in Figure 4.5. It was modeled using translational zero-length springs along the longitudinal and transverse directions of the bridge with an idealized bilinear hysteretic response. Assuming the V-connector’s response to be decoupled in the longitudinal and transverse directions, zero-length springs were added in these two directions independently.

The idea of using a bilinear model to approximate the behavior of the V-connector was inspired by the friction pendulum bearing. Figure 4.6 shows the typical response of a friction pendulum bearing under cyclic loading, where the behavior of the friction pendulum system is essentially a bilinear model with initial stiffness K_1 and a post-yielding stiffness K_2. When u_y is close to zero, this hysteresis loop can approximate the expected behavior of the V-connector. It can be decomposed into two components: the linear elastic component provided by the lateral stiffness of the V-pin, and the kinematic friction component between the Teflon washer and the top steel plate. Therefore, the force-displacement relationship of the translational zero-length spring was represented by a linear elastic component in parallel with an elastic-perfectly plastic
(EPP) component with a very high tangent stiffness for loading and unloading (see Figure 4.7), which becomes essentially rigidly plastic. To account for the moment release due to the hinge connection inside the V-connector, rotational hinges about the X- and Y-axis (refer to Figure 4.5) were added between the column top and the rigid element.

Figure 4.5 Schematic representation of the V-connector location.

Figure 4.6 Hysteresis loop of a friction pendulum system.

Figure 4.7 Idealized hysteretic response of the V-connector and its decomposition.
4.1.3 Prototype Bridge Analysis

As stated before, the goal for conducting parametric studies on the prototype bridge was to find the key design parameters for manufacturing of the V-connector. In case of the idealized hysteretic behavior shown in Figure 4.7, the design parameters are the intrinsic friction F_0 and the stiffness K_v of the V-pin. The criterion for choosing these parameters was to keep the bridge column elastic during the earthquake excitation.

4.1.3.1 Ground Motions

The same set of eight ground motions for studying the seismic response of composite concrete–dual steel-shell columns [Guerrini and Restrepo 2013], with the same scale factors, were applied to the prototype bridge in a concatenated manner to perform nonlinear time history analysis. Only two horizontal components of each motion were considered. The chosen records and the corresponding scale factors are summarized in Table 4.2.

Table 4.2 Selected ground-motion records and scale factors.

<table>
<thead>
<tr>
<th>Test</th>
<th>Event</th>
<th>Date</th>
<th>Station</th>
<th>Scale factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>EQ1</td>
<td>Coalinga</td>
<td>1983/05/09</td>
<td>Harris Ranch-Hdqtrs (temp)</td>
<td>2.50</td>
</tr>
<tr>
<td>EQ2</td>
<td>Imp. Valley</td>
<td>1979/10/15</td>
<td>EC Meloland Overpass FF</td>
<td>0.80</td>
</tr>
<tr>
<td>EQ3</td>
<td>Morgan Hill</td>
<td>1984/04/24</td>
<td>Coyote Lake 4Dam (SW abut)</td>
<td>0.70</td>
</tr>
<tr>
<td>EQ4</td>
<td>Northridge</td>
<td>1994/01/17</td>
<td>Rinaldi Receiving Station</td>
<td>0.56</td>
</tr>
<tr>
<td>EQ5</td>
<td>Northridge</td>
<td>1994/01/17</td>
<td>Sylmar-Olive View Med FF</td>
<td>-0.80</td>
</tr>
<tr>
<td>EQ6</td>
<td>Northridge</td>
<td>1994/01/17</td>
<td>Rinaldi Receiving Station</td>
<td>0.90</td>
</tr>
<tr>
<td>EQ7</td>
<td>Kobe</td>
<td>1995/01/16</td>
<td>Takatori</td>
<td>0.77</td>
</tr>
<tr>
<td>EQ8</td>
<td>Kobe</td>
<td>1995/01/16</td>
<td>Takatori</td>
<td>-0.90</td>
</tr>
</tbody>
</table>

4.1.3.2 Design Parameters

The intrinsic friction F_0 depends on the friction coefficient and the pressure, which is related to the axial force on the column top. Since no vertical ground excitation is applied in any of the V-connector tests, axial force fluctuation is negligible, and a value of 1986.4 kips from pure gravity analysis can be used and treated as constant. The friction force was obtained through the kinematic friction coefficient using Coulomb friction model. With the friction coefficient μ equal to 0.1 for typical Teflon/stainless steel interface as suggested by the V-connector manufacturer, the friction force was around 200 kips. Therefore, $F_0 = 200$ kips was used as the first design parameter.

The stiffness of the V-pin, K_v, was determined by the trial-and-error method. The general trend is to reduce K_v because: (1) reducing the stiffness increases the period of the bridge, thus reducing the accelerations and the inertia forces acting on the bridge; and (2) a smaller K_v reduces the maximum force in the V-connector, which then reduces the maximum force transmitted to the column due to equilibrium. The flow chart for the proposed trial and error method is shown in Figure 4.8.
Figure 4.8 Flow chart for seeking acceptable V-pin stiffness K_v (M_x and ϕ_x and M_y and ϕ_y are the respective bending moments and corresponding curvatures about X- and Y-axes).

4.1.3.3 Analysis Results

Based on the flow chart shown in the previous section, different values of K_v were explored. The moment-curvature relationships of the bridge column as well as the force-displacement curves of the V-connector were checked. The results, corresponding to three typical values of K_v, are compared in Figure 4.9 and Figure 4.10, which show that using $K_v = 30$ kips/in. leads to elastic behavior of the bridge column. The deformation demand on the V-connector is around 17 in., and the developed maximum shear force V_{max} is about 720 kips.

Figure 4.9 Column moment-curvature relationships in (a) longitudinal direction (X); and (b) transverse direction (Y).
Figure 4.10 Hysteretic behavior of the V-connector in (a) longitudinal direction (X); and (b) transverse direction (Y).

<table>
<thead>
<tr>
<th>Elements</th>
<th>Full-scale</th>
<th>Reduced one-third scale</th>
<th>Scale factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V-pin stiffness K_v (kip/in.)</td>
<td>30</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>Friction coefficient μ</td>
<td>0.1</td>
<td>0.1</td>
<td>1</td>
</tr>
<tr>
<td>Deformation capacity (in.)</td>
<td>17.0</td>
<td>5.7</td>
<td>3</td>
</tr>
<tr>
<td>Design forces</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shear force V (kip)</td>
<td>723.7</td>
<td>80.4</td>
<td>9</td>
</tr>
<tr>
<td>Axial force P (kip)</td>
<td>1986.4</td>
<td>220.7</td>
<td>9</td>
</tr>
</tbody>
</table>

Based on the analysis results, a reduced-scale V-connector needs to be manufactured due to the large shear force and deformation demands. A length scale factor $S_L = 3$ was chosen, leading to the similitude relationships of the V-connector’s design parameters and design forces to be applied to concrete blocks; see Table 4.3. The reduced-scale V-connector and the blocks were designed accordingly. Although subsequent quasi-static cyclic tests revealed that these design parameters of the V-connector were not exactly satisfied—most likely because of practical considerations during the fabrication or because the utilized hysteretic behavior was highly idealized in the pre-test analysis—these numbers still provided guidance for the design.
4.2 QUASI-STATIC CYCLIC TEST

4.2.1 Progression of Testing

The cyclic loading test involved unidirectional loading in the global X-direction. Figure 4.11 shows the test setup and progression of the loading. Throughout this study, loading in the global X-direction refers to loading in the east–west direction, as defined in Figure 4.11. Whenever loading is pushing towards the east, it is designated as the positive loading direction, and, in turn, the negative loading direction is pulling towards the west. The global X-direction defined this way is consistent with the longitudinal direction of the prototype bridge when performing the HS test.

![Figure 4.11 Cyclic test setup and progression of loading in the global X-direction.](image)

4.2.2 Test Results

4.2.2.1 Force Measurement

The progressive cyclic loading groups are fractions of the targeted maximum displacement amplitude of 4 in., per FEMA 461 [2007]. A gravity load of 200 kips was applied and kept constant during all cycles of lateral loading. Details of selected loading protocol can be found in Chapter 3. Figure 4.12 shows the time history of the total gravity loading together with the forces measured from each vertical actuator. Although some fluctuations were observed in each single actuator, the total gravity load of 200 kips was well maintained throughout the test.

The forces developed in the lateral actuators with a prescribed displacement were laterally applied. The resultant force F_x in global X-direction, which was computed from the actual recorded forces in the load cells of the lateral actuators based on exact geometry and configuration, was utilized to estimate the V-connector’s resisting force during the lateral loading cycles. Figure 4.13 shows the time history plots of the measured forces in the two lateral actuators, designated as north and south actuators according to their location relative to the test setup, and the resultant force F_x. Note that the actuator forces have approximately similar values and directions during the unidirectional lateral loading cycles as expected.
Figure 4.12 Time history of the gravity load applied during the cyclic test.

Figure 4.13 Time history of both north and south lateral actuators load-cell measurements and the corresponding resultant forces in the global X-direction (F_x) for all cyclic loading groups.
4.2.2.2 Displacement and Rotation Measurements

Lateral Displacement

For a cyclic loading test under displacement control, prescribed displacements are the primary input commands to the actuators. For practical reasons, the actuators were installed at about 30° in relation to the loading direction. Accordingly, the displacement input from the actuators was transformed such that the resulting movement of the top block agrees with the desired lateral displacement (U_x in the global coordinate system). The obtained displacements during the test were tracked in the local direction of the actuators from the feedback provided by the Temposonic transducers of the actuators, and in the global coordinate system through the WPs by performing triangulation. The geometry and configuration of the actuators were used to transform their local motion to the corresponding global directions. The transformed Temposonic measurements of the actuators were compared to the WPs to check the accuracy of the measurements and transformations. It was found that the displacements computed from the exact geometry of the actuators and the Temposonic measurements were the most accurate, although the computed displacements from the WPs were also quite close to those obtained from the actuators; see Figure 4.14. Therefore, only the displacements obtained from transformed Temposonic measurements were used in later discussions.

Figure 4.15 shows the time history plots of the recorded Temposonic measurements of the north and south actuators along with the resulting displacements in both the global X- (U_x) and the global Y- (U_y) directions. Two observations can be made: (1) the Temposonic measurements in the actuators’ local axes were the same; and (2) the resulting displacements, U_y, were close to zero. This provides additional evidence demonstrating the correctness of the geometric transformation. The flat parts of the plots at given displacement peaks represent the pause in time when the laser scanning was performed, and the specimen’s condition was visually inspected. The target input displacements and the actual applied displacements based on Temposonic measurements are summarized in Table 4.4. The displacement tracking was well controlled, as can be seen from the table where the maximum relative error is about 5%.

<table>
<thead>
<tr>
<th>Target disp. (in.)</th>
<th>0.19</th>
<th>0.27</th>
<th>0.38</th>
<th>0.53</th>
<th>0.75</th>
<th>1.06</th>
<th>1.46</th>
<th>2.00</th>
<th>2.86</th>
<th>3.50</th>
<th>4.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obtained disp. (in.)</td>
<td>0.187</td>
<td>0.271</td>
<td>0.37</td>
<td>0.514</td>
<td>0.73</td>
<td>1.02</td>
<td>1.40</td>
<td>1.92</td>
<td>2.83</td>
<td>3.32</td>
<td>3.89</td>
</tr>
<tr>
<td>Relative error (%)</td>
<td>-1.6</td>
<td>0.4</td>
<td>-2.6</td>
<td>-3.0</td>
<td>-2.7</td>
<td>-3.8</td>
<td>-4.1</td>
<td>-4.0</td>
<td>-1.0</td>
<td>-5.1</td>
<td>-2.8</td>
</tr>
</tbody>
</table>

Table 4.4 Target and actual obtained displacements with relative errors.
The lateral displacement was also measured by tracking the displacements of the vertices of the HDLTs using laser scans. The displacements of the vertices in the lateral direction are presented in Figure 4.16. As noted earlier, the first three scans were performed before the test with no vertical preload. As a result, all vertex displacements for these three scans were very close to zero. The plot shows excellent agreement between conventional and laser scan measurements.
Figure 4.16 Comparison between laser scan data and conventional (Temposonic) measurements.

Vertical Displacement

The vertical movement of the top block relative to the bottom block was measured by four short-range position transducers mounted near the corners. In order to compare these measurements with the laser scan results, transformation or correction was needed because the locations of the measurements were not exactly at the top block’s south surface where the HDLTs were located. Based on the geometry shown in Figure 4.17, the transformation was performed by the following:

\[
\frac{D_s - D_{23}}{D_{14} - D_{23}} = \frac{a}{b} \Rightarrow D_s = \frac{a}{b} (D_{14} - D_{23}) + D_{23}
\]

(4.1)

where

- \(D_s\) = south surface vertical displacement;
- \(D_{14}\) = average value of the readings from \(N_1\) and \(N_4\) vertical transducers; and
- \(D_{23}\) = average value of the readings from \(N_2\) and \(N_3\) vertical transducers.

Figure 4.18(a) presents the vertical displacement of the top block during the test, which clearly shows that the top block was gradually sinking under the constant vertical load. The same trend was observed from the laser scan data presented in Figure 4.18(b). The plots show good agreement between the displacements measured by the conventional instruments and those from the displacements of the vertices of the HDLTs.
Rotation of the top block, especially the rotation around the global Y-axis, is one of the concerns in this study because the V-connector is not expected to experience any rotations on top in the real installation of a bridge system. Hence, specific attention was paid to the control of the vertical actuators to minimize the artificial rotation caused by the limitations of the test setup. In addition, potential rotation of the top block was measured by the four short-range position transducers mounted near the corners. Based on the geometry shown in Figure 4.19, the block rotation can be calculated as follows:
\[R_x = \frac{D_{14} - D_{23}}{L_2}; \quad R_y = \frac{D_{12} - D_{34}}{L_1} \]

(4.2)

where

- \(D_{14} \) = average value of the readings from \(N_1 \) and \(N_4 \) vertical transducers;
- \(D_{23} \) = average value of the readings from \(N_2 \) and \(N_3 \) vertical transducers;
- \(D_{12} \) = average value of the readings from \(N_1 \) and \(N_2 \) vertical transducers;
- \(D_{34} \) = average value of the readings from \(N_3 \) and \(N_4 \) vertical transducers;
- \(L_1 \) = distance between \(N_2 \) and \(N_3 \), which was the same as between \(N_1 \) and \(N_4 \); and
- \(L_2 \) = distance between \(N_3 \) and \(N_4 \), which was the same as between \(N_1 \) and \(N_2 \).

The rotations of the top block during the test are presented in Figure 4.20. Since the block rotation around the global \(Y \)-axis was controlled by two vertical actuators together with the spreader I-beam, the maximum rotation was limited to 0.0006 radian (0.03°); see Figure 4.20(b). Conversely, the rotation of the top block around the global \(X \)-axis was not controlled, resulting in relatively larger rotations but did not exceed 0.0032 radian (0.18°). In both cases, the rotations were well below the practical rotation thresholds set by any test setup of the size considered herein.

The rotation measurements of the block from the conventional instrumentation are compared against the laser scan results in Figure 4.21. Both plots clearly demonstrate a very close match between the conventional measurements and those obtained from the laser scans by estimating the location of the HDLTs in space.

![Figure 4.19](image_url)
Figure 4.19
Geometry of the top block for performing the rotation calculations.
Summary of Errors

The results above are summarized in Table 4.5 and Table 4.6; the error is the difference between the average value of the laser scan measurements and conventional measurements. Note that the error for the displacement measurements is within 1.3 mm; for rotation measurements it is less than 9.0%. The relative error for the rotation around the \(Y \)-axis is not shown here because the rotation around the \(Y \)-axis was so small (as discussed above) that the measurement itself fluctuated around zero, leading to difficulties in the relative error quantification.
Table 4.5 Errors in the displacement measurements.

<table>
<thead>
<tr>
<th>Scan #</th>
<th>Lateral displacement (mm)</th>
<th>Vertical displacement (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Laser scan average</td>
<td>Conventional</td>
</tr>
<tr>
<td>1</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>2</td>
<td>-0.698</td>
<td>0.000</td>
</tr>
<tr>
<td>3</td>
<td>-0.733</td>
<td>0.000</td>
</tr>
<tr>
<td>4</td>
<td>23.254</td>
<td>23.647</td>
</tr>
<tr>
<td>5</td>
<td>-35.608</td>
<td>-34.315</td>
</tr>
<tr>
<td>6</td>
<td>48.909</td>
<td>48.057</td>
</tr>
<tr>
<td>7</td>
<td>-46.273</td>
<td>-47.142</td>
</tr>
<tr>
<td>8</td>
<td>70.272</td>
<td>70.663</td>
</tr>
<tr>
<td>9</td>
<td>83.692</td>
<td>83.007</td>
</tr>
</tbody>
</table>

Table 4.6 Relative errors in the rotation measurements.

<table>
<thead>
<tr>
<th>Scan #</th>
<th>Rotation about X (×10^-3 radian)</th>
<th>Error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Laser scan average</td>
<td>Conventional</td>
</tr>
<tr>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>0.02</td>
<td>0.0</td>
</tr>
<tr>
<td>3</td>
<td>0.05</td>
<td>0.0</td>
</tr>
<tr>
<td>4</td>
<td>-2.75</td>
<td>-2.74</td>
</tr>
<tr>
<td>5</td>
<td>-2.96</td>
<td>-2.85</td>
</tr>
<tr>
<td>6</td>
<td>-2.23</td>
<td>-2.27</td>
</tr>
<tr>
<td>7</td>
<td>-2.28</td>
<td>-2.18</td>
</tr>
<tr>
<td>8</td>
<td>-2.81</td>
<td>-2.92</td>
</tr>
<tr>
<td>9</td>
<td>-2.01</td>
<td>-2.21</td>
</tr>
</tbody>
</table>

4.2.2.3 Force-Displacement Relationship

The obtained resultant forces and displacements in the global X-direction (loading direction) were used to obtain the force-displacement relationship of the V-connector. The force-displacement plot for all the cyclic loading groups in the loading direction (F_x vs. U_x) is shown in Figure 4.22. The high initial stiffness is clearly visible as the V-connector overcomes the static friction force before beginning to move. The average friction force was around 16 kips for each cycle, with the tendency to increase as the number of cycles increased. This is mainly because: (1) the interface between
the Teflon pad and the top steel plate tends to get rougher after many cycles due to the abrasion, leading to a larger value of the friction coefficient μ and an increase in the friction force; and (2) the rotation of the top block, even if it is small, changes the pressure distribution, which also affects the friction force.

Another observation worth noting is that the lateral stiffness of the V-pin was not constant as assumed in the idealized model. The initial stiffness was around 7.5 kips/in., which then increased to about 18 kips/in. when the lateral displacement was larger than 2 in. If the V-pin is treated as a cantilever column and the inner surface of the V-tube is treated as an additional lateral support when the pin touches the inner surface, this increase in the lateral stiffness can be explained by the reduction of the V-pin’s free length. In addition, possible friction between the ball hinge and the hinge holder introduced a restriction at the top of the V-pin, leading to a sudden change of the stiffness.

Figure 4.22 Force-displacement relationship for all cyclic loading groups in the loading direction.

4.2.2.4 Strain Behavior

Several strain gauges were installed on the longitudinal and transverse reinforcing bars of the top and bottom blocks to monitor the bar strains during testing. The longitudinal strain gauges placed at the six outermost bars experienced the largest strain values on the east and west sides per the loading direction. The transverse strain gauges were placed at two layers of the transverse bars to measure the shear strains if any. The notation of loading direction is presented along with all the instrumented longitudinal and transverse bars of the two blocks in Figure 4.23 and Figure 4.24. The time histories of the measured strains in each block can be found in Figure 4.25 and Figure 4.26. These figures indicate that the reinforcing bars did not experience any significant strains during testing because the strain gauges were only measuring noise. Meanwhile, the amplitude of the strains was much smaller than the yielding strain (assuming 2000 microstrain) of the reinforcement, meaning that the blocks remained perfectly elastic throughout the test.
Figure 4.23 Notation of loading direction and layout of instrumented longitudinal bars: (a) top block; and (b) bottom block.

Figure 4.24 Notation of loading direction and layout of instrumented transverse bars: (a) top block; and (b) bottom block.

Figure 4.25 Time histories of the strains in longitudinal reinforcing bars for all loading cycles: (a) top block; and (b) bottom block.
4.3 MODEL CALIBRATION

It is obvious that the idealized hysteretic response of the V-connector failed to capture the fluctuation in the friction force as well as the observed stiffness increase during the quasi-static cyclic test. Therefore, the adopted model for pre-test analysis should be calibrated to better represent the actual behavior of the V-connector. To address this issue, two different models, each with their own advantages and disadvantages, are presented in the following sections. The V-connector was again modeled using a translational zero-length spring element in OpenSees, whose force-displacement relationship is characterized by different materials. Displacement histories measured directly from the cyclic test were applied to the zero-length spring, and the resisting forces were calculated accordingly. The measured and the calculated force-displacement relationships were then compared to check the validity of the selected model.

4.3.1 Hysteretic Material Model

In the first proposed model, the hysteretic material in OpenSees [McKenna et al. 2000] was considered to represent the hysteretic behavior of the V-connector. The points on the envelope were selected from the hysteresis curve of the quasi-static test, while the remaining material parameters were selected to have the best match between the model and the test results. Figure 4.27 gives a schematic representation of the hysteretic material and the parameters needed to be determined. This type of material can be used to construct a uniaxial bilinear hysteretic material object with pinching of force and deformation, damage due to ductility and energy dissipation, and degraded unloading stiffness based on ductility. Besides the six points that describe the envelope of the hysteresis loop, there are five other parameters controlling the shape of the hysteresis loop. The parameters pinchX and pinchY are the pinching factors for deformation and force during reloading. These two parameters describe the modified slope in the X- and Y-axes of the plot. The two strength-reducing damage parameters, damage1 and damage2, are ductility- and energy-dependent, respectively, and can be determined according to the strain level and energy dissipation by inelastic strain. Generally, a larger strain level and more energy dissipation give larger values...
of these parameters. The parameter β is the power used to determine the degraded unloading stiffness, which is zero here since there was no observed stiffness degradation during unloading.

Figure 4.28 compares the force-displacement relationships between the hysteretic material model and the test results. It demonstrates that the hysteretic material model captures the global response of the V-connector very well, with an excellent match in terms of the friction and unloading behavior. Note that the reloading process did not follow the hardening path until it approached the yield surface of the earlier, smaller cycles. As a result, the pinching effect in the middle part of the hysteretic loop is missing, and the model overestimates the energy dissipation when subjected to large displacements.

![Figure 4.27](Image)

Figure 4.27 Hysteretic material in OpenSees.

![Figure 4.28](Image)

Figure 4.28 Comparison of hysteresis curves from the test and the hysteretic material modeling approach.

4.3.2 Parallel Material Model

In this model, the bilinear *Steel01* material with isotropic hardening was used in parallel with the EPP gap material in OpenSees [McKenna et al. 2000] to simulate the hysteretic behavior of the V-connector; see Figure 4.29. The parameters of *Steel01* bilinear material were selected to represent the friction and the initial stiffness of the system after overcoming the static friction force, which were around 16 kips and 7.5 kips/in., respectively, as previously mentioned. The isotropic
hardening parameters were selected to achieve the best match between the model and the test results. The parameters of the EPP gap material must reflect the stiffness increase of the V-pin when subjected to large displacements. To capture this change, the positive/negative gap value was chosen to be 2 in.

Figure 4.30 compares the force-displacement relationships between the parallel spring model and the experimental results. The bilinear parallel model shows an excellent match in terms of the friction and the hardening behavior of the stiffness. It is also capable of capturing the pinching effect in the middle of the hysteresis loop; note, this hysteretic curve misses the soft corner during the unloading phase.

Figure 4.29 Components of the parallel material: (a) Steel01 material with isotropic hardening; and (b) elastic-perfectly plastic gap material.

Figure 4.30 Comparison of hysteresis curves from the test and the parallel material modeling approach.
5 V-connector Phase II: Hybrid Simulation

The experimental program conducted in the V-connector study mainly comprised the quasi-static cyclic test and the HS runs. The behavior of the V-connector under cyclic loading was discussed in Chapter 4. Discussions of the HS runs are the focus of this chapter.

This chapter starts with a description of the utilized HSS. Several detailed aspects of the conducted HS are explained, including substructuring, integration methods, and the necessary geometric transformation. This is followed by a discussion of the HS trial test for validating the whole system, and presentation of the real HS test results conducted on the same V-connector set. Before testing, the prototype bridge with a calibrated V-connector model was reanalyzed to predict the behavior of the V-connector and to choose the ground-motion inputs for both the trial and the real HS runs. This chapter concludes with a brief discussion on the effectiveness of the V-connector by comparing different behaviors of the bridge column with and without utilizing the V-connector.

5.1 HYBRID SIMULATION DETAILS

5.1.1 Hybrid Simulation System

As described in Chapter 2, a typical HSS is made up of four parts: a discrete finite-element model of the structure, a transfer system consisting of controllers and actuators, a physical specimen being tested with proper boundary conditions, and a DAQ system. A vital feature of the HSS is to connect the above four components together to achieve effective two-way communication for sending the displacement input and receiving the force feedback.

Figure 5.1 illustrates the main components of the HSS considered to conduct the V-connector’s HS test at the UCB Structures Laboratory. It includes: (a) the computational platform OpenSees [McKenna et al. 2000], which conducts the state determination of the analytical substructures and performs the numerical integration; (b) the middleware OpenFresco [Schellenberg et al. 2008], which provides the communication between OpenSees and the PI660HybridSim; (c) PI660HybridSim, a new interface software developed within the Pacific Instruments (PI) DAQ system that communicates with OpenFresco through a TCP/IP connection; (d) the digital signal processing (DSP) card, which establishes the communication between the PI660HybridSim and the controllers; and (e) the MTS 407 controllers that control the hydraulic
actuators. Note: *GenericTCP* experimental control was used in OpenFresco to establish the PI660HybridSim-OpenFresco communication. It is also noted that the employed HSS is capable of communicating with computational platforms other than OpenSees, which was utilized herein for its relevance to the studied bridge system and its modeling described in Kavianijopari [2011].

![Employed hybrid simulation system in the V-connector study.](image)

5.1.2 Substructuring

The hybrid nature of the tested model is defined as follows: part of the model is a computational analytical model, whereas the rest of the model is a physical experimental substructure. Analytical substructures are generally those components that can be modeled with confidence, while experimental substructures are those that are difficult to model analytically. For the HS test considered herein, the same one-third-scale V-connector used in the quasi-static cyclic test was treated as the experimental substructure, while the remainder of the bridge model based on the study by Kavianijopari [2011] was simulated as the analytical substructure; see Figure 5.2. OpenSees [McKenna et al. 2000], previously used in the nonlinear dynamic analysis, was used again in the HS test as the finite-element software to analyze the bridge structure and solve the equations of motion for the displacement at each time step. OpenFresco [Schellenberg et al. 2008] was used as a middleware to connect the finite-element software with the experimental substructure in the laboratory. Accordingly, a single OpenSees/OpenFresco input file prepared by the Tool Command Language (TCL) was used to define the computational model and the
communication settings. The V-connector was represented in OpenSees using the \textit{twoNodeLink} experimental element type.

![Diagram of communication settings](image)

Figure 5.2 Experimental and analytical substructures.

5.1.3 Numerical Integration

In HS, the governing equations of motion are solved using numerical integration methods. The presence of the experimental substructures restricts the use of standard numerical integration methods (e.g., Implicit Newmark Integration) in HS, because unlike analytical substructures in the computer, it is not suitable to perform certain actions such as loading and unloading introduced by iterations on physically tested substructures; see Chapter 2.

The Alpha-OS is a predictor-corrector integration method that is commonly used in HS, e.g., Combescure and Pegon [1997]; Elkhoraibi and Mosalam [2007a, 2007b]; Nakashima et al. [1990]; and Schellenberg et al. [2009]. Detailed steps of the Alpha-OS integration algorithm are provided in Figure 5.3. This algorithm was chosen for the study because of its HS-compatible features, as listed below:

- It is an explicit method that consists of a prediction and a correction. As opposed to an implicit method, it does not require any iterations. Because iterations are not suitable in HS due to the presence of the experimental substructure, the noniterative nature of this algorithm makes it appropriate for HS;

- It does not require the use of tangent stiffness matrix, as shown in Figure 5.3. This feature is also appealing for HS, because it is difficult, if not impossible,
to obtain the tangent stiffness matrix of an experimental substructure that consists of multiple DOFs; and

- It is unconditionally stable as long as the tangent stiffness is smaller than the initial stiffness [Combescure and Pegon 1997].

1. Determine the initial values of response variables: $u_1 = 0, \dot{u}_1 = 0, \ddot{u}_1 = 0$;

2. Calculate the effective mass: $m_{\text{eff}} = m + (1 - \alpha)\Delta t \gamma c + (\Delta t)^2 \beta (1 - \alpha) k_i$;
 - Δt: integration time step;
 - α, γ, β: integration parameters; and
 - k_i: initial stiffness matrix.

3. Compute the predicted displacements at the second step: $\ddot{u}_2 = u_1 + \Delta t \dot{u}_1 + (\Delta t)^2 [(1 - 2\beta)\ddot{u}_1]/2$;

4. For each time step i: 1 ≤ i ≤ N - 1; N: total number of steps
 a1. Compute the resisting forces from the analytical substructure corresponding to the predicted displacements using methods of state determination (Spacone et al. 1996);
 a2. Apply the corresponding predicted displacement to the experimental substructure and measure the corresponding resisting forces;
 a3. Determine the resisting force vector $p_r(\ddot{u}_{i+1})$ by combining the contributions from the analytical and experimental substructures;
 b. Compute the effective force: $p_{\text{eff}} = (1 - \alpha)p_{i+1} + ap_i - (1 - \alpha)p_{i}(\ddot{u}_{i+1}) - ap_i(\ddot{u}_i) - [(1 - \alpha)c\Delta t(1 - \gamma) + \alpha(\Delta t)^2 \beta k_i]\ddot{u}_i - c\ddot{u}_i$;
 c. Compute the acceleration by solving the linear system of equations: $m_{\text{eff}} \ddot{u}_{i+1} = p_{\text{eff}}$;
 d. Compute the corrected displacements: $u_{i+1} = \ddot{u}_{i+1} + (\Delta t)^2 \beta \dddot{u}_{i+1}$;
 e. Compute the velocities: $\dot{u}_{i+1} = \dot{u}_i + \Delta t [(1 - \gamma)\dddot{u}_i + \gamma \dddot{u}_{i+1}]$;
 f. Compute the next predicted displacements: $\ddot{u}_{i+2} = u_{i+1} + \Delta t \dot{u}_{i+1} + (\Delta t)^2 [(1 - 2\beta)\dddot{u}_{i+1}]/2$;
 g. Increment i and go to step a1.

Figure 5.3 Alpha Operator-Splitting integration algorithm for the conducted HS test of the V-connector.

5.1.4 Test Setup and Geometric Transformation

The test setup for the HS is exactly the same as the one used in the quasi-static cyclic test; see Chapter 3. The two horizontal actuators used for applying the lateral load were arranged in a planer triangular configuration. The *ExperimentalSetup* object named *TriangularActuators*, previously developed by Moustafa [2015], was used in OpenFresco [Schellenberg et al. 2008] to perform the geometric transformation between the two model (global) DOFs, designated as x and y, and the two actuator (local) DOFs, designated as 1 and 2, as shown in Figure 5.4. The TCL syntax input for the experimental setup is as follows:
expSetup TriangularActuators $stag$ -control $ExpControltag$ $B1$ $B2$ $A1$ $A2$ $C1$ $C2$

where $ExpControltag$ is the defined tag for the used experimental control object, which is the GenericTCP in this case, and $B1$, $B2$, $A1$, $A2$, $C1$, and $C2$ are geometric input parameters—identified in Figure 5.4—that describe the relative locations of the two actuators. Further verification of the geometric transformation achieved through the experimental setup element was discussed in Section 5.2.1.

For each integration time step, the dynamics of the discrete model of the bridge structure was used to compute the displacement to be imposed to the test specimen. To obtain the command displacement for each actuator, the scaled value of the computed displacement first underwent geometric transformation from the global coordinate system x–y to the local coordinate system 1–2; see Figure 5.4. The scale factor for the lateral displacement was $1/S_L = 1/3$. The transformed displacements in each actuator’s local DOF were delivered to the corresponding controller for execution. After applying the scaled computed displacement to the specimen, the corresponding reactions (resisting forces) were measured using the load cell in each actuator’s local DOF and passed to the DAQ system. The measured forces underwent a set of geometric transformations and were then scaled up by a factor of $S_L^2 = 9$ before they were passed to the time-stepping integration algorithm to advance the solution to the next analysis step.

![Figure 5.4 Geometric transformation of input displacements and measured forces between the global and local DOFs [Moustafa 2015].](image)

5.1.5 Simulation Errors

The HS test was conducted slower than real time as it was assumed that the force-displacement relationship of the V-connector was not rate-dependent. Computed displacement was applied with a constant velocity of 0.01 in./sec. As this rate was quite slow, reasonable actuator tracking was achievable with proper tuning of the actuators; see Section 5.2.2 for details.
5.1.6 Loading

During the HS test, the bridge model was subjected to two sequences of loading in the following order: (1) gravity load; and (2) recorded ground motions, with one horizontal component. As stated earlier, a gravity load of 200 kips was used and kept constant throughout both the trial and the real HS test. For the ground-motion selection, response spectrum analysis of the prototype bridge with an updated V-connector model (described in Section 4.3) was conducted, using the eight ground motions from the pre-test analysis; see Table 4.2. Note that only the horizontal component corresponding to the longitudinal direction of the prototype bridge was considered because of the large demand in that direction; see Figure 4.10. In addition, the modeling parameters based on the test results from Chapter 4 were scaled up by a factor of three in the updated V-connector modeling of the prototype bridge as the V-connector being tested was reduced in scale. From the eight candidate motions, three were selected to represent the service-level (SLE), design-basis (DBE), and maximum-considered (MCE) earthquakes. Figure 5.5 shows the response spectra of the eight ground motions with their original scale factors. Two vertical lines in the plot represent the fundamental period of the bridge with two different V-connector models. The results are summarized in Table 5.1.

Based on the response spectrum analysis results, EQ3, EQ4, and EQ6 were selected, representing small, medium, and large earthquake scenarios. Nonlinear time history analysis was conducted to (a) predict the behavior of the one-third-scale V-connector during the HS test; and (b) make sure the displacement applied to the V-connector was within the 4-in. limit set by the V-tube geometry. The selected ground motions were applied in a concatenated manner with increasing magnitude, and the deformation amplitudes of two different V-connector modeling were checked. By reducing the scale factor of EQ6 from 0.9 to 0.75, the deformation amplitudes of the full-scale V-connector using the hysteretic material and parallel material models were 11.5 in. and 11.2 in., respectively; see Figure 5.6. Therefore, the displacement applied during the HS was expected to be in the range of 3.7–3.8 in., with a small safety factor being considered. The information of the selected ground-motion records for the HS test can be found in Table 4.2.

<table>
<thead>
<tr>
<th>V-connector model</th>
<th>Period (sec)</th>
<th>EQ1</th>
<th>EQ2</th>
<th>EQ3</th>
<th>EQ4</th>
<th>EQ5</th>
<th>EQ6</th>
<th>EQ7</th>
<th>EQ8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hysteretic material</td>
<td>0.758</td>
<td>0.066</td>
<td>0.646</td>
<td>0.737</td>
<td>1.172</td>
<td>0.738</td>
<td>1.884</td>
<td>1.202</td>
<td>1.404</td>
</tr>
<tr>
<td>Parallel material</td>
<td>0.787</td>
<td>0.060</td>
<td>0.597</td>
<td>0.673</td>
<td>1.165</td>
<td>0.875</td>
<td>1.872</td>
<td>1.192</td>
<td>1.393</td>
</tr>
</tbody>
</table>
Figure 5.5 Response spectra of the ground motions used in the pre-test analysis.

Figure 5.6 Deformation amplitudes of the full-scale V-connector using different models: (a) parallel material; and (b) hysteretic material.
5.2 HYBRID SIMULATION TRIAL TEST

To verify the performance of the whole HSS utilized for the real HS test, a low-level HS trial test making use of the selected horizontal component of EQ4 was conducted. The scale factor was reduced to 0.275 based on the analysis results, which limited the applied displacement to around 1.5 in.

5.2.1 Geometric Transformation and Scaling Check

The first verification was the back-and-forth communication between the physical and computational components of the HSS. Since the V-connector being tested had been reduced to one-third scale, it was necessary to ensure that the computed input displacements passed to the actuators and the resulting forces that were sent back to the computational platform as measured by the load cells of the actuators were respectively scaled down or up properly. Specifically, based on similitude relationships, the ratio between OpenSees [McKenna et al. 2000] computed displacement and the actual applied displacement (after geometric transformation) should be three, while the ratio between the resisting forces that passed on to the computational platform and the resisting forces measured by the actuator load cells (after geometric transformation) should be nine.

Before performing any complicated verification protocols, an intuitive check for the geometric transformation is that if a global longitudinal direction only motion (u_x in Figure 5.4) is required, the two actuators should have identical input along the local DOFs. This anticipated geometric transformation was verified, as shown in Figure 5.7.

![Figure 5.7](image)

Figure 5.7 Actuator displacement history plots for the longitudinal direction only ground-motion test.
Figure 5.8(a) compares the computed displacement obtained from OpenSees and the transformed feedback displacement of the actuators multiplied by $S_L = 3$ in the loading direction. The feedback displacements were provided by the position of the Temposonic transducers of the actuators. Figure 5.8(b) compares the V-connector forces from the OpenSees recorder and the transformed forces of the actuators multiplied by $S_L^2 = 9$ in the loading direction. In both plots, the curves do not coincide because of the differences in the time scale. The timeline for the actuator feedbacks is based on the testing time (or real time), while the timeline for OpenSees is obtained by stretching the ground-motion duration in the real world for a more intuitive comparison. Note: the trend and the peaks in both plots match perfectly, thus verifying the geometric transformation and the scaling between the physical and computational components of the HSS; the noisy part in the force plot represents the high-frequency component caused by the friction because of the small displacement oscillation towards the end of the earthquake.

![Figure 5.8](image)

Figure 5.8 Geometric transformation and scaling check of the hybrid simulation system: (a) displacement check; and (b) force check.

5.2.2 Control Quality Check

The second aspect of the verification process was to assure the control quality of the actuators. For good control quality, the command displacement from the controller and the feedback displacement measured by the position transducer should be as close as possible with minimum time delay. Figure 5.9 shows the command and feedback displacements in the loading direction after geometric transformation, representing the effect of the two horizontal actuators working together. Figure 5.10 shows the separate check for each horizontal actuator. The perfect match shown in these plots proves that the quality of the controllers used is reliable.
Figure 5.9 Transformed command (cmd) vs. feedback (fbk) displacements of the actuators in the loading direction.

Figure 5.10 Command (cmd) vs. feedback (fbk) displacement for (a) north actuator; and (b) south actuator.
5.3 HYBRID SIMULATION TEST

During the real HS test, the V-connector was subjected to a constant gravity load of 200 kips, followed by the three ground motions running back-to-back with increasing magnitude. Like the cyclic test, the loading towards east is designated to be the positive global X-direction, while loading towards west is negative. The loading direction defined this way is consistent with the longitudinal direction of the prototype bridge. In addition, the same set of instrumentation previously used in the cyclic test was also used for the HS test, except that no laser scan was performed. The test results are presented below.

5.3.1 Test Results

5.3.1.1 Displacement History

Similar to the quasi-static cyclic test, WPs were used to capture the global specimen displacements. Temposonic transducers were installed along the actuators axes to capture and control the actual movement for each actuator. The displacements of the actuators were geometrically transformed to the global directions and compared with the WP measurements; see Figure 5.11. The cyclic test demonstrated that the transformed displacements based on Temposonic measurements were the most accurate, with the reliability of the geometric transformation successfully verified in the HS trial test. Thus, the displacements of the V-connector in the loading direction were deduced from the transformed Temposonic measurements. Figure 5.12 shows the time history plots of the measured displacements in the local DOFs of north and south actuators along with the resulting displacements in both global longitudinal (U_x) and transverse (U_y) directions. The fact that the two actuators moved together in the same pattern and that the corresponding U_y was almost zero when only U_x was applied confirms once again the good control quality of the actuators.

![Figure 5.11 Lateral displacement time history plots computed from different measurements.](image)
One observation from the above two plots is that the maximum displacement value applied to the V-connector was 3.711 in., which falls into the predicted range of 3.7~3.8 in. when choosing the ground-motion scale factors for the HS test. This justifies using the calibrated V-connector models in performing the nonlinear time history analysis. Note the residual displacement at the end of the earthquakes in the displacement time history plots was around 0.4 in. (about 11% of the maximum displacement), resulting in a residual displacement of 1.2 in. if a full-scale V-connector was used. This is most likely caused by the friction force that prevented the V-connector from going back to its starting position. In addition, the residual plastic deformation of the V-pin may have also added to the residual displacement. In terms of resiliency, this is acceptable; however, future work should focus on how to improve the V-connector’s design to further reduce the residual deformation.

In addition to the lateral displacements, the vertical movements and the rotations of the top block were also measured by using the short-range displacement transducers, similar to those in the cyclic test. It turned out that both the vertical movements and the rotations were negligible.

5.3.1.2 Force History

For displacement-controlled HS test, it is crucial to monitor the displacements because that is the only way to know what deformation the specimen has gone through during testing. Lateral forces are even more important to monitor because it is the force feedback that affects the next-step solution of the governing equations of motion, Equation (2.1), and, in turn, the new displacement input. A constant vertical gravity load was applied by two vertical actuators and maintained
throughout the tests under force control. The time history of the total gravity loading is shown in Figure 5.13, together with the forces measured from each vertical actuator. As can be seen in the plot, the 200-kips gravity load remained very stable.

Figure 5.13 Time history plots of the applied gravity load during the HS test.

Figure 5.14 Time history plots of both north and south actuators load-cell measurements and the resultant forces in the global longitudinal direction (F_x) for the HS test.
Similar to the displacement discussion, the horizontal forces measured in the local DOFs of the actuators through load cells were compared to the resulting force in the global longitudinal direction. Figure 5.14 shows the full histories of the north and south actuator forces along with longitudinal force resultant F_x. The high-frequency component of the plotted forces caused by friction has been filtered out. Again, the actuator forces have approximately similar values and direction, which should be expected because of the longitudinal-only loading.

5.3.1.3 Force-Displacement Relationship

The relationship between the global feedback forces and the applied displacements in the loading direction from the HS test is shown in Figure 5.15(a). The congested part in the middle of the plot reflects the friction forces caused by the small amplitude of displacement oscillations. The curve obtained from the HS test was also plotted against that from the quasi-static cyclic test, see Figure 5.15(b). The good fit of the HS test curve inside the cyclic test curve indicates that there was no degradation in terms of force-displacement relationship during the realistic HS runs up to the MCE level, and that the V-connector’s behavior was consistent after undergoing large deformation amplitudes. This is a very important aspect in terms of resiliency because the replacement of the V-connector can be costly and time-consuming in practice.

![Figure 5.15](image)

Figure 5.15 (a) Force-displacement relationship obtained from the HS test; and (b) comparison of force-displacement relationships from the HS and the quasi-static cyclic tests.

5.3.1.4 Damage Inspection

The damage condition of the V-connector was assessed after the HS test. Figure 5.16 and Figure 5.17 show the damage conditions of the different components of the V-connector. Note that the components of the V-connector went through different levels of damage during the tests.

Figure 5.16(a) and (b) show abrasion damage caused by the friction between the stainless-steel plate and the Teflon washer. This damage was expected because the friction is the main source of energy dissipation. Figure 5.16(c) shows the deformed shape of the V-pin. Some residual plastic deformations distributed along the rod are clearly visible. Such deformed shape means that
the response of the V-pin cannot be treated as elastic during the test, especially when subjected to large displacement amplitudes where geometric and material nonlinearities need to be considered.

Figure 5.17 shows the damage caused by friction between the ball hinge and the hinge holder. This type of damage was unexpected since the ball hinge was originally designed to be able to rotate frictionlessly. The development of friction force can be explained by the geometric nonlinearity of the V-pin during the tests. Since the hinge holder was only allowed to move horizontally instead of vertically, the vertical movement of the V-pin was constrained. Therefore, the V-pin had to elongate to accommodate the horizontal displacements at the top. When the displacement amplitude was large, this elongation was no longer negligible, and tension force developed in the V-pin, leading to an increased pressure between the ball hinge and the hinge holder. As a result, the friction force between these two surfaces occurred. To reduce the friction force, it is recommended to provide certain types of lubrication between the two steel surfaces in order to lower the friction coefficient μ.

Figure 5.16 Damage conditions of the different V-connector components: (a) Teflon washer; (b) bottom surface of the stainless-steel plate; and (c) V-pin.
5.3.2 The Effectiveness of the V-connector

The resiliency of the bridge system with the V-connector being used is achieved in terms of the elastic behavior of the bridge components (mainly the columns) that would otherwise show significant inelastic behavior if using conventional designs. The response quantities of the bridge column were recorded in OpenSees [McKenna et al. 2000] recorders during the HS test; its elastic behavior was confirmed by the moment-curvature relationship at the bottom of the column as shown in Figure 5.18(a).

To further demonstrate the effectiveness of the V-connector and the superior performance of the bridge with the V-connector, nonlinear time history analysis of the as-built prototype bridge (without V-connector) was conducted using the same set of three ground motions in the HS runs. The obtained column moment-curvature behavior was then compared to that obtained from the OpenSees recorders during the HS test; see Figure 5.18(b). The as-built bridge column experienced significant damage as illustrated by the moment-curvature plot, while the bridge column with the V-connector remained essentially elastic. In addition, the use of V-connector significantly reduces the base shear and overturning moment of the column; see Figure 5.19. The period elongation is also quite obvious. These results clearly demonstrate the effectiveness of the V-connector in protecting the key bridge components—the column in this case—and assuring resiliency for the whole bridge system.
Figure 5.18 (a) Moment-curvature relationship at the bottom of the bridge column during the HS test; and (b) comparison of column response with and without the V-connector.

Figure 5.19 Comparison of (a) column base overturning moment; and (b) base shear during the MCE (EQ6) with and without the V-connector.
6 Development of Experimental Program II: Resilient Bridge Bent

Next, the discussion focuses on the second bridge subsystem: the resilient bridge column. This chapter begins with a brief introduction of the innovative features and how these features can lead to superior seismic response and ABC, with the ultimate goal of designing resilient bridge systems. Also included in this chapter are discussions of the physical preparations before the test, the specimen’s design/construction/assembly, material testing, test setup, and the instrumentation. In addition, the three-part experimental program and the loading protocol are briefly discussed to complete the description of the experimental framework. Detailed executions of the experimental program are provided in later chapters.

6.1 INTRODUCTION

The developed bridge subsystem utilizes an innovative self-centering bridge column technology for application in highly seismic regions; see Figure 6.1. It combines precast, post-tensioned, composite steel–concrete columns with supplementary energy dissipation, which simplifies the off- and on-site construction burdens and minimize earthquake-induced residual deformations, damage, and associated repair costs and time. The column consists of RC cast inside a segmented cylindrical steel jacket, which acts as both the formwork and confinement of the concrete, and serves as transverse reinforcement. The pre-cast end beams (a cap beam and a footing in case of a bridge system) have corrugated duct lined sockets, where the columns are placed and grouted on-site to form the column–beam joints. Large inelastic deformation demands in the structure are concentrated at the column–beam interfaces, which are designed to accommodate these demands with minimal structural damage through a rocking behavior. Gaps are allowed to open at these locations and to close upon load reversals. In combination with gravity forces, longitudinal post-tensioned (PT) high-strength steel threaded bars were designed to respond elastically and ensure re-centering behavior. Internal mild steel reinforcing bars, debonded from the concrete at the interfaces, provide energy dissipation and impact mitigation.
6.2 SPECIMEN DESIGN

As stated previously, one of the main objectives for the second half of the resilient bridge bent study was to compare the HS results against the results of a previous shaking table test [Nema 2018]. Therefore, the test specimen utilized here was almost identical to that of the shaking table test, except that the mass blocks on top of Figure 6.1 were removed as the inertia mass can be simulated in the computer. The columns followed the exact same design for the cap beam and the foundation, with some minor non-structural changes made in order to accommodate the new test setup; see Section 6.3. Complete information of the original design can be found in Nema [2018]. Details and changes made on the original design of the columns, the foundation, and the cap beam are presented in the following subsections.

6.2.1 Columns

The columns were designed by scaling down the prototype columns to 35%; description of the prototype columns can be found in Section 7.1.1. Each column of the test specimen has an external diameter of 16 in. Ten #4 ASTM A706 [2016] Grade 60 bars provide the longitudinal reinforcement with a 6-in. portion of each bar debonded from the surrounding concrete using duct tape at the rocking interfaces. Three separate #3 ASTM A706 [2016] Grade 60 spiral segments were used to hold the longitudinal reinforcement together. The splitting of the spirals was to prevent them from contributing to the energy dissipation by yielding at the rocking interfaces. The use of spirals was only for construction purpose as the majority of the shear and confinement reinforcement was provided by the column’s outer shell.
Due to the difficulty in sourcing 3/8-in. strands as required in the specimen representing the scaled prototype, the strands were replaced by a single 1-3/8 in. ASTM A722 [2012] Grade 150 threaded PT bar, which has a yield strength capacity equal to the required ten 3/8-in. strands. The PT bar anchorage was embedded inside the bottom of the column before the placing of concrete, and the PT bar itself was enclosed inside a 2-in. inner diameter (ID) PVC sleeve to debond from the concrete. The top end of the bar was allowed to extend from the top of the column for setting up the prestressing equipment later on. This extension was also proved helpful in guiding the cap beam in place during the specimen assembly in the test setup. Figure 6.2 shows the reinforcement details of the column design.

![Figure 6.2 Dimensions and reinforcement details for the column [Nema 2018].](image)

6.2.2 Foundation/Cap Beam

The foundation, with dimensions 178 in. (length) × 38 in. (width) by 26 in. (height), was designed around the socket connection. The socket for accommodating each column was formed out of a 21-in. ID, 26-in. deep corrugated metal pipe (CMP). Primary reinforcement design was conducted following the strut-and-tie method [Nema 2018] as prescribed in section 5.6.3 of AASHTO [2012]. The column axial load was assumed to be transferred directly to the strong floor of the laboratory, while the lateral load was assumed to be first transferred to the top and bottom of the sockets by lateral bearing, which eventually also went to the strong floor. The strut-and-tie model requires that the socket type of joint has extra cross ties around the connection to prevent splitting in the longitudinal direction due to the bearing forces arising from the transfer of column shear to the foundation. Additional reinforcement was provided around the socket to prevent any splitting due to out-of-plane forces. This reinforcement, while not necessary for the specimen, is necessary in the case of real bridge foundations.
No structural changes were made in the foundation design for the HS. The main change was to accommodate the connection of the bottom clevis of the vertical actuator. For this purpose, a total number of eight 1.5 in.-diameter EMT conduits were aligned with the connection holes on the bottom clevis and placed inside the foundation reinforcing bar cage. Figure 6.3 shows the reinforcement details of the foundation design, with the modification mentioned above highlighted in the drawing.

![PLAN VIEW](image)

![ELEVATION VIEW](image)

Figure 6.3 Dimensions and reinforcement overview for the foundation (modified from Nema [2018]).

Similar to the foundation, the original design of the cap beam with dimensions 164 in. (length) by 38 in. (width) by 32 in. (height), revolved around the socket connection. The socket was again formed by 21-in. OD, 26-in. deep CMP. The reinforcement design was also conducted using the strut-and-tie method. Unlike the foundation, the vertical load needs to be transferred from the cap beam to the columns. For this purpose, a 6 in.-thick layer of reinforced concrete was placed on top of the column sockets and strengthened by overhanging stirrups to prevent punching shear failure. Like the foundation, additional reinforcement was provided to avoid splitting in the
longitudinal and transverse direction. A 2-in. The ID opening was allowed above each socket for the PT bars to pass through.

Although no structural changes were made in the design of the cap beam, some minor adjustments and accommodations were as follows: (1) the size and the number of grouting holes near the socket periphery were increased to allow for easier grouting; (2) a total of ten 1.5-in. diameter EMT conduits were aligned with the connection holes on the top clevis of the vertical actuator for actuator connection; and (3) three steel plates were embedded into the cap beam reinforcing bar cage for the lateral support of the test setup. Figure 6.4 shows the reinforcement details of the cap beam design, with modifications mentioned above highlighted in the drawing.

Figure 6.4 Dimensions and reinforcement overview for the cap beam (modified from Nema [2018]).

6.3 TEST SETUP

The experimental investigation consisted of two phases: (1) compare the test results from the HS test and the shaking table test; and (2) do a system-level performance evaluation of a representative
highway bridge with resilient bridge bent design. In both phases, two-directional ground-motion inputs were considered—one horizontal and the vertical component—therefore, lateral and vertical loading systems were required to be carefully arranged.

Because of its experimental nature, the test specimen during the HS experiment needs to interact with the analytical substructure modeled in the computer. Figure 6.5 depicts the substructuring in Phase I of the HS test. The interaction between the experimental substructure and the analytical substructure was achieved through the forces and the moments at the center of the cap beam. For the experimental substructure, these quantities are external and need to be applied through actuators. One key issue in determining the test setup was the layout of the horizontal actuator(s); refer to Figure 6.6. If the external moment is negligible, then it is sufficient to use only one layer of actuator(s). Otherwise, two layers of horizontal actuators are needed, and the force in each actuator needs to be carefully controlled to apply the desired forces and bending moments.

![Figure 6.5 Substructuring in Phase I of the hybrid simulation.](image)

![Figure 6.6 Different layout of the horizontal actuator(s).](image)
The criterion to judge whether the bending moment is negligible or not was to check the demand to capacity ratio (DCR) of the base overturning moment of the bridge bent from the shaking table test results. The moment capacity M_C and demand M_D of the bridge bent were calculated by Equation (6.1).

$$
M_C = F_{\text{max}} \times H \\
M_D = \dot{\theta}_{\text{max}} \times I
$$

where:

$$
\dot{\theta} = (\ddot{a}_2 - \ddot{a}_1)/d \\
I = 2I_1 + 4(I_1 + m_{\text{block}}d^2/4)
$$

Figure 6.7 is a schematic illustration of the above calculation where relevant terms are defined by the following:

- F_{max} = maximum lateral inertia force, measured from the shaking table test;
- H = center-to-center distance between the bent cap and the foundation;
- θ_{max} = maximum angular acceleration above the columns;
- I_1 = rotational inertia for one single inertia block;
- m_{block} = mass for one single inertia block;
- \ddot{a}_1 and \ddot{a}_2 = vertical accelerations of the inertia blocks measured from the shaking table test; and
- d = distance between the inertia blocks, as shown in Figure 6.7.

Figure 6.7 Moment capacity and moment demand calculations of the bridge bent from the shaking table test.
Using data from the shaking table test, the maximum lateral inertia force was 70 kips, resulting in an M_C of 940 kip-ft. The maximum angular acceleration was found to be 2.2 rad/sec2, leading to $M_D = 81.4$ kip-ft. Therefore, the DCR ratio M_C/M_D is about 0.087, meaning that the moment at the center of the cap beam was negligible. For this reason, the test setup with only one horizontal actuator was selected for practicality. A 3D sketch of the test setup, including the loading systems and boundary supports, is shown in Figure 6.8. Details of the test setup is shown in different views in Figure 6.9 and Figure 6.10.
As can be seen from the test setup drawings, the foundation of the test specimen was composed of hydrostone and prestressed to the steel anchor beam attached to the strong floor of the laboratory. A vertical actuator was placed in the middle of the specimen between the two columns to apply the gravity load as well as the vertical force fluctuation caused by the vertical ground-motion component. The respective connections between the top and bottom clevises of the vertical actuator and the cap beam and foundation of the test specimen were achieved through William rods. Ten 1-in. diameter rods, with one end bolted to the top clevis, were anchored to the top surface of the cap beam after being prestressed. Similarly, eight 1-in. rods connecting the bottom clevis and the foundation were prestressed and anchored to the top flange of the underlying steel beam. This way, the vertical actuator pulls downwards or pushes upwards on the cap beam.
from the top and reacts against the stationary steel beam at the bottom. To make the actuator close to mid-stroke before starting the test, three 3-in. thick spacer plates were added between the vertical actuator and the cap beam.

The lateral load was applied to the cap beam using one horizontal actuator that reacted against the steel bracket on the reaction wall, shown schematically in Figure 6.8. Two steel end plates sandwiching the cap beam were fabricated and connected by four prestressing rods. The horizontal actuator was then bolted to the near end plate. This way, when the actuator extended, the force was directly applied to the cap beam as bearing on the near end. When the actuator retracted, the force was transferred through the prestressing rods to the other side of the cap beam, and bearing was achieved at the far end. Similar to the shaking table test, to prevent the cap beam from the out-of-plane movement when applying the lateral load, a lateral supporting system was employed. Figure 6.11 shows the out-of-plane restraining system details. Three steel plates, embedded inside the cap beam before casting the concrete, were welded to a T-beam. The T-beam, although restrained by the adjustable brackets from moving sideways, was allowed to slide frictionlessly along the loading direction by greasing the contact surfaces.

The complete test setup is shown in Figure 6.12. Throughout the study, the loading in the horizontal direction (also referred to as the transverse direction of the bridge) is along the east–west direction. Whenever the horizontal actuator is pushing towards the east, it is designated as positive, and, in turn, the negative loading direction is when the actuator retracts, i.e., moving towards the west. The positive and negative directions for the vertical loading are axiomatic.
6.4 EXPERIMENTAL PROGRAM

6.4.1 Hybrid Simulation System Verification Test

Before starting the actual HS experiments, a verification test is indispensable to check the three key aspects of the newly developed HSS. The first aspect is the correctness of the numerical integration and the displacement interpolation algorithm. At each time step, the numerical integration takes the measured force as an input and calculates the displacement to be imposed to the test specimen as an output. The displacement interpolation aims for a smooth transition between two displacement values from subsequent time steps.

The second aspect is the proper back-and-forth communication between the physical and computational components of the hybrid system. During the test, the computed displacement (in a digital format) needs to be converted to an analog voltage such that the controller can recognize before imposing it to the physical specimen, while the measured resisting force (in an analog format) needs to be converted to a digital value to be sent back to the numerical integration algorithm. These conversions are achieved by the built-in Simulink blocks, and their proper functionalities are key to the simulation execution.

The third aspect is related to the control quality of the actuators. Good displacement tracking is crucial to HS because the measured resisting force from the physical component is directly related to the computed applied displacement. In addition, displacement overshooting, or undershooting can lead to either a damping increase or instability issues; see Figure 6.13. All aspects were successfully verified through a HS verification test with free actuators detached from the test specimen.
6.4.2 Hybrid Simulation Phase I

The objective of Phase I HS experiments was to compare the test results with results from shaking table tests. For this purpose, the two-column bridge bent was simulated as the experimental substructure, while the horizontal/vertical mass and the corresponding mass-proportional damping were modeled in the computer. The modeling parameters were obtained by analyzing the test data obtained from the shaking table test. The same ground-motion records, consisting of one horizontal and the vertical component measured directly by the accelerometers mounted on the shaking table, were applied as the input excitations to the equations of motion in the HS. This was done to eliminate any possible errors between the target signals and the actual signals obtained from the shaking table test. More details regarding Phase I of the HS are presented in Chapter 7.

6.4.3 Hybrid Simulation Phase II

The third part of the experimental program was an evaluation of the system-level performance of a representative bridge with the innovative bridge bent design under seismic loading. The selected prototype bridge is the same as the one used in the V-connector study: the Jack Tone Road On-Ramp Overcrossing; see Figure 4.1. In this HS phase, the analytical substructure was changed from a single mass and dashpot in Phase I HS testing to the superstructure of the bridge, including the end abutments. The experimental substructure remained the same as in Phase I. Unlike the HS test of the V-connector that focused on the longitudinal direction of the bridge, here the focus was on the transverse direction. Some ground motions from Phase I testing were repeated to check the effect of different analytical substructures on the specimen and entire bridge system responses. Followed by that, a set of three ground motions with increasing intensity was selected from the NGA West2 ground-motion database [Bozorgnia et al. 2014] based on the target spectrum of a highly seismic site. These ground motions were applied to the full bridge system for the system-level study.

6.5 LOADING PROTOCOL

6.5.1 Gravity Load

For the two HS phases, two different values of gravity load were selected. In Phase I, a gravity load of 47 kips corresponding to the total weight of six inertia mass blocks attached to the cap
beam in the shaking table test was applied to the test specimen before starting the HS experiment. This way, the same initial value of the column axial forces could be achieved in both the shaking table test and the HS experiment. This is a very important aspect as the specimen response can be heavily dependent on the level of the column axial force.

In Phase II HS, the applied gravity load represented the weight of the prototype bridge’s superstructure. A gravity analysis of the prototype bridge with the inclusion of a full-scale bridge bent was conducted, with the force on top of the bridge bent being extracted; see Section 8.1.6.3 for more detail. After proper scaling, this force served as the gravity load (172 kips, i.e., about 3.6 times that of Phase I of the HS) applied to the test specimen before the HS experiment.

6.5.2 Earthquake Load

In both HS phases, the applied earthquake loadings were based on the computed responses in the horizontal and vertical directions after the gravity loading. The horizontal loading was applied using a slow-rate displacement control, with a loading rate of 0.05 in./sec. For the vertical direction, the original plan was also to conduct a slow-rate displacement control according to the computed displacement. As discussed in Section 7.4.1, a decision was made to switch from a displacement control to a force control due to the limitation of the test setup. The vertical force was obtained by multiplying the calculated vertical displacement with the estimated vertical stiffness of the specimen under the assumption that the specimen would remain essentially elastic in the vertical direction. Again, a slow-rate force control was utilized in the vertical direction with a loading rate of 2 kips/sec.

6.6 CONSTRUCTION OF THE TEST SPECIMEN

The test specimen was constructed in two phases, following the same steps as those in the shaking table test [Nema 2018], with the exception of minor changes cited in Section 6.2. A brief description of the different construction phases in presented below. Appendix B provides additional details of the construction process.

Building the columns was the main focus of Phase I construction. The two bridge columns were constructed together with those used in the shaking table test by a professional construction company and then delivered to the laboratory. The use of a dry-socket connection between the columns and the end beams allowed for an innovative construction method. The entirety of each column was formed by inserting the reinforcement cage inside a segmented steel shell that was assembled from 0.25-in.-thick ASTM A53 [2012] Grade B pipe, followed by the placing of concrete with nominal compressive strength of 6 ksi. The steel pipe served as both the permanent formwork and the transverse confinement for the column concrete. It also provided a force transfer mechanism between the columns and the end members (cap beam and foundation). To allow rocking at the beam–column and column–foundation interfaces, the steel shell was segmented into five sections: two embedded end sections with weld beads outside and inside for developing composite action, one central section over the column clear height, and two thin removable open strips between the central section and the two end sections. The five segments were spot welded
together at a few locations to form the single pipe unit for the casting of the concrete. During the specimen assembly, the spot welds were grinded off, and the thin strip segments were removed to form the rocking interfaces; see Appendix C. Photographs of the column construction process are shown in Figure 6.14 to Figure 6.16.

![Segmented column steel shells](image1)

(a) Segmented column steel shells; and (b) finished column reinforcing bar cages.

![Concrete placing setup](image2)

(a) Erect the column steel shells; and (b) column reinforcing bar cages installation.
Phase II of the construction included laying out the formworks for the foundation and cap beam, furnishing the transverse and longitudinal reinforcement, constructing the reinforcing bar cages, placing these cages and other supplementary parts (including the CMP, EMT conduits and the embedded steel plates) in place, and casting of the concrete. All these steps in this study were completed in the local laboratory with the help of students and laboratory technicians. Figure 6.17 to Figure 6.19 show this Phase II of the construction process for the foundation and the cap beam. Curing blankets in addition to the chemical E-CURE were used to cure the concrete during the first week after casting to avoid shrinkage cracks.
Figure 6.18 (a) Reinforcing bar cages and formworks before concrete casting; and (b) concrete curing using curing blankets.

Figure 6.19 (a) Final completed foundation; and (b) and cap beam.

6.7 MATERIAL PROPERTIES

Extensive material testing was conducted for steel and concrete as part of the research program on resilient bridge bent. These material tests are presented in the following subsections.

6.7.1 Steel

6.7.1.1 Reinforcing Steel

The reinforcing steel used in the columns serving as the energy dissipator was ASTM A706 [2016] Grade 60, size #4. Three 18-in. long reinforcing bar coupons were tested using a Universal Testing Machine under monotonic tension to characterize the material properties. All coupons were tested until rupture occurred. The stress and strain were calculated by dividing the total load by the
nominal cross-sectional area of the reinforcing bar and the deformation by the gauge length. Test results are summarized in Table 6.1. The stress–strain curves obtained from all coupons together with the average curve are shown in Figure 6.20. Note that the 0.2%-offset yield point was used to find the yield stress and corresponding yield strain.

![Stress–strain curves](image)

Figure 6.20 (a) Stress–strain curves for all three reinforcing bar coupons; and (b) average stress–strain relationship and yield point.

6.7.1.2 Prestressing Steel

The prestressing steel used for post-tensioning the columns was ASTM A722 [2012] Grade 150 threaded bar with 1-3/8-in. nominal diameter. Three 24-in.-long PT bar coupons were tested under monotonic tension to characterize the material; see Table 6.1 for test results. The stress–strain curves obtained from all three coupons together with the average curve are shown in Figure 6.21. The 0.2%-offset yield point was again utilized to determine the yield stress and corresponding yield strain.

![Stress–strain curves](image)

Figure 6.21 (a) Stress–strain curves for all three PT bar coupons; and (b) average stress–strain relationship and yield point.
6.7.1.3 Shell Steel

The column shell was made from ASTM A53 [2012] steel. Three steel coupons were made out of the 0.25-in. strips removed from the column outer steel shell at the rocking interfaces (see Figure 6.22) and were tested under monotonic tension. Figure 6.23 shows the test setup. All coupons were tested until rupture occurred. The average properties are reported in Table 6.1. The stress–strain curves obtained from all three coupons together with the average curve are shown in Figure 6.24. For the strips, the strain recording was stopped at 1.8%, and only the ultimate strength was reported beyond that point. Again, the 0.2%-offset yield point was used to find the yield stress and corresponding strain values.

![Figure 6.22 Test coupons made from the removed strips.](image1)

![Figure 6.23 (a) Material property test setup for shell steel; and (b) observed necking during the test.](image2)
Table 6.1 Measured mechanical properties of the steel.

<table>
<thead>
<tr>
<th>Material</th>
<th>A706 Grade 60</th>
<th>A722 Grade 150</th>
<th>A53</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>St. Dev.</td>
<td>COV</td>
</tr>
<tr>
<td>Elastic modulus (ksi)</td>
<td>26,900</td>
<td>573</td>
<td>0.021</td>
</tr>
<tr>
<td>Yield stress (ksi)</td>
<td>71.272</td>
<td>3.857</td>
<td>0.054</td>
</tr>
<tr>
<td>Yield strain</td>
<td>0.0047</td>
<td>0.0001</td>
<td>0.021</td>
</tr>
<tr>
<td>Peak stress (ksi)</td>
<td>98.958</td>
<td>4.609</td>
<td>0.047</td>
</tr>
<tr>
<td>Ultimate strain</td>
<td>0.1365</td>
<td>0.0427</td>
<td>0.313</td>
</tr>
</tbody>
</table>

6.7.2 Grout

BASF MasterFlow® 928 non-shrink grout, mixed at fluid consistency with a 17% by weight percentage of water was used for grouting the top and bottom gaps between the columns and the CMP socket walls. Compressive strength tests were conducted to check the strength of the grout on the first day of Phase I HS testing. For this test, a total number of twelve 2-in.-diameter × 4-in.-high cylinders were taken from the top and the bottom grout, six for each batch, and were placed next to the test specimen in the same indoor laboratory conditions. The cylinders were capped with a sulfur compound at both ends before being tested at UCB on a Universal Testing Machine in the Concrete Laboratory in Davis Hall. The test setup and a typical tested and crushed grout cylinder are shown in Figure 6.25. Test results are summarized in Table 6.2.
Figure 6.25 (a) Compressive strength test setup for grout; and (b) typical mode of failure.

Table 6.2 Compressive strength test results for the grout.

<table>
<thead>
<tr>
<th>Material</th>
<th>Age (day)</th>
<th>Compressive strength (ksi)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mean</td>
</tr>
<tr>
<td>Bottom grout</td>
<td>122</td>
<td>6.859</td>
</tr>
<tr>
<td>Top grout</td>
<td>85</td>
<td>5.662</td>
</tr>
</tbody>
</table>

6.7.3 Concrete

Normal-weight concrete was used for the foundation, the cap beam, and the columns, with a specified strength of 6 ksi and maximum aggregate size of 3/4 in. A minimum slump of 6 in. was required to ensure proper workability and flowability of the concrete inside the congested reinforcing bar cages. A slump test was performed, and slump value was verified before engaging the concrete lift to avoid any construction problems; see Figure 6.26(a).
Table 6.3 Compressive strength test results for the concrete.

<table>
<thead>
<tr>
<th>Material</th>
<th>Age (day)</th>
<th>Compressive strength (ksi)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mean</td>
</tr>
<tr>
<td>Column concrete</td>
<td>7</td>
<td>4.421</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>5.023</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>6.187</td>
</tr>
<tr>
<td></td>
<td>DOT</td>
<td>6.793</td>
</tr>
<tr>
<td>Foundation/ cap beam concrete</td>
<td>7</td>
<td>3.534</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>4.867</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>5.316</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>5.840</td>
</tr>
<tr>
<td></td>
<td>DOT</td>
<td>6.789</td>
</tr>
</tbody>
</table>

To monitor the strength gain of concrete with time at standard ages (7, 14, 21, and 28 days) and the first day of testing (DOT), compressive strength tests were conducted using 6-in.-diameter × 12-in.-high standard cylinders. Two sets of cylinder samples were collected, one from the end members (cap beam and foundation) and the other from the columns (as the concrete was placed on separate days); see Figure 6.26(b). Each set of cylinder samples was collected from the same batch of concrete when casting different parts of the specimen and were cured in the same indoor laboratory conditions. Similar to the grout testing, the cylinders were capped with a sulfur
compound at both ends before being tested on the same Universal Testing Machine in accordance with ASTM C39 [2005]. The test results for the concrete at all different ages are listed in Table 6.4.

In addition to the regular compressive tests, the same test setup was used for a compressive stress–strain test under force control to determine the constitutive behavior of the concrete. The only difference from regular compressive tests was the use of an axial extensometer around the cylinder to measure the strain; see Figure 6.27. To obtain the stress–strain curve up to the failure point, six sample cylinders from each set were instrumented with the axial extensometer and tested on the first DOT. The axial extensometer consists of two displacement transducers attached to the opposite side of the cylinder to measure the average strain based on the readings from both transducers. Figure 6.28 plots showing the stress–strain curves; the results are summarized in Table 6.4. For most of the sample cylinders under stress–strain testing, the post-peak constitutive behavior could not be captured. This is because the axial extensometer fell off the cylinder surface as the concrete reached peak strength and spalling occurred, leading to unreliable data afterwards.

<table>
<thead>
<tr>
<th>Material</th>
<th>Age (day)</th>
<th>Stress at peak (ksi)</th>
<th>Strain at peak</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mean</td>
<td>St. Dev.</td>
</tr>
<tr>
<td>Column concrete</td>
<td>DOT</td>
<td>6.793</td>
<td>0.676</td>
</tr>
<tr>
<td>End member (foundation/cap beam) concrete</td>
<td>DOT</td>
<td>6.789</td>
<td>0.610</td>
</tr>
</tbody>
</table>

Figure 6.27 (a) Stress–strain compressive test setup for the concrete; and (b) the typical mode of failure of the tested cylinders.
Figure 6.28 Stress–strain curves for (a) column concrete; and (b) foundation/cap beam concrete.

6.8 INSTRUMENTATION

Different types of instruments were installed to monitor different aspects of the response during testing, including forces, displacements and strains. All the sensor data was sampled at 20 Hz.

6.8.1 Load Measurements

Two different types of equipment were used to measure the load during the test. These include the load cell and the hydraulic pressure jack.

6.8.1.1 Load Cell

As described in Section 3.8.1, load cells are essential for the actuator control and for measuring the total forces applied to the test specimen. Two load cells, one for each actuator, were used to measure the actuator forces; see Figure 6.29. The vertical actuator was used to apply the gravity and the earthquake loads under force control. The horizontal actuator was running in displacement control, and the resisting forces measured by the load cell were directly used in the numerical integration to advance the calculations. Thus, the load-cell measurements in both directions were indispensable. The load cells were calibrated before the test.
6.8.1.2 Pressure Jack

The hydraulic pressure jacks used in this study had two tasks: prestress the PT bars and obtain the PT bar forces. Two pressure jacks were used, each one being connected to an individual two-stage pump; see Figure 6.30. During the prestressing stage, the pump pushed the oil into the reservoir of the jack and drove the piston up, which extended the PT bar, and the prestressing force was developed accordingly. When the prestressing force reached the target value of 40% guaranteed ultimate tensile strength (GUTS), the returning valve of the pump was locked to prevent the backflow of the oil and thus maintain the oil volume during the test.

Figure 6.30 (a) Hydraulic pressure jacks on top of the test specimen; and (b) the two-stage pump.
The PT bar forces were not measured directly. Instead, a pressure transducer with maximum measuring range of 10 ksi was installed on each pressure jack to measure the oil pressure, which was then converted into forces by multiplying the pressure value with the jack’s piston area. To make sure the conversion is reliable, the pressure jacks were calibrated on the Universal Testing Machine to obtain the load-pressure curves. Two cycles of loading-unloading were conducted, and the curves obtained for each jack are shown in Figure 6.31. The linear relationship for each jack is a good indication of the conversion reliability.

![Pressure transducer](image)

Figure 6.31 (a) Pressure jack calibration setup; and (b) load-pressure curves for the two used pressure jacks.

6.8.2 Displacement Measurements

Similar to the V-connector study, the displacements were measured using long- and short-range displacement transducers. The long-range displacement transducers were linear WPs with ±20 in. stroke. Six WPs were installed on the instrumentation frames away from the test specimen, with two in the direction of the lateral loading to measure the relative displacements between the two end members (cap beam and foundation) and four on the northside of the cap beam to monitor out-of-plane displacements and rotations, if any. In addition, four diagonal and four vertical WPs were triangulated in pairs between the cap beam and the foundation to provide redundant measurements of the relative displacements. Note that since the foundation is fixed, the relative displacements obtained are, in fact, the applied displacements to the cap beam. Thin steel strings (piano wires) were utilized to connect the cords of the transducers to the target points mounted on the test specimen. Figure 6.32 shows some details of the WPs installation. The layout of all WPs is schematically represented in Figure 6.33 and Figure 6.34.

The short-range displacement transducers were LVDTs with two ranges of stroke: ±1.0 in. and ±2.0 in. The goal was to measure the gap opening and rocking behavior. Four LVDTs were installed at each rocking interface, with the two longer ones installed along the lateral loading direction where the main rocking behavior is expected to take place, and two shorter ones orthogonal to the loading direction. As shown in Figure 6.35, flat aluminum plates with polished...
surfaces were placed underneath the tips of the LVDTs. Figure 6.36 shows the layout of all sixteen LVDTs being installed.

Figure 6.32 (a) WPs on the northside of the instrumentation frame; and (b) WPs between the cap beam and the foundation.
Figure 6.33 Layout of WPs on the instrumentation frames: (a) east/west elevation view; (b) north/south elevation view; and (c) plan view.
Figure 6.34 Layout of WPs between the two end members (cap beam and foundation).

Figure 6.35 (a) LVDTs installed at the bottom interface; and (b) those at the top interface.
6.8.3 Strain Measurements

Different types of strain gauges were extensively installed to measure strains on the reinforcing bars and the column steel shells. The steps for strain gauge installation can be found in Section 3.8.3.

6.8.3.1 Columns

Figure 6.37 and Figure 6.38 depict the strain gauges layout for the columns. Ten regular strain gauges were installed in the debonded lengths of three energy dissipators at each rocking interface and in each column to measure the strains experienced during testing. Eight additional strain gauges were installed outside the debonded lengths of the longitudinal reinforcement in the east column to determine the strain distribution.

For both columns, four strain gauges were vertically installed on the top embedded steel-shell segment orthogonal to the loading direction to measure the strains produced by the transfer of the axial forces between the columns and the cap beam. Eight horizontal strain gauges were also installed on diametrically opposite points that were 2.5 in. and 8.5 in. away from each rocking interface.
interface along the loading direction to estimate the circumferential strain behavior of the steel shell.

For the west column, the steel-shell segments embedded inside the sockets were fitted with four rosette gauges at each end: one gauge at each point 2 in. from the end of the embedded segment and on diametrically opposite points along the loading direction; see Figure 6.39. Finally, two strain gauges were installed on both PT bars at the same location above the cap beam but within the portion being post-tensioned to measure the PT bar strains.
Figure 6.37 Strain gauges layout of the east column.
Figure 6.38 Strain gauges layout of the west column.
6.8.3.2 Cap Beam

A total number of sixteen strain gauges were installed in the cap beam, with eight on the stirrups and eight on the top/bottom layer of the longitudinal reinforcement. As shown in Figure 6.40 and Figure 6.41, the stirrup strain gauges were placed above each socket to monitor any possible strains caused by the punching shear effect, while the strain gauges on the longitudinal reinforcing bars were placed at locations where the maximum positive/negative bending moments were expected to occur. Based on the design, the cap beam should remain essentially elastic, and no reinforcement yielding should be expected.
Figure 6.40 Strain gauges layout on the stirrups of the cap beam.

Figure 6.41 Strain gauges layout on the longitudinal reinforcement of the cap beam.
6.8.4 Cameras

Cameras were used extensively throughout the experimental study. Figure 6.42 shows the arrangement of various cameras used during the test. For all test runs, a Canon EOS 6D digital single-lens reflex (DSLR) camera was placed on the north side of the test specimen to capture the overall response. In addition, three GoPro cameras were mounted at the rocking interfaces to capture the opening and closing of the gaps. All cameras performed time-lapse photography, taking high-quality pictures at 10-sec intervals because of the slow test speed.

Figure 6.42 (a) DSLR camera on the north side; and (b) GoPro cameras at west column bottom; (c) east column bottom; and (d) west column top.
As mentioned in Chapter 2, since HS combines the benefits of the quasi-static testing method and the shaking table test (real-time HS is not considered here as traditional facilities for quasi-static tests are insufficient), it can be as cost-effective as the quasi-static test while at the same time providing sufficient realistic results that are comparable to shaking table test results. If rate-dependency of the material response is not of major concern, the results of the HS experiment and those from a shaking table test performed on the same structural system should be reasonably close. To the authors’ best knowledge, few researchers have focused on comparing these two test methods.

This chapter describes the Phase I HS of a resilient bridge bent. Before discussing the HS results, the previously conducted shaking table test [Nema 2018] is briefly recapped, including the derivation of the test specimen, the selected input ground motions, and the main test results. Next, the detailed implementation of a new HSS in Matlab/Simulink [MathWorks 2015] environment is provided. This HSS was successfully verified by a HS trial run for various aspects, e.g., the actuator control quality, the implemented numerical integration and interpolation, and the back-and-forth communication. The parameters in the HS test were estimated from the shaking table test results for a more reliable representation of the dynamic system.

Six ground-motion records measured directly from the accelerometers on the shaking table were repeated in this phase of the HS experiments, i.e., Phase I HS. The main part of the post-processing herein is dedicated to comparing the results between the HS test and the shaking table test results. Some other relevant response quantities are also presented.

7.1 SHAKING TABLE TEST SUMMARY

An early study on the proposed bridge subsystem was conducted in 2017 at the PEER Earthquake Simulation Laboratory [Nema 2018]. The test specimen represents a 35% scale (i.e., length scale factor $S_L = 2.857$), two-column bridge bent originated from an existing bridge located in a highly seismic region. It was tested under dynamic loads arising from simulated ground motions produced by a shaking table. Inertia forces were provided by six concrete blocks (47 kips) post-tensioned to the cap beam and the cap beam itself (22 kips) for a combined weight of 69 kips, simulating the portion of the bridge superstructure weighing 573.3 kips over two columns. The scale factor for
the weight S_W was chosen to be S_L^2 instead of S_L^3 in an attempt to match the stresses of the columns. Figure 7.1 shows the setup and specimen configuration from the shaking table test. Several ground motions with one horizontal and the vertical component were applied. The ground motions were selected and scaled according to targeted lateral displacement demands, as predicted by preliminary numerical simulations. The dynamic response of the specimen was monitored using a dense instrumentation setup. Verification of the system’s re-centering capabilities and accuracy of the analysis methods were of primary interest.

![Test setup](image)

Figure 7.1 Test setup used for the shaking table test: (a) view from the northeast; and (b) view from the northwest (photo credit: Robert Cerney, laboratory technician).

7.1.1 Prototype Bent Development

The prototype bent used in the planning of the shaking table test was derived from an existing bridge in close proximity to the San Andreas fault: the Massachusetts Avenue Over Crossing (MAOC) located in San Bernardino, California, near the I215/HW210 Interchange. Note: this prototype bridge was used for developing the test specimen for the shaking table test, but the same prototype bridge employed in the HS test of the V-connector (i.e., the Jack Tone Road On-Ramp Overcrossing) was used in Phase II HS of the bridge bent, as described later. There are two main reasons for this change in the prototype bridge: (1) to explore the two studied systems (V-connector and resilient bridge bent) using the same prototype; and (2) the modifications of the prototype bent by considering only the edge columns (described below) make the application of HS on the MAOC bridge inconvenient to explore the system-level response.

The as-built MAOC bridge consists of five asymmetric spans of lengths 15.0 m, 28.8 m, 28.0 m, 30.4 m, and 23.8 m for a total bridge length of 126 m (415 ft). The four bent caps are skewed with respect to the bridge post-tensioned box girders to match the roadway underneath it. Each bent cap is supported on four 1.22-m-diameter reinforced columns with 22 No.36 (#11) mild
steel. The girder ends rest on isolated shear keys formed by bearing pads placed between the girders and the abutments. The elevation view and plan view of the bridge are shown in Figure 7.2; a typical bridge bent is shown in Figure 7.3.

In order to better represent the bridge behavior in the test, resilient columns were incorporated into a 3D OpenSees [McKenna et al. 2000] model of the bridge by replacing the as-built bridge columns. The 3D bridge model was originally developed for studying the seismic response with several types of shear keys [Beckwith 2015]. The modeling of the resilient column was developed and validated against several test results [Guerrini et al. 2012].

Figure 7.2 Elevation and plan views of the MAOC bridge (source: Caltrans structural drawings).
For the redesign of the bridge utilizing resilient columns, a portion of the mild reinforcing steel in the conventional design was replaced with PT reinforcement. The goal in replacing the steel with the PT reinforcement was to maintain similar strength between the conventional and the new design. This was achieved by matching the combined yield strength of mild and PT steel in the hybrid design to the yield strength of mild steel in the conventional design. The resilient column consists of ten No. 36 (#11) mild steel bars and 8×4 15-mm Grade 270 strands stressed at 40% GUTS. A representation of the cross sections of the as-built conventional column and the resilient column is shown in Figure 7.4. An effective mild steel debonded length of 1.22 m was used for the resilient column configurations, which was equal to 0.5 m applied debonding and additional 20 bar diameters (0.72 m) to account for the development length on either side of the interface. A 12.7-mm-thick steel jacket was used to confine the entire column. The column clear height was assumed to be precast, and the column–beam interface was assumed to be made of a 25.4-mm-thick layer of high-strength mortar. Finally, the debonded PT strands were assumed to terminate 0.78 m away from the column ends, which is the center of gravity of the bent cap.

With the details of the resilient columns established, a full-scale prototype bridge bent was developed representing the specimen to be tested on the shaking table. This prototype, derived from bent #3 of the MAOC bridge, contains two resilient columns instead of four; see Figure 7.5. This change was made to maximize the utilization of the shaking table in terms of force and displacement capacities, and to optimize the experimental cost. The modification necessitated

Figure 7.3 Elevation view of a typical bent of the MAOC bridge (source: Caltrans structural drawings).

further changes in the prototype’s geometry, specifically the distance between the columns, to improve similarity (in terms of column axial stresses) between the two columns in the prototype bent and the two marked edge columns in the MAOC bridge bent; refer to Figure 7.5.

Figure 7.4 Left: cross section representation of the as-built column; and right: the re-centering column [Nema and Restrepo 2020].

Figure 7.5 Prototype bent derived from the MAOC bridge for designing the test specimen.
The analytical modeling of the prototype bent began with two resilient columns separated by a distance of 9.2 m, which was the same as the center-to-center distance between the two edge columns in bridge bent #3. The columns were modeled in an identical fashion as those in the updated MAOC bridge, with a clear height of 9.6 m, which is the average clear height of the columns in bent #3. The foundation and cap beam dimensions were assumed to be the same as those in the MAOC bridge. The effective inertia and gravity load corresponding to the two columns were inferred to be 2.55 MN (573.3 kips) for the prototype bent from the analysis of the as-built MAOC bridge.

To obtain comparable results from the modified prototype bent and the original bridge, the bridge’s skew angle was chosen to be zero, and only transverse and vertical excitations were used. This is because the modified prototype to be used for scaling to the specimen size contains only one single bent, and no actual girders providing constraints in the longitudinal direction were present. The parametric study for investigating the column distance in the modified prototype bent utilized the fault-normal and vertical components of the ground motions measured at the Sylmar-Olive View Medical Center station during the 1994 Northridge, California, earthquake. The axial loads in the columns of this modified prototype bent were compared to those in the outer columns of bent #3 in the as-built bridge for different column distances. Figure 7.6 shows the responses for a few selected distance values. The “initial load” in the plot is the axial load of the column due to gravity. On the basis of these results, a column center-to-center distance of 4.2 m was selected for the modified prototype bent configuration to be used for designing the shaking table test specimen.

![Figure 7.6](image)

Figure 7.6 Comparison of axial loads between the edge columns in the MAOC bridge and the columns in the modified prototype bent [Nema 2018].
7.1.2 Input Ground Motions

After proper scaling down of the modified prototype bent presented in previous section, the numerical model for the test specimen was used to select a set of near-fault earthquakes to be imposed on the specimen for dynamic testing. The selection was made based on expected peak drift as calculated by the numerical model in comparison with the design drift capacity of the system defined by the yielding of the PT bars (calculated to be 7%). The selected motions represent very small (0.6% drift), small (1.8% drift), moderate (4% drift), and large (> 5% drift) events.

Nine ground motions comprised the initial loading protocol. To investigate the effect of lower intensity aftershocks, the test was not conducted with continuously increasing demands; instead, a larger motion was followed by smaller intensity of shaking until a peak drift of 4% was reached. For larger drifts, ground-motion polarity was occasionally switched to avoid damaging the specimen in only one direction. Significant structural integrity remained after the initially planned sequence, and the scope was expanded with three additional tests. Details of the final ground-motion sequence are listed in Table 7.1 in the order they were imposed on the specimen.

Table 7.1 Input ground motion sequence for the shaking table test.

<table>
<thead>
<tr>
<th>EQ #</th>
<th>Event name</th>
<th>Station name</th>
<th>Unscaled PGA (g)</th>
<th>Scale factor</th>
<th>Expected drift (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Landers, 1992</td>
<td>Lucerne</td>
<td>0.72</td>
<td>0.90</td>
<td>0.6</td>
</tr>
<tr>
<td>02</td>
<td>Landers, 1992</td>
<td>Lucerne</td>
<td>0.72</td>
<td>0.90</td>
<td>0.6</td>
</tr>
<tr>
<td>03</td>
<td>Tabas, 1978</td>
<td>Tabas</td>
<td>0.85</td>
<td>-0.90</td>
<td>1.8</td>
</tr>
<tr>
<td>04</td>
<td>Kocaeli, 1999</td>
<td>Yarimca</td>
<td>0.30</td>
<td>1.00</td>
<td>0.6</td>
</tr>
<tr>
<td>05</td>
<td>Northridge, 1994</td>
<td>RRS</td>
<td>0.85</td>
<td>0.81</td>
<td>4.0</td>
</tr>
<tr>
<td>06</td>
<td>Duzce, 1999</td>
<td>Duzce</td>
<td>0.51</td>
<td>1.00</td>
<td>1.8</td>
</tr>
<tr>
<td>07</td>
<td>Northridge, 1994</td>
<td>NFS</td>
<td>0.72</td>
<td>-1.20</td>
<td>4.0</td>
</tr>
<tr>
<td>08</td>
<td>Kobe, 1995</td>
<td>Takatori</td>
<td>0.76</td>
<td>-0.80</td>
<td>5.0</td>
</tr>
<tr>
<td>09</td>
<td>Kobe, 1995</td>
<td>Takatori</td>
<td>0.76</td>
<td>0.90</td>
<td>7.0</td>
</tr>
<tr>
<td>10</td>
<td>Tabas, 1978</td>
<td>Tabas</td>
<td>0.85</td>
<td>-0.90</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>Northridge, 1994</td>
<td>RRS</td>
<td>0.85</td>
<td>0.81</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>Kobe, 1995</td>
<td>Takatori</td>
<td>0.76</td>
<td>-0.80</td>
<td>-</td>
</tr>
</tbody>
</table>

7.1.3 Test Results

The testing took place over two days, with EQ1 to EQ4 on day one and the remaining excitations on day two. Some key test results are presented below.

7.1.3.1 Hysteretic Responses

The hysteretic responses during the tests are shown in Figure 7.7. Note that the lateral forces were normalized by the specimen inertia weight and expressed as base-shear coefficients. The pinched
shape or the “flag-shape” of the hysteresis loop is the characteristic behavior of re-centering systems, with very small residual displacement but peak capacity comparable to that of a conventional ductile system.

Figure 7.7 Overlaid hysteretic responses from EQ1 to EQ9 [Nema 2018].

7.1.3.2 Drift Ratios

The peak and residual drifts from different excitations are shown graphically in Figure 7.8. Rotations measured at the rocking interfaces of the south column can be found in Figure 7.9. The re-centering behavior of the system is evident in the residual drift and rotation at the end of each ground motion. Additionally, the rotation time histories at column interfaces of the south column from EQ8 and EQ9 are shown in Figure 7.10. It can be seen that the rotation followed the drift closely, indicating that the column behaved nearly like a rigid body over the clear height.

Figure 7.8 Peak and residual drift ratios [Nema 2018].
Figure 7.9 Peak and residual interface rotations of the south column: (a) south column bottom; and (b) south column top [Nema 2018].
7.1.3.3 Deformations

The maximum and the residual gap opening at the bottom interface of the south column in response to EQ9 are shown in Figure 7.11. Also shown below are the overall deformations of the test specimen at the instance of maximum gap opening. It can be seen that the rocking interface naturally formed near the location where the thin strip segment of the steel shell was removed, and that the gap closed completely at the end of each excitation with only minor spalling of the concrete.
Figure 7.11 Specimen response in terms of gap openings at the bottom interface of the south column and the overall deformations at the peak drifts (EQ9): (a) south column interface, north side, $\Delta = 5.4\%$; (b) south column interface, south side, $\Delta = -7.5\%$; (c) south column interface, north side, end of excitation; (d) south column interface, south side, end of excitation; (e) specimen deformation, $\Delta = 5.4\%$; and (f) specimen deformation, $\Delta = -7.5\%$.
7.2 DEVELOPMENT OF THE NEW HSS

7.2.1 System Description

The core of the HSS described in Section 5.1.1 is the computational platform OpenSees [McKenna et al. 2000] and the middleware OpenFresco [Schellenberg et al. 2008]. These two platforms are nowadays among the most popular tools in conducting HS tests around the world. Note: both of these software programs have a steep learning curve and may require some new developments for a specific experimental task, e.g., developing the PI660HybridSim interface software and the TriangularActuators experimental setup described previously in Chapter 5. In addition, some complicated experimental control methods in OpenFresco put high demands on the testing capacities in terms of both software and hardware for the available laboratory. Even if the idea of HS is quite straightforward, all these features make HS not readily accessible to researchers in the structural engineering communities and set barriers to the development and popularity of the HS techniques. With the intent to make HS back to its easily understandable and tractable essence, a new HSS was developed, utilizing commonly available software and hardware components in most structural engineering laboratories.

Figure 7.12 shows the newly developed HSS, consisting of the following: (a) the computational platform Matlab/Simulink [MathWorks 2015] that performs the numerical integration and the displacement interpolation; (b) dSPACE [2017], an interface hardware/software platform that establishes the communication between the computational platform Simulink and the controller by performing digital to analog (D/A) and analog to digital (A/D) conversions; and (c) two MTS 407 controllers that drive the vertical and the horizontal hydraulic actuators.

The execution steps are as follows:

1. For each integration time step, the two uncoupled single-degree-of-freedom (SDOF) equations are numerically solved in the Simulink model to compute the horizontal and vertical displacements to be imposed to the test specimen;

2. After interpolation, the computed command displacements are sent to the controllers using a built-in DAC (digital to analog conversion) Simulink block that comes with dSPACE, while the DAC block (Figure 7.13) is used to convert the digital displacements to analog voltages that can be recognized by the controllers;

3. After applying the computed displacements to the specimen, the corresponding reactions (resisting forces) are measured by the load cell in each actuator and passed on to the controllers as analog voltages; and

4. The measured forces are sent to the computational platform though another built-in ADC (analog to digital conversion) Simulink block. The ADC block (Figure 7.13) converts the analog voltages to the digital force values before they are passed on to the time stepping integration algorithm to advance the solution to the next analysis time step.
The hardware components of the dSPACE [2017] include the DS1104 R&D Controller Board that is installed in the PCI slot of the host PC and the CP1104 Connector Panel with 8 ADC and 8 DAC channels; see Figure 7.14. The Simulink model used in the computations was developed in the host PC and compiled on the DS1104 R&D Controller Board for deterministic (i.e., fixed sample timed) real-time execution; see Figure 7.15; the configuration settings for the Simulink compilation are shown in Figure 7.16. The software component of the dSPACE is the ControlDesk, which provides an interface to the developed Simulink model. The selected response quantities can be recorded for post-processing and plotted for real-time monitoring in ControlDesk; see Figure 7.17.
Figure 7.14 (a) DS1104 R&D Controller Board; and (b) CP1104 connector panel with ADC and DAC channels (source: Internet).

Figure 7.15 Selection of DS1104R&D Controller Board for real-time execution.
Figure 7.16 Simulink configuration settings.

Figure 7.17 Screenshot of the ControlDesk software interface.
7.2.2 Substructuring

The simulated hybrid structure in Phase I HS testing is described in Figure 7.18. The bridge bent with two self-centering columns was considered as the experimental substructure, while the inertia mass blocks attached to the top of the test specimen were removed and replaced in the computer by an analytical mass modeled along with the viscous damping. Considering the two-directional ground-motion inputs in the shaking table test and that the responses from these two directions can be represented by two independent and uncoupled differential equations of motion, the horizontal and the vertical DOFs were formulated separately.

![Experimental and analytical substructures for Phase I HS testing.](image)

7.2.3 Simulink Implementation

As mentioned before, two main tasks were accomplished on the Matlab/Simulink [MathWorks 2015] computational platform: the numerical integration and the displacement interpolation. The developed Simulink model for Phase I testing is shown in Figure 7.19 together with the roles of different parts of the model. The key component is the “if” action box highlighted in dashed line. The communication with controllers, response quantities output, and the displacement interpolation were implemented outside the “if” statement, while inside the “if” action box, the implementation was related to numerical integration; see Figure 7.20. Details are presented in the following subsections.
Figure 7.19 Developed Simulink model for Phase I HS test.
7.2.3.1 Numerical Integration

The first task for the computational platform is the numerical integration. The Explicit Newmark Integration method—proposed in HS (pseudo-dynamic testing at that time) for the first time by Mahin and Williams [1980]—was selected and implemented, with detailed steps provided in the algorithmic box of Figure 7.21. Besides the noniterative characteristic obtained by its explicit nature, some additional advantages of the Explicit Newmark method are listed below:

- It is a self-starting method, meaning that it does not require any response quantities before \(t = 0 \). The velocities and accelerations are directly obtained as part of the solution algorithm and do not need to be separately calculated;
- The resisting forces are required only once per each time step, meaning that no more than one force acquisition from the experimental substructure of the hybrid model is necessary per each integration step; and
- The stiffness of the structure is not required in the solution algorithm.
Initialize: $u_0 = 0, \dot{u}_0 = 0, \ddot{u}_0 = 0$;

$$u_1 = u_0 + \Delta t \dot{u}_0 + \frac{(\Delta t)^2}{2} \ddot{u}_0 = 0$$

Starting from $i = 1$

1. Impose u_i to the test specimen and measure the corresponding force f_i;

2. Compute the current step accelerations:

$$[m + \Delta t c] \ddot{u}_i = p_i - f_i - c [\dot{u}_{i-1} + \Delta t (1 - \gamma) \ddot{u}_{i-1}]$$

$$m_{eff} \ddot{u}_i = p_{eff}$$

3. Compute the current step velocities:

$$\dot{u}_i = \dot{u}_{i-1} + \Delta t [(1 - \gamma) \ddot{u}_{i-1} + \gamma \ddot{u}_i]$$

4. Compute the next step displacements:

$$u_{i+1} = u_i + \Delta t \dot{u}_i + \frac{(\Delta t)^2}{2} \ddot{u}_i$$

5. Increment i;

Figure 7.21 Implemented Explicit Newmark Integration algorithm in the HSS.

The Explicit Newmark method with $\gamma = 0.5$ yields the same solutions as the well-known central-difference method. Because of its numerical equivalence, the Explicit Newmark method inherits the order of accuracy and the stability condition of the central-difference method. It is conditionally stable with the following stability limit:

$$\Delta t \leq \frac{T_n}{\pi}$$

where Δt is the step size of the integration method, and T_n is the shortest natural period of the structure being analyzed. Considering the high stiffness of the test specimen in the vertical direction, the shaking table ground-motion records were interpolated to reduce the step size from 0.005 sec to 0.001 sec to avoid any possible stability issues and increase the accuracy of the numerical integration.

The numerical integration for both DOFs was performed through the Matlab function block in Simulink [MathWorks 2015]. A typical numerical integration block is shown in Figure 7.22. Per the Explicit Newmark Integration algorithm shown above, the function block takes as inputs the mass m, the damping coefficient c, the ground acceleration u_{g_i} (in the unit of in./sec2) at the current time step i, the Newmark velocity coefficient γ, the displacement u_i at the current time step, the measured force f_i corresponding to u_i, the discrete time step dt, and the velocity \dot{u}_{i-1} and acceleration \ddot{u}_{i-1} at previous time step $i - 1$, and outputs the acceleration \ddot{u}_i, the velocity \dot{u}_i, the total acceleration at the current time step i, and the displacement u_{i+1} at the next time step $i + 1$. The calculated quantities from the current calculations are written and stored using the Simulink
blocks “DataStoreWrite” and “DataStoreMemory,” and are read by the Simulink block “DataStoreRead” to be used in the next step calculations.

```matlab
function [A,V,U_next,A_tot] = ExplicitNewmark(m,c,Ag,gamma,U,F,dt,V_pre,A_pre)
% Explicit Newmark algorithm for SDOF system
% Inputs:
% m – mass corresponds to SDOF system
% c – damping ratio
% Ag – ground acceleration at step i
% gamma – Newmark velocity coefficient
% U – displacement at step i
% F – measured resisting force at step i
% dt – time step, deltaT
% V_pre – velocity at step i-1
% A_pre – acceleration at step i-1
% Outputs:
% A – acceleration at step i
% V – velocity at step i
% U_next – displacement at step i+1
% A_tot – total acceleration at step i
%% compute acceleration A at step i
P = -m*Ag;
m_eff = m + dt*gamma*c;
P_eff = P – F – c*(V_pre + dt*(1 – gamma)*A_pre);
A = P_eff/m_eff;
%% compute velocity V at step i
V = V_pre + dt*((1 – gamma)*A_pre + gamma*A);
%% compute displacement U_next at next step i+1
U_next = U + dt*V +0.5*(dt^2)*A;
%% compute total acceleration A_tot at step i
A_tot = A + Ag;
```

Figure 7.22 Matlab function block for performing the Explicit Newmark Integration in algorithm in the HSS.

7.2.3.2 Displacement Interpolation

The second task for the computational platform is the displacement interpolation. Between the current step displacement \(u_i \) and the next step displacement \(u_{i+1} \), interpolation of displacements is needed to generate commands for the controller for the following reasons: (1) the operation of the MTS 407 controller is based on receiving a command displacement at every 10 milliseconds; (2) the HS test is conducted slower than real-time; and (3) the actuator velocity is limited to 0.05 in./sec in order to achieve good control quality. Therefore, the maximum allowed displacement increment between two commands is 0.05 in./sec × 10 millisecond = 0.0005 in.

The Simulink blocks used to determine the number of interpolations between the two integration time steps is shown in Figure 7.23. In both horizontal and vertical directions, the absolute values of the displacement increment \(\Delta u \) between two adjacent steps are obtained and divided by the maximum allowed displacement increment. The resulting two numbers are rounded up to the nearest integers, and the larger of the two is selected to be the number of interpolation steps for both directions. The horizontal and vertical displacements are then linearly interpolated accordingly, using the number of interpolation steps.
Another important issue to address in the developed Simulink model is that while performing the displacement interpolation, the numerical integration needs to “hold on”. That is, the integration algorithm should not advance to the next time step until the displacement interpolation has been completed. During the displacement interpolation, the actuator is continuously moving at a constant velocity, and the load cell is continuously measuring the resisting forces corresponding to different displacement values from the test specimen; however, only the resisting force that corresponds to the displacement value at the beginning of the interpolation, namely f_i, is the one that should be utilized by the integration algorithm.

This requirement is achieved in Simulink by defining a “resettable counter” and making use of the “if” statement block, as shown in Figure 7.24. At the end of each time step, the number of interpolation steps, denoted with “N” is obtained and passed on to the counter. The counter takes values from 0 to $N-1$, and its value is multiplied by the displacement increment u_{incr} in each direction (the displacement increment in different directions can be different) and then added to the current step displacement u_i to obtain the intermediate values $u_i + 0 \times u_{incr}$, $u_i + 1 \times u_{incr}$, $u_i + 2 \times u_{incr}$, …, $u_i + (N-1) \times u_{incr}$ to be converted by the DAC block for the controller; see Figure 7.25 and Figure 7.26. Once the counter reaches the value $N-1$, it is reset to 0, and the numerical integration is activated according to the “if” condition. The time step i is then increased.
by 1 and the displacement value becomes u_{i+1}. The resisting force corresponding to u_{i+1}, denoted with f_{i+1}, is measured and converted by the ADC block before it is passed to the numerical integration to advance the solution to the next time step and to start the next round of displacement interpolation between u_{i+1} and u_{i+2}.

Figure 7.24 Simulink blocks for resettable counter and “if” actions in the HSS.

Figure 7.25 Typical displacement interpolation between time step i and $i+1$ in the HSS.
7.3 HYBRID SIMULATION SYSTEM VERIFICATION TEST

To confirm the performance of the implemented developments and validate the whole HSS together with the proper actuator tracking, a HSS trial run was considered mandatory before proceeding further. The trial run was conducted on free horizontal and vertical actuators detached from the test specimen. Two-way communication is necessary in HS: one way is for sending the displacement command and the other is for receiving the force feedback. A free actuator that is not attached to any specimen reports zero force feedback or only the load-cell noise. Thus, for the free actuator trials, a multiplier (stiffness) of the displacement feedback was used as the virtual force feedback. The constant multiplier reflected the stiffness of a hypothetical linear elastic force-displacement relationship. A schematic representation of the HS trial run is shown in Figure 7.27. The advantage of this virtual feedback is that it allows for comparison with pure simulation results where an elastic element with a constant stiffness replaces the actuator’s displacement/force feedback. The computational model for the pure simulation was a linear elastic system with two uncoupled DOFs with some selected representative parameters (mass, stiffness, and damping ratio). The ground-motion record measured by accelerometers mounted on the shaking table during EQ2 was used as the ground-motion input. For comparison with the pure simulation case, the horizontal and vertical stiffness in the pure simulation were used as multipliers for the displacement feedback to the computational platform to reflect an assumed linear elastic behavior in both directions.
7.3.1 Control Quality Check

Figure 7.28 and Figure 7.29 check the control quality of the horizontal and vertical actuators by plotting the controller’s command displacement vs. the actuator’s feedback displacement. Both actuators delivered good control quality as the command and the feedback plots overlapped with little time delay; however, the displacement feedback from the vertical actuator was noisy. As a multiplier of the feedback displacement, the virtual feedback force would also be noisy. This might raise issues in the vertical direction during system verification, especially at the beginning of the ground motion where the resisting force is expected to be small. This concern was addressed in later HS runs corresponding to Phases I and II by switching from displacement control to force control for the vertical actuator.
Figure 7.29 Command (cmd) vs. feedback (fbk) displacements for the vertical actuator.

7.3.2 Interpolation Check

If the displacement interpolation algorithm is implemented correctly, the displacement time histories before and after the interpolation should be exactly the same. The only expected difference is that the interpolated displacement time history will have more data points between two subsequent time steps. Figure 7.30 and Figure 7.31 show the original and interpolated time histories from both directions plotted in real execution time. As can be seen from the zoom-in views on the right sides of these figures, the interpolation algorithm performed well as intended.

Figure 7.30 (a) Original and interpolated (with $N = 6$) displacement time histories from the horizontal direction; and (b) zoom-in view.
7.3.3 Overall Check

The horizontal and vertical displacement time histories recorded by the dSPACE [2017] ControlDesk software during the HS trial run were compared against those obtained from a pure simulation conducted with the same mass, damping coefficient, and stiffness. A perfect match between the HS trial run and the pure simulation [as is the case for the horizontal direction, refer to Figure 7.32(a)] indicates proper functioning of the computation, the communication between the HS components, and proper actuator control and displacement tracking. The high-frequency displacement oscillation in the vertical direction at the beginning and the end of the HS trial run, refer to Figure 7.32(b), was due to the noisy displacement feedback from the vertical actuator, as explained in Section 7.3.1; however, the oscillation amplitude was very small, i.e., below 0.01 in.

Figure 7.32 Hybrid simulation verification test in (a) horizontal direction; and (b) vertical direction.
7.4 HYBRID SIMULATION TEST

7.4.1 Gravity Loading

During the HS test, the hybrid structure was subjected to two sequences of loading. These are applied in the following order: (1) gravity load; and (2) two-directional ground-motion inputs measured by accelerometers mounted on the table during the shaking table test.

As stated before, a gravity load of 47 kips representing the total weight of the six mass blocks was applied through the vertical actuator before starting each HS run. Note that as the gravity load from the cap beam (22 kips) is already present physically, it does not need to be applied again. With the applied gravity load of 47 kips from the vertical actuator and the 22 kips weight of the cap beam, the total gravity load on the columns was 69 kips. Figure 7.33 shows the force-displacement relationship in the vertical direction during the gravity loading application. The stiffness change during gravity loading can be clearly observed from the plot. This was caused by compression of the grout between the top clevis connection anchorage plate of the vertical actuator and the top surface of the cap beam; see Figure 7.34. When the vertical actuator pulled down, it squeezed the grout before starting to engage the complete vertical stiffness of the test specimen; therefore, the stiffness was small during the compression of the grout. After that, the vertical actuator began acting against the specimen, and the response became much stiffer, representing the correct vertical stiffness of the test specimen. In order to eliminate this problem due to the test setup limitation, it was decided to switch from displacement control to force control for the vertical actuator. The forces were computed by multiplying the vertical displacements with the estimated vertical stiffness of the specimen, assuming linear elastic behavior in the vertical direction.

![Force-displacement plot during the gravity loading.](image)

Figure 7.33 Force-displacement plot during the gravity loading.
Because of the change in the vertical actuator control, the displacement interpolation in the vertical direction as described in Section 7.2.3.2 needed to be changed to force interpolation. The vertical actuator’s force velocity was limited to 2 kips/sec and the maximum allowed force increment between two commands was $2 \text{kips/sec} \times 10 \text{millisecond} = 0.02 \text{kips}$. The number of interpolation steps between two subsequent time steps was obtained as discussed before, but in this modified version based on the horizontal displacement increment and the vertical force increment.

7.4.2 Selected Parameters

The parameters used in the HS were chosen for proper representation of the dynamics of the two uncoupled SDOF systems. The response of a SDOF system in the linear elastic range is defined by its period and damping. To match the results from the shaking table test, it was important to identify the correct period and damping of the test specimen from the shaking table test. The test results from EQ2 of the shaking table test were used for this purpose because the specimen remained mostly in the linear elastic range during this test. The results of the EQ1 shaking table test were not considered since one of the inertia blocks was found to be not seated properly and the restraint frame was found to be bearing against the specimen, providing lateral resistance; this issue was corrected in subsequent shaking table test runs.

7.4.2.1 Horizontal Direction

The period of the test specimen in the horizontal direction was investigated by taking the Fast Fourier Transformation (FFT) of the measured horizontal acceleration time history from the top of the specimen during the shaking table test EQ2. There were a total number of 16 accelerometers measuring the horizontal acceleration on top and the average value was considered. The FFT result is shown in Figure 7.35(a) for a peak frequency corresponding to 2.3 Hz, which resulted in a horizontal period of 0.43 sec.
The damping ratio was found by using the half-power bandwidth method; see Figure 7.35(b). This method states that if ω_a and ω_b are the frequencies on either side of the resonant frequency, ω_n, at which the amplitude is $1/\sqrt{2}$ times the resonant amplitude, then for small damping ratio ζ, $\zeta = (\omega_b - \omega_a)/2\omega_n$. Based on this calculation, the damping ratio was found to be around 3%. A damping ratio of 2% was used in the HS for the horizontal direction to account for any additional energy dissipation from the test specimen that may have resulted from any potential damping introduced due to simulation errors; see Section 6.4.1.

The horizontal stiffness of the specimen was computed from a low-level test with two small cycles. The mass m_h and damping coefficient c_h were computed to match the period and damping ratio identified from the shaking table test. The horizontal inertia mass considered in the shaking table test includes six mass blocks and the cap beam, which resulted in a total mass of 69 kips/g, while the horizontal mass used in the HS test was estimated to be 81 kips/g. This was mainly due to the larger strength and stiffness of the older concrete in the test specimen because the HS test was conducted one year after the shaking table test.

7.4.2.2 Vertical Direction

Initially, the method described above for the horizontal direction was adopted to determine the parameters in the vertical direction. In order to avoid any possible effect on the vertical response due to the shaking table flexibility, the FFT of the measured vertical acceleration time history from the top of the specimen was divided by the FFT of the measured vertical ground-motion input from the table to obtain the transfer function. It turned out that the frequency corresponding to the peak of the transfer function agrees with that corresponding to the vertical response. There were a total number of eight accelerometers measuring the vertical (Z) accelerations on top of the specimen, but only the two mounted on the mass blocks at the center of the cap beam (AZM21 and AZM51 in Figure 7.36) were considered. This is because the deformations at both ends of the cap beam during the ground shaking might have led to inaccurate acceleration measurements due to the
vibration mode of the cantilevered portion of the cap beam. The FFT result is shown in Figure 7.37. The frequency corresponding to the peak is 15.48 Hz, resulting in the horizontal period to be 0.065 sec. The damping ratio based on the half-power bandwidth method was estimated to be 0.36%, which was questionable as it is much smaller than the damping ratios of typical structures in engineering practice.

Figure 7.36 Accelerometers measuring vertical accelerations on top of the test specimen in the shaking table test [Nema 2018].

Figure 7.37 FFT and half-power bandwidth results in the vertical direction.
As indicated earlier, because of the unrealistic small vertical stiffness at small displacements, it was decided to switch from displacement control to force control. Considering that the response in the vertical direction would remain essentially elastic and that the vertical load could influence the overall response of the specimen in the horizontal direction through the level of the column axial load, another approach for seeking the parameters in the vertical direction was taken by matching the shaking table test results from EQ2. For this purpose, the response of a linear elastic SDOF system was investigated by varying the period and the damping ratio in a certain range of interest. A period range of 0.04–0.08 sec was selected so that the potentially correct period could be included, while the range of the damping ratio was selected to be 1–15% to cover the practical range. The root-mean-square (RMS) error was computed by comparing the acceleration response of the SDOF system against the shaking table test results and the parameter combination which yielded the smallest RMS error was selected.

It was found that the period of 0.076 sec (which is comparable to the 0.065 sec from the previous approach) and damping ratio of 11.1% (which is much higher than the questionable 0.36% from the previous approach) gave the best match between the analysis and the shaking table results; see Figure 7.38. These parameters were used to compute the mass \(m_v \) and damping coefficient \(c_v \) in the vertical direction. Because the vertical mass was found to be very close to that of the shaking table test, the same value of 69 kips/g was used. Note that although the damping ratio identified this way was higher than expected, it was considered to be more realistic, especially considering the possible friction between the lateral supporting frame and the mass blocks during the shaking table test; see Figure 7.1.

![Figure 7.38](image)

Figure 7.38 Vertical acceleration comparison with \(T_v = 0.076 \text{ sec} \) and \(\zeta = 11.1\% \).

7.4.3 Test Results

A total number of six ground motions were completed in the HS test; see EQ2 to EQ7 in Table 7.2. Because the remaining two ground motions (EQ8 and EQ9) are two different scales of the Takatori station’s recording of the 1995 Kobe, Japan, earthquake, which is a motion characterized
by the presence of a very strong pulse, it was thought that the EQ2 to EQ7 were sufficient for comparison purposes between the Phase I HS and the shaking table test results. This comparison is discussed in more detail below.

<table>
<thead>
<tr>
<th>EQ #</th>
<th>Event name</th>
<th>Station name</th>
<th>Unscaled PGA (g)</th>
<th>Scale factor</th>
<th>Expected drift (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>For shaking table test checking and not used in HS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>Landers, 1992</td>
<td>Lucerne</td>
<td>0.72</td>
<td>0.90</td>
<td>0.6</td>
</tr>
<tr>
<td>03</td>
<td>Tabas, 1978</td>
<td>Tabas</td>
<td>0.85</td>
<td>-0.90</td>
<td>1.8</td>
</tr>
<tr>
<td>04</td>
<td>Kocaeli, 1999</td>
<td>Yarimca</td>
<td>0.30</td>
<td>1.00</td>
<td>0.6</td>
</tr>
<tr>
<td>05</td>
<td>Northridge, 1994</td>
<td>RRS</td>
<td>0.85</td>
<td>0.81</td>
<td>4.0</td>
</tr>
<tr>
<td>06</td>
<td>Duzce, 1999</td>
<td>Duzce</td>
<td>0.51</td>
<td>1.00</td>
<td>1.8</td>
</tr>
<tr>
<td>07</td>
<td>Northridge, 1994</td>
<td>NFS</td>
<td>0.72</td>
<td>-1.20</td>
<td>4.0</td>
</tr>
</tbody>
</table>

7.4.3.1 Comparison of Results

Figure 7.39 to Figure 7.44 compare the displacement time history, force time history, acceleration time history, and force-displacement relationship between the shaking table test and the HS experiment in the horizontal direction. In general, these results show very good overall matching in terms of the amplitude of the response quantity, the time history pattern, and the hysteretic behavior of the test specimen. There are some discrepancies in some of the runs towards the end, which might be due to the following: (1) the possible friction force from the lateral support system in the HS setup; and (2) the small level of rate dependency of reinforced concrete [Moehle 2014]. Note that the matching is better for larger earthquakes compared to the smaller ones.
Figure 7.39 (a) Displacement time history; (b) resisting force time history; (c) acceleration time history; and (d) force-displacement relationship comparisons of EQ2 in the horizontal direction.
Figure 7.40 (a) Displacement time history; (b) resisting force time history; (c) acceleration time history; and (d) force-displacement relationship comparisons of EQ3 in the horizontal direction.
Figure 7.41 (a) Displacement time history; (b) resisting force time history; (c) acceleration time history; and (d) force-displacement relationship comparisons of EQ4 in the horizontal direction.
Figure 7.42 (a) Displacement time history; (b) resisting force time history; (c) acceleration time history; and (d) force-displacement relationship comparisons of EQ5 in the horizontal direction.
Figure 7.43 (a) Displacement time history; (b) resisting force time history; (c) acceleration time history; and (d) force-displacement relationship comparisons of EQ6 in the horizontal direction.
7.4.3.2 Deformations

The peak and residual drifts from each HS run are summarized in Table 7.3, together with the cumulative residual drift, which was calculated as the residual drift relative to the beginning of the first run (EQ2). Low levels of residual drift were observed in both the HS and shaking table tests, indicating the superior seismic response of the innovative design of the bridge bent with self-centering columns. The column end rotations (top and bottom) were measured by a total of 16 LVDTs mounted around the rocking interfaces; see Figure 6.36. The rotation time histories for EQ6 and EQ7 during the HS test are shown in Figure 7.45. Similar to the observation from the shaking table test, the rotation response closely follows the drift response, indicating the obvious rocking behavior where the column behaved nearly like a rigid body over the clear height.

Figure 7.44 (a) Displacement time history; (b) resisting force time history; (c) acceleration time history; and (d) force-displacement relationship comparisons of EQ7 in the horizontal direction.
Table 7.3 Summary of peak and residual drift ratios from the HS test.

<table>
<thead>
<tr>
<th>EQ #</th>
<th>Peak drift (%)</th>
<th>Residual drift (%)</th>
<th>Residual/peak</th>
<th>Cumulative residual drift (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>02</td>
<td>0.879</td>
<td>0.009</td>
<td>0.011</td>
<td>0.009</td>
</tr>
<tr>
<td>03</td>
<td>1.845</td>
<td>0.173</td>
<td>0.094</td>
<td>0.164</td>
</tr>
<tr>
<td>04</td>
<td>0.856</td>
<td>0.014</td>
<td>0.016</td>
<td>0.178</td>
</tr>
<tr>
<td>05</td>
<td>3.898</td>
<td>0.125</td>
<td>0.032</td>
<td>0.303</td>
</tr>
<tr>
<td>06</td>
<td>1.344</td>
<td>0.040</td>
<td>0.030</td>
<td>0.263</td>
</tr>
<tr>
<td>07</td>
<td>4.135</td>
<td>0.067</td>
<td>0.016</td>
<td>0.330</td>
</tr>
</tbody>
</table>

Figure 7.45 Column end rotations from (a) EQ6; and (b) EQ7.

The gap openings at the instant of peak positive/negative drifts at the bottom interfaces of the east and west columns are shown in Figure 7.46 to Figure 7.48 for EQ3, EQ5, and EQ7. Also shown in these figures are the overall deformations of the specimen at the same instant of time, with the corresponding drift ratio listed in the sub-captions. Again, the rocking interface formed at the location where the steel strip of the column outer shell was removed. Minor concrete spalling took place around the interfaces during larger intensity test runs. Some cracks and crushing of the surface grout were also observed.
Figure 7.46 Specimen response at peak drifts (EQ3): (a) west column interface, west side, $\Delta = 1.85\%$; (b) west column interface, west side, $\Delta = -1.34\%$, (c) east column interface, east side, $\Delta = 1.85\%$; (d) east column interface, east side, $\Delta = -1.34\%$; (e) specimen deformation, $\Delta = 1.85\%$; and (f) specimen deformation, $\Delta = -1.34\%$.
Figure 7.47 Specimen response at peak drifts (EQ5): (a) west column interface, west side, $\Delta = 3.9\%$; (b) west column interface, west side, $\Delta = -2.87\%$; (c) east column interface, east side, $\Delta = 3.9\%$; (d) east column interface, east side, $\Delta = -2.87\%$; (e) specimen deformation, $\Delta = 3.9\%$; and (f) specimen deformation, $\Delta = -2.87\%$.
Figure 7.48 Specimen response at peak drifts (EQ7): (a) west column interface, west side, $\Delta = 4.14\%$; (b) west column interface, west side, $\Delta = -3.3\%$; (c) east column interface, east side, $\Delta = 4.14\%$; (d) east column interface, east side, $\Delta = -3.3\%$; (e) specimen deformation, $\Delta = 4.14\%$; and (f) specimen deformation, $\Delta = -3.3\%$.
7.4.3.3 Strain Histories

This section presents the strain measurements. The locations of different strain gauges mentioned can be found in Section 6.8.3 and are repeated above each plot for easy reference.

Figure 7.49 plots the strains of the longitudinal reinforcing bars and the stirrups in the cap beam from EQ7, demonstrating that the cap beam remained elastic during the entire Phase I testing as the strain gauges did not capture any meaningful strain behaviors other than noises during the largest ground motion. Figure 7.50 shows the strains on the unbonded longitudinal reinforcing bars serving as energy dissipators inside the columns for all test runs. The average yield strain from the tests of the material properties is indicated on the plots. The yielding of the energy dissipators initiated starting from EQ3, with residual strains left over at the end of each run afterwards. Some strain gauges were broken after large intensity motions. The significant amount of the observed yielding validates the assumption that the unbonded detailing provided energy dissipation to the self-centering system.

![Strain Histories](Image)

Figure 7.49 Strain histories of (a) longitudinal reinforcing bars; and (b) stirrups of the cap beam in EQ7.
Figure 7.50 Strain histories of the energy dissipators in (a) east column top; and (b) west column bottom.

Figure 7.51 to Figure 7.53 give the strain behaviors of the steel shell for all test runs. The horizontal strain gauges mounted closer to the bottom interfaces (CESJH21 and CWSJH11 in Figure 7.51) showed some circumferential tensile strains. These strains were caused by the dilation of the steel shell or volume increase because of the concrete disintegrating during the rocking but were below the average yielding point according to tests of the material properties. Note that comparable strain levels were not observed for the strain gauges closer to the top interfaces (CESJH24 and CWSJH14). This is probably attributable to the top interfaces being much flatter than the bottom ones because of the wood sealing panels when placing the grout (see Appendix C) and the steel shell not being axially compressed as much, thus leading to less dilation.

Because the vertical strain gauges installed on the top embedded steel shell did not experience any meaningful strain patterns (see Figure 7.52), it is concluded that the transfer of axial forces inside the socket connection occurred mainly along the lateral loading direction instead of the orthogonal direction. This conclusion is further supported by the plots shown in Figure 7.53. The rosette gauges on the embedded steel shell along the east–west loading direction exhibited larger strain readings compared to the vertical ones. The opposite sign shown in each rosette gauge
couples (e.g., CWR121 and CWR122) was because of the Poisson’s effect, i.e., when the steel shell was stretched in the vertical direction, it tended to contract in the horizontal direction and vice versa. In addition, the closer to the rocking interfaces, the larger the measured strain on the steel shell. This observation can be explained by Figure 7.54, which is similar to the idea of bond-slip of the reinforcing bar anchorage. Assuming uniform bond stress along the interface between the infilled grout and the embedded steel shell for simplicity, the vertical stress distribution along the height of the steel shell is linear, with higher values closer to the rocking interfaces. The linear strain distribution follows that of the stress as the steel remains in the linear elastic range.

Figure 7.51 Horizontal strains of the steel shell on (a) east column, east side; and (b) west column, east side.
Figure 7.52 Vertical strains of the top embedded steel shell on (a) east column; and (b) west column.
Figure 7.53 Strains of the embedded steel shell on (a) west column top, west side; and (b) west column bottom, east side.

Figure 7.54 Idealized stress–strain distribution along the embedded steel shell.
7.4.3.4 Other Response Quantities

Figure 7.55 and Figure 7.56 show the PT bar force and strain time histories from EQ7. The forces were obtained by converting the pressure measurements according to the linear relationship in Figure 6.31(b). The maximum PT force of 167.8 kips occurred in the west column, which corresponded to a stress value of 106.2 ksi. For the rest of the ground motions, the PT bar stresses were smaller. This is to be expected, because the larger the drift ratio, the more deformation in the PT bars and the larger the stress. The strain plots came from two different measurements from the strain gauges mounted on the same location but opposite sides of each PT bar. The difference in the strain measurements, especially for the east column, is an indication of slight PT bar bending during the test.

![Figure 7.55 Time histories of PT bar forces in EQ7.](image)
Figure 7.56 Time histories of the PT bar strains for (a) east column; and (b) west column in EQ7.

Figure 7.57 plots the stress against the average strain from each PT bar in EQ7. The stress was obtained by dividing the PT bar force with its cross-sectional area. The peak stress in the PT bar of the west column was higher than that of the east column. This is because the magnitude of peak positive displacement towards the east (5.48 in.) was bigger than the peak negative displacement towards the west (-4.40 in.); see Figure 7.44(a). Therefore, the PT bar in the west column was stretched more. In addition, the PT bars should remain essentially in the linear elastic range under this level of stress based on the tests of the material properties, which is not consistent with the plot. Due to the slight bending of the PT bars, the stress distribution on the cross section of each PT bar is not uniform. In this case, the stress–strain plot could possibly be nonlinear as the stress obtained this way is only an average. If there was a way to obtain the stress of the specific point where the strain gauge was installed, a linear elastic relationship should be expected.

Another observation worth noticing is that there is some prestressing loss at the end of the test; normally this is caused by the yielding of the PT bars. It is questionable if this explanation applies here as the dropping of the PT bar forces before the large cycles was quite obvious. The two-stage pumps were not able to hold the pressures perfectly well, especially in the long-duration
slow test situation. This was another limitation in terms of the test setup. Therefore, the pressure was carefully adjusted so that the PT forces always started at 40% GUTS at the beginning of each test run.

Note that yielding of the PT bar is usually considered unacceptable for self-centering hybrid systems. If the PT bar yields, it will display a permanent plastic elongation when the rocking behavior stops, causing a loss of PT force and compromising the system’s self-centering capacity. For this reason, many different approaches have been investigated by researchers to prevent early loss of the PT force. One straightforward approach is to limit the initial PT force. When this is not sufficient, additional deformability can be added to the PT bars by placing elastic devices in series with the bars. Guerrini et al. [2015] proposed using elastomeric bearing pads inserted between the top anchor plate and the cap beam; see Figure 7.58. With this configuration, the tensile deformation demand on the bars is partially transformed into compressive deformation of the bearing pads.

![Figure 7.57 Stress vs. average strain for both PT bars in EQ7.](image1)

![Figure 7.58 Elastomeric bearings in series with the PT bars [Guerrini et al. 2015].](image2)
8 Hybrid Simulation of a Resilient Bridge Bent Design: Phase II

The main accomplishment in Phase I HS testing was the HSS development, validation, and comparison of the test results with the shaking table test results. In Phase II, the main focus is the system-level response evaluation by incorporating a full bridge model. The key change made was in the Matlab function block shown in Figure 7.22. Instead of a single mass, the analytical substructure was replaced by the remaining part of a representative bridge, including the bridge superstructure and the abutments. For this purpose, the same prototype bridge previously used in the V-connector study, the Jack Tone Road On-Ramp Overcrossing described in Section 4.1.1, was selected. Similar to the V-connector study, the reason of selecting this prototype is that it has only one single bent, making it an ideal candidate for simulating the two-column bridge bent as the experimental substructure and the rest of the bridge as the analytical substructure. This system-level investigation would not have been feasible for a shaking table test; therefore, it reflects a significant contribution of the HS.

This chapter starts with describing the prototype bridge modeling techniques and details. Some background information on the formulation of stiffness/mass/damping matrices and the resisting force vector is provided. The bridge was also modeled the same way in OpenSees [McKenna et al. 2000] to check the new implementation. Three new ground-motion records, one for each intensity level, were selected from the ground-motion database based on the target spectrum of a specific location. The system-level HS test is then presented, followed by the discussion of the test results through a parametric study that provides insights on the observed bridge system response.

8.1 BRIDGE MODELING

The simplified bridge model developed herein consists of three parts: the bridge superstructure (the deck), the bridge abutments, and the two-column bridge bent (the test specimen). Considering the size of the full-scale bridge and the two-column bridge bent specimen, the scale of the test specimen was selected to be 30% ($S_L = 3.333$). A spine-line model of the bridge structure was used, with line elements located at the centroid of the cross sections following the alignment of the bridge; see Figure 8.1 for a schematic representation of the bridge model. Three-dimensional modeling was adopted to capture the responses of the entire bridge system and the individual
components under specific seismic demand characteristics. The developed model incorporated nonlinear behavior of individual components, including the abutment springs and the nonlinearity from the tested bridge bent. Important assumptions and main aspects of the modeling process are described in the following subsections.

8.1.1 Bridge Deck Modeling

The prestressed concrete box girder of the deck was modeled as a “spine-line” using 3D linear elastic frame elements because flexural yielding of the deck during the seismic response is not expected [Caltrans 2013]. The effective moment of inertia of the box girder, denoted as I_{eff}, depends on the extent of cracking: for conventional RC box girder sections, $I_{\text{eff}} = 0.5I_g$ or $0.75I_g$. According to the Caltrans SDC [2013], no stiffness reduction is recommended for prestressed concrete box girder sections (i.e., $I_{\text{eff}} = I_g$). Other modeling parameters for the bridge deck followed the cross-section geometry of the deck and are listed in Table 4.1.

8.1.2 Abutment Modeling

Numerous studies [Aviram et al. 2008; Bozorgzadeh et al. 2006, 2008; Goel and Chopra, 1997; and Shamsabadi et al. 2007, 2010] have addressed the issues inherent in abutment modeling. Here, the focus was on seat-type abutment using simplified abutment modeling techniques; see Figure 8.2. In this simplified model, the abutment was represented by three nonlinear springs—longitudinal, transverse, and vertical—connected to each end of the bridge deck; see Figure 8.1. The utilized modeling parameters were based on the prototype bridge and were all on the prototype scale. Note that for this specific study, it was unnecessary to model the longitudinal direction of the abutment response as the input ground motions were in the transverse and vertical directions only, and no longitudinal responses were expected. For completeness of the modeling process and for possible future usage and reference, the longitudinal abutment response was included.
8.1.2.1 Longitudinal Direction

According to the guidelines described in the Caltrans SDC [2013], a backbone curve representing the passive earth pressure based on results from a large-scale abutment testing at UC Davis [Maroney 1995] and UCLA [Stewart et al. 2007] was used in the longitudinal direction. Equation (8.1) shows the initial stiffness of this backbone curve. The formula was proportionally adjusted to the backwall/diaphragm height, which is equal to 1.7 m (5.5 ft).

\[
K_{abut} = \begin{cases}
K_i \times w \times \frac{h}{5.5 \text{ ft}} & (K_i = 25 \frac{\text{kip}}{\text{in.}}) \quad \text{U.S. units} \\
K_i \times w \times \frac{h}{1.7 \text{ m}} & (K_i = 14.35 \frac{\text{kN}}{\text{mm}}) \quad \text{S.I. units}
\end{cases}
\]

(8.1)

Here, \(w\) and \(h\) are the width and height of the backwall or the diaphragm abutments, respectively. \(K_i\) is the initial embankment fill stiffness.

The force-displacement backbone curve of the seat-type abutment in the longitudinal direction is shown in Figure 8.3. \(\Delta_{eff}\) is the mobilization of the passive soil resistance, which is expressed in the Caltrans SDC [2013] as the effective longitudinal displacement at an idealized yield point. For the seat-type abutments, \(\Delta_{gap}\) is the gap distance between seat-type abutment and superstructure, which can be estimated from structural drawings (e.g., \(\Delta_{gap} = 1 \text{ in.}\)). The resistance force assigned to the seat-type abutment \(P_{bw}\) is calculated according to the following equation:

\[
P_{bw} = A_e \times 5.0 \text{ ksf} \times \frac{h_{bw}}{5.5} \quad \text{(unit: ft, kip)}
\]

(8.2)

The maximum passive pressure of 5.0 ksf presented in Equation (8.2) is based on the ultimate static force developed in the full-scale abutment testing. The height proportionality factor, \(h_{bw}/5.5 \text{ ft}\), is based on the height of the tested abutment walls. The effective abutment wall area \(A_e\) for calculating the ultimate longitudinal force capacity of an abutment is presented in Equation (8.3), where \(h_{bw}\) and \(w_{bw}\) are the effective height and width of the backwall in the seat-type abutment.
Based on the above provisions, a compression-only spring was assigned with an EPP gap material for the backbone curve representing the abutment backwall; see Figure 8.4. It accounts for the gap between the seat-type abutment and the superstructure and embankment fill response, where passive pressure (the compression) is produced by the abutment backwall. In comparison to the embankment fill stiffness, the shear stiffness of the bearing pads was ignored. According to the prototype bridge geometry, the gap value Δ_{gap} was taken to be 1 in., while the effective height h_{bw} and width w_{bw} were taken to be 55.68 in. and 215.42 in., respectively, resulting in a longitudinal stiffness K_{abl} of 378.6 kips/in. and a corresponding strength P_{bwl} of 351.4 kips.

Figure 8.3 Effective abutment stiffness for seat-type abutment [Caltrans 2013].

Figure 8.4 Force-displacement relationship of the longitudinal abutment response.

8.1.2.2 Transverse Direction

In the transverse direction, the Caltrans SDC [2013] states that seat-type abutments are designed to behave elastically for service loads and moderate earthquake loads. In extreme events, the linear analysis cannot capture the nonlinear behavior of the shear keys and wingwalls. Therefore, the transverse stiffness of the seat-type abutment should be assumed to be negligible unless the designer can demonstrate the force-deflection and stiffness of each component that contributes to
the transverse response. The Caltrans SDC [2013] recommends a nominal transverse spring, K_{nom} equal to 50% of the adjacent bent for the elastic domain.

To account for the possibility of transverse nonlinearity, a spring that works in both tension and compression was defined with an assigned EPP backbone curve representing the backfill, wingwall, and pile system; see Figure 8.5. The abutment stiffness and strength for the longitudinal direction were modified using factors corresponding to the wall effectiveness ($C_L = 2/3$) and the participation coefficient ($C_W = 4/3$) according to Maroney and Chai [1994]. For simplicity, the resistance of the brittle shear keys and distributed bearing pads were ignored in this model. The resulting transverse stiffness K_{abt} was 112.2 kips/in., and the corresponding yielding strength P_{bwt} was 104.1 kips.

![Figure 8.5](image)
Figure 8.5
Force-displacement relationship of the transverse abutment response.

8.1.2.3 Vertical Direction

In the vertical direction, a compression-only linear elastic spring (see Figure 8.6) was defined at each end of the bridge deck with the stiffness K_v equals to 1200 kips/in., representing the vertical stiffness of the bearing pads in the prototype bridge.

![Figure 8.6](image)
Figure 8.6
Force-displacement relationship of the vertical abutment response.
8.1.3 Stiffness Matrix

In the 1950s and 1960s, significant research was directed towards developing efficient computer implementations of suitable structural analysis methods. The stiffness method is particularly suited for computer-automated analysis of complex structures including statically indeterminate ones. Comprising a matrix method that makes use of stiffness relationships of the members for computing member forces and displacements, this method is the most common implementation of the FEM. In applying the method, the structural system must be modeled as a set of simpler, idealized elements interconnected at the nodes. Through matrix mathematics, the stiffness properties of these elements are compiled into a system of algebraic equations that govern the behavior of the entire idealized structure. The unknown displacements and forces of the structure can then be determined by solving this system of equations. The stiffness method forms the basis for most available commercial and open-source finite-element software programs and was selected for the formulation at hand.

The response of the discrete structural model to external effects is described completely by variables associated with its nodes: the static variables and the kinematic variables. The static variables are the generalized forces at each node, which consist of a force and a moment. Each of these variables can be decomposed into three components in the x (longitudinal), y (transverse), and z (vertical) directions of the global coordinate system; see Figure 8.1. The kinematic variables are the generalized displacements at each node, which consist of a translation and a rotation, where they can be decomposed into three components in the x-, y-, and z-directions of the global coordinate system, considering infinitesimal rotations.

For the 3D bridge model considered herein, there are six independent DOFs at each node (three translational components and three rotational components) and 12 DOFs for each individual element: each element has two nodes. For the nodes and elements of the model and the node variables, the following numbering convention is adopted:

- Nodes are numbered in an increasing order from left to right and denoted with Arabic numerals;
- Elements are numbered in an increasing order from left to right and denoted with circled Arabic numerals;
- Global structural DOFs are numbered following the node order, starting with the translation in x, then in y, then in z, and continuing with rotation about x, about y, and about z; and
- Local DOFs for each individual element are numbered from the left node to the right node, starting with translation in local \bar{x}, then in local \bar{y}, then in local \bar{z}, and continuing with rotation about local \bar{x}, about local \bar{y}, and about local \bar{z}. The starting number for local DOFs is always 1.

Figure 8.7 shows the numbering of nodes and elements for the bridge model with a subdivision of n elements of the bridge superstructure. Each element is of length L. To avoid coordinate transformation between local and global coordinate systems, the local element
coordinate system was specifically chosen such that these two coordinate systems coincide. Figure 8.8 shows the global and local DOFs numbering for a representative element i.

![Figure 8.7 Nodes and elements numbering of the bridge model.](image)

![Figure 8.8 Local and global DOFs numbering for element i.](image)

Since the element coordinate system coincides with the global coordinate system, the element kinematic matrix \mathbf{a}_g that relates the element end deformations and element end displacements in the global coordinate system is given by:

$$
\mathbf{a}_g = \begin{bmatrix}
-1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & \frac{1}{L} & 0 & 0 & 0 & 1 & 0 & -\frac{1}{L} & 0 & 0 & 0 & 0 \\
0 & \frac{1}{L} & 0 & 0 & 0 & 0 & 0 & -\frac{1}{L} & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & -\frac{1}{L} & 0 & 1 & 0 & 0 & 0 & \frac{1}{L} & 0 & 0 & 0 \\
0 & 0 & -\frac{1}{L} & 0 & 0 & 0 & 0 & \frac{1}{L} & 0 & 1 & 0 \\
\end{bmatrix}
$$

The stiffness matrix \mathbf{k} of a homogeneous, prismatic linear elastic 3D frame element is given by:
The element stiffness matrix k_e in the global coordinate system can be obtained by:

$$k_e = a_g^T k a_g$$ \hspace{1cm} (8.6)$$

Substituting into the above matrix multiplication yields the 12×12 element stiffness matrix:

$$k_e = \begin{bmatrix}
\frac{EA}{L} & 0 & 0 & 0 & 0 & 0 & -\frac{EA}{L} & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{12EI_z}{L^3} & 0 & 0 & 0 & 0 & \frac{6EI_z}{L^2} & 0 & -\frac{12EI_z}{L^3} & 0 & 0 & \frac{6EI_z}{L^2} \\
0 & 0 & \frac{12EI_y}{L^3} & 0 & -\frac{6EI_y}{L^2} & 0 & 0 & 0 & -\frac{12EI_y}{L^3} & 0 & -\frac{6EI_y}{L^2} & 0 \\
0 & 0 & 0 & \frac{GJ}{L} & 0 & 0 & 0 & 0 & 0 & -\frac{GJ}{L} & 0 & 0 \\
0 & 0 & -\frac{6EI_y}{L^2} & 0 & \frac{4EI_y}{L} & 0 & 0 & 0 & \frac{6EI_y}{L^2} & 0 & -\frac{2EI_y}{L} & 0 \\
0 & 0 & \frac{6EI_z}{L^2} & 0 & 0 & 0 & \frac{4EI_z}{L} & 0 & -\frac{6EI_z}{L^2} & 0 & 0 & \frac{2EI_z}{L} \\
\frac{EA}{L} & 0 & 0 & 0 & 0 & 0 & \frac{EA}{L} & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{12EI_y}{L^3} & 0 & 0 & 0 & 0 & -\frac{6EI_y}{L^2} & 0 & \frac{12EI_y}{L^3} & 0 & 0 & \frac{6EI_y}{L^2} \\
0 & 0 & -\frac{12EI_y}{L^3} & 0 & \frac{6EI_y}{L^2} & 0 & 0 & 0 & -\frac{12EI_y}{L^3} & 0 & \frac{6EI_y}{L^2} & 0 \\
0 & 0 & 0 & \frac{GJ}{L} & 0 & 0 & 0 & 0 & 0 & \frac{GJ}{L} & 0 & 0 \\
0 & 0 & \frac{6EI_z}{L^2} & 0 & \frac{2EI_z}{L} & 0 & 0 & 0 & \frac{6EI_z}{L^2} & 0 & -\frac{4EI_z}{L} & 0 \\
0 & \frac{6EI_z}{L^2} & 0 & 0 & 0 & \frac{2EI_z}{L} & 0 & -\frac{6EI_z}{L^2} & 0 & 0 & 0 & \frac{4EI_z}{L} \\
\end{bmatrix} \hspace{1cm} (8.7)$$

The Boolean matrix A_b for a particular element of the structural model needed to form the global stiffness matrix K has as many rows as element end displacement components—in this case 12—and as many columns as structural DOFs—in this case $6n + 6$). It has only one non-zero term in each row at the column with number equal to the entry of the element id-array for the
corresponding row. The entry in row \(k \) of the incidence array \(id \) of a particular element matches the number of the global structural DOF to which the end displacement component \(\bar{u}_k \) coincides with. The \(id \)-array for a typical element \(i \) (refer to Figure 8.8) is:

\[
id^{(i)} = \begin{bmatrix} 6i - 5 \\ 6i - 4 \\ 6i - 3 \\ 6i - 2 \\ 6i - 1 \\ 6i \\ 6i + 1 \\ 6i + 2 \\ 6i + 3 \\ 6i + 4 \\ 6i + 5 \\ 6i + 6 \end{bmatrix}
\] (8.8)

Therefore, the corresponding Boolean matrix for element \(i \) is:

\[
A^{(i)}_b = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & \bar{u}_1 \\ 0 & 0 & \cdots & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & \bar{u}_2 \\ 0 & 0 & \cdots & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & \bar{u}_3 \\ 0 & 0 & \cdots & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & \bar{u}_4 \\ 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & \cdots & 0 & 0 & \bar{u}_5 \\ 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & \cdots & 0 & 0 & \bar{u}_6 \\ 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & \cdots & 0 & 0 & \bar{u}_7 \\ 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & \cdots & 0 & 0 & \bar{u}_8 \\ 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & \cdots & 0 & 0 & \bar{u}_9 \\ 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & \cdots & 0 & 0 & \bar{u}_{10} \\ 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & \cdots & 0 & 0 & \bar{u}_{11} \\ 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & \cdots & 0 & 0 & \bar{u}_{12} \end{bmatrix}
\] (8.9)

Finally, the assembled global stiffness matrix \(K \), which is of size \(6n + 6 \) by \(6n + 6 \) is given by:

\[
K = \sum_{i=1}^{n} A^{(i)}_b^T k^{(i)}_e A^{(i)}_b
\] (8.10)

Note that the global stiffness matrix of the bridge formulated this way did not take into account the stiffness contribution from the abutment springs and the tested bridge bent. Instead, their contribution to the structural response was considered by adding their resisting forces to the resisting force vector. The resisting forces from the abutments were obtained by performing state determination at each time step. Similarly, the contribution from the two-column bridge bent serving as the experimental substructure was considered by adding the measured/calculated resisting forces. Details will be discussed in Section 8.1.6.
8.1.4 Mass Matrix

Two types of mass matrix are commonly used in dynamic analysis: the lumped mass matrix and the consistent mass matrix. The lumped mass matrix is diagonal and formulated by assuming that the distributed mass of the element can be lumped as point masses along the translational DOFs at the element ends, with these point masses being determined by static analysis of the beam under its own weight. In contrast, the consistent mass matrix assumes that the mass is distributed along the element length following the function \(m(x) \). The mass matrix derived this way is known as the consistent mass matrix because the same interpolation functions used in the displacement interpolation are also used in deriving the mass matrix. Although the dynamic analysis of a consistent-mass system requires more computational effort than does a lumped-mass idealization, the consistent-mass formulation has two advantages. First, it leads to greater accuracy in the results and rapid convergence to the exact solution with an increasing number of elements. Second, with a consistent-mass approach, the potential energy and kinetic energy quantities are evaluated in a consistent manner.

The consistent mass matrix formulation was chosen for this study. For a 3D frame element with uniform mass [i.e., \(m(x) = m = \rho A \) with mass density \(\rho \) and cross-sectional area \(A \)], length \(L \), and cross-sectional torsional constant \(J \), the following integrals are computed:

\[
m_{ij} = \int_0^L m(x)\psi_i(x)\psi_j(x)dx
\]

where \(\psi_i(x) \) and \(\psi_j(x) \) are the element interpolation (shape) functions. Upon the analytical evaluation of these integrals using standard linear shape functions for the axial and torsional deformations, and cubic shape functions for the flexural/shear deformations of a two-node 12 DOFs frame element, one obtains the following \(12 \times 12 \) element (consistent) mass matrix:
The consistent mass matrix assembly follows the same procedure as described in the global stiffness matrix assembly. Finally, the assembled global consistent mass matrix \(\mathbf{M} \), which is of size \(6n + 6 \) by \(6n + 6 \), is given by:

\[
\mathbf{M} = \sum_{i=1}^{n} \mathbf{A}^{(i)}_{b} \mathbf{m}_{e}^{(i)} \mathbf{A}^{(i)}_{b}^T
\]

(8.13)

8.1.5 Damping Matrix

Classical damping is an appropriate idealization if similar damping mechanisms are distributed throughout the structure. One of the procedures in defining classical damping, the Rayleigh damping model, was employed. Its expression is given by:

\[
\mathbf{C} = a_0 \mathbf{M} + a_1 \mathbf{K}
\]

(8.14)

The damping ratio for the \(n \)th mode of such a system is:
\[
\dot{\zeta}_n = \frac{a_0}{2} \frac{1}{\omega_n} + \frac{a_1}{2} \omega_n \tag{8.15}
\]

Considering 5% damping ratio \(\zeta\) in the first two modes of vibration, the coefficients \(a_0\) and \(a_1\) can be calculated as follows:

\[
a_0 = \zeta \frac{2 \omega_1 \omega_2}{\omega_1 + \omega_2} \quad a_1 = \zeta \frac{2}{\omega_1 + \omega_2} \tag{8.16}
\]

where \(\omega_1\) and \(\omega_2\) are the natural circular frequencies associated with the first and the second mode of vibration, respectively.

8.1.6 Resisting Force Vector

The dynamic analysis problem of a system is usually formulated with its static equilibrium position as the reference position, e.g., the equilibrium position under gravity loading. Therefore, the resisting force vector in the matrix equations of motion for a multi-degrees-of-freedom (MDOF), denoted with \(P_r\), is the one that corresponds to the dynamic displacement \(u\), representing the dynamic response of the system. Figure 8.9 shows a sample calculation of the resisting force \(P_r\) of a linear elastic system. To obtain the total resisting force \(P_{r,\text{total}}\) in an element, the static displacement \(\delta_{st}\) needs to be added to the dynamic displacement \(u\) to obtain the total displacement \(u_{\text{total}}\). This is important because the effect of gravity on different bridge components needs to be explicitly considered during Phase II HS testing as the bridge was subjected to both the transverse and vertical ground-motion inputs, same as in Phase I.

![Figure 8.9 Demonstration of resisting force calculation.](image-url)
The resisting force vector of the bridge in question is given by Equation (8.17). It has contributions from three parts: the deck, the end abutments, and the two-column bridge bent. Details of the resisting force calculations from each part are presented in the following subsections.

\[
P_r = \sum_{el} P_{r,el} = P_{r,\text{deck}} + P_{r,\text{abutments}} + P_{r,\text{bent}}
\tag{8.17}
\]

8.1.6.1 Bridge Deck

Since the bridge deck is modeled using 3D linear elastic frame elements, the \(6n + 6\) resisting force vector from the deck is simply:

\[
P_{r,\text{deck}} = KU
\tag{8.18}
\]

where \(K\) is the global stiffness matrix given by Equation (8.10), and \(U\) is the displacement vector representing the dynamic response.

8.1.6.2 Abutments

The resisting forces from the nonlinear abutments given the corresponding displacement values at each time step were obtained through a procedure known as the state determination. This is discussed in the following paragraphs for the abutment response in different directions. Although the longitudinal direction of the abutment does not experience any displacements during the gravity load or during the transverse/vertical ground excitations, the state determination was still implemented for completeness. The force-displacement (deformation) relationship shown in Figure 8.10(a) is path dependent, meaning that the resisting force depends on the prior history of motion of the system and whether the displacement is currently increasing or decreasing. More precisely, the resisting force at the current step \(i\) depends on not only the current step displacement, \(u_i\), but also on the displacement and resisting force values from the previous step, \(i-1\). The flow chart for the state determination procedure is shown in Figure 8.10(b). Worth noting for future use of the model is that the state determination results for the longitudinal responses of the abutments at the two ends of the bridge differ if the longitudinal ground motion is applied. This is because a positive global displacement in the longitudinal direction leads to a positive longitudinal deformation for the abutment connected to node 1, but a negative longitudinal deformation for the one connected to node \(n + 1\); however, the underlying idea is exactly the same. The resisting forces in the longitudinal direction from the two abutments were added to the first and the \((6n + 1)^{th}\) entries of the resisting force vector, according to the global DOFs numbering, as shown in Figure 8.8.

For the transverse direction of the abutment, the only source of displacements comes from the transverse ground motion. Therefore, the EPP backbone curve shown in Figure 8.11(a), which is the relationship between the total resisting force and the total displacement, directly applies to the ground-motion scenario. Similar to the longitudinal direction of the abutment, the force-displacement relationship is also path dependent. The flow chart for the state determination procedure is shown in Figure 8.11(b), with the upper and lower bound of the resisting force set by
the yield strength P_{but}. According to the global DOFs numbering from Figure 8.8, the resisting forces in the transverse direction of the two abutments were added to the second and the $(6n + 2)^{th}$ entries of the resisting force vector.

The displacements in the vertical direction of the abutments can be split into two parts: the static displacement u_{st} due to the gravity load and the dynamic displacement u_{EQ} caused by the vertical ground acceleration. Therefore, to determine the resisting forces $P_{r, EQ}$ during the earthquake, the original force-displacement relationship needs to be shifted, as shown Figure 8.12(a). The static displacement $u_{st} = 0.487$ in. and the resisting force $F_{st} = 584$ kips were obtained from the gravity analysis of the bridge. In the gravity analysis, the vertical response of the bridge bent is represented by a linear elastic spring, with the same vertical stiffness used in Phase I HS multiplied by the length scale factor $S_L = 3.333$ according to the laws of similitude [Harris and Sabnis 1999]. The gravity load comes from the self-weight of the superstructure. With all needed information, the state determination procedure is shown in Figure 8.12(b). The resisting forces from the two abutments in the vertical direction were added to the third and the $(6n + 3)^{th}$ entries of the resisting force vector based on the global DOFs numbering; see Figure 8.8.

(a) (b)

Figure 8.10 (a) Force-displacement relationship; and (b) state determination procedure of the longitudinal abutment response.

(a) (b)

Figure 8.11 (a) Force-displacement relationship; and (b) state determination procedure of the transverse abutment response.
8.1.6.3 Test Specimen

One of the interactions between the test specimen and the analytical part of the bridge was through the horizontal and vertical resisting forces of the test specimen. The horizontal resisting force was measured by the actuator’s load cell, while the vertical resisting force was obtained by multiplying the dynamic vertical displacement as an output from the numerical integration with the assumed vertical stiffness. Before adding to the resisting force vector, the laws of similitude [Harris and Sabnis 1999] were taken into consideration, i.e., scaling up the measured horizontal resisting force by a factor of S_L^2. The entry numbers for the horizontal and vertical resisting forces in the global resisting force vector are $3n + 2$ and $3n + 3$, respectively, according to the adopted global DOFs numbering rule described before; see Figure 8.8.

The effect of gravity was considered by applying the gravity load to the test specimen before starting the HS. From the gravity analysis results, the force on top of the bridge bent was 1907 kips. Therefore, a gravity load of 172 kips was applied to the test specimen through the vertical actuator after proper scaling.

8.2 SIMULINK IMPLEMENTATION

To accommodate the change in the analytical substructure in Phase II, the Simulink model described in Chapter 7 needs to be modified. Compared with model shown in Figure 7.19, the implementation outside the “if” statement follows the exact same approach in fulfilling the tasks of interpolation, communication, and selected quantities output. The main change was the numerical integration inside the “if” action box; see Figure 8.13. Considering the stability limit of the Explicit Newmark Integration algorithm in Equation (7.1) and that the higher mode periods of the bridge can be unexpectedly small, the Alpha-OS integration algorithm [Combescure and Pegon 1997; Elkhoraibi and Mosalam 2007a, 2007b; Nakashima et al. 1990; and Schellenberg et al. 2009], previously used in the V-connector HS, was chosen for Phase II of the HS study of the tested bridge bent together with the simulated bridge deck and abutment models. Since this algorithm has a prediction step and a correction step, the implementation was more involved. In
addition, the resisting force vector calculations required summing up contributions from different parts of the bridge, including the nonlinear end abutments. All these issues added complexity to the Simulink implementation. Details are discussed in the following subsections.
Figure 8.13 Detailed implementation inside the “if” action box.
8.2.1 Ground Motion Manipulation

The matrix equations of motion for a MDOF system subjecting to ground excitation(s) can be written as:

\[\mathbf{M} \ddot{\mathbf{U}} + \mathbf{C} \dot{\mathbf{U}} + \mathbf{P}_r = -\mathbf{M} \mathbf{L} \ddot{\mathbf{U}}_g \] \hspace{1cm} (8.19)

For the case at hand, Equation (8.19) can be further expanded as:

\[\mathbf{M} \ddot{\mathbf{U}} + \mathbf{C} \dot{\mathbf{U}} + \mathbf{P}_r = -\mathbf{M} \mathbf{L} \ddot{\mathbf{U}}_g = -(\mathbf{M} \mathbf{l}_h \ddot{u}_{gh} + \mathbf{M} \mathbf{l}_v \ddot{u}_{gv}) \] \hspace{1cm} (8.20)

where \(\ddot{u}_{gh} \) and \(\ddot{u}_{gv} \) are the horizontal and vertical ground accelerations at a certain instant of time, \(\mathbf{L} \) is the influence matrix [Chopra 2011], with its columns \(\mathbf{l}_h \) and \(\mathbf{l}_v \), each of size \(6n + 6 \) by 1, representing the displacements of all DOFs resulting from the static application of a unit horizontal and vertical ground displacement, respectively. Therefore, \(\mathbf{l}_h \) and \(\mathbf{l}_v \) can be expressed as follows:

\[
\begin{align*}
\mathbf{l}_h &= \begin{bmatrix} l_h^{(1)} \ \ l_h^{(2)} \ \ \vdots \ \ l_h^{(n+1)} \end{bmatrix} \\
\mathbf{l}_v &= \begin{bmatrix} l_v^{(1)} \ \ l_v^{(2)} \ \ \vdots \ \ l_v^{(n+1)} \end{bmatrix}
\end{align*}
\] \hspace{1cm} (8.21)

Written more compactly, Equation (8.20) is equivalent to the following:

\[\mathbf{M} \ddot{\mathbf{U}} + \mathbf{C} \dot{\mathbf{U}} + \mathbf{P}_r = -\mathbf{M} \mathbf{l} \ddot{u}_{gh} \] \hspace{1cm} (8.23)

where

\[
\begin{align*}
l_h^{(1)} &= l_h^{(2)} = \ldots = l_h^{(n+1)} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \\
l_v^{(1)} &= l_v^{(2)} = \ldots = l_v^{(n+1)} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}
\end{align*}
\] \hspace{1cm} (8.22)

Written more compactly, Equation (8.20) is equivalent to the following:

\[\mathbf{M} \ddot{\mathbf{U}} + \mathbf{C} \dot{\mathbf{U}} + \mathbf{P}_r = -\mathbf{M} \mathbf{l} \ddot{u}_{gh} \] \hspace{1cm} (8.23)

where

\[
\begin{align*}
l &= \begin{bmatrix} l^{(1)} \\ l^{(2)} \\ \vdots \\ l^{(n+1)} \end{bmatrix} \\
l^{(1)} &= l^{(2)} = \ldots = l^{(n+1)} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}
\end{align*}
\] \hspace{1cm} (8.24)
8.2.2 Numerical Integration

The detailed execution steps for the Alpha-OS integration algorithm can be found in Figure 5.3. The numerical integration was performed through the Matlab function block in Simulink [MathWorks 2015]. Before embarking on the solution algorithm, several tasks needed to be completed.

The first task was to calculate the predicted displacement vectors \mathbf{u}_i and \mathbf{u}_{i+1} at the current and the next step, as these quantities were necessary for determining the resisting force vectors $p_r(\mathbf{u}_i)$ and $p_r(\mathbf{u}_{i+1})$. The Matlab function block and its implementation are shown in Figure 8.14. It takes as inputs the bridge deck’s subdivision number n, the discrete time step dt, the Newmark acceleration coefficient β, the displacement vector \mathbf{u}_i, the velocity vector \mathbf{v}_i, and the acceleration vector \mathbf{a}_i at current step i, and its output consists of the predicted displacement vectors \mathbf{u}_i and \mathbf{u}_{i+1}, together with some displacement quantities associated with the test specimen for the subsequent calculations. The calculation starts from $i = 1$.

![Figure 8.14 Matlab function block for the predicted displacement calculation.](image)

function

\[\text{[Upd,Upd_next,Uh_spec_prdt_next,Uv_spec_prdt,Uv_spec_prdt_next]} = \text{CalcDisp}(n,dt,Beta,U,V,A) \]

% calculated the predicted displacement vector at current step \(i \) and next step \(i+1 \)

% Inputs:
% \(n \) - number of bridge deck subdivision
% \(dt \) - time step
% \(Beta \) - Newmark acceleration coefficient
% \(U \) - displacement vector at current step \(i \) (size: \(6(n+1) \times 1 \))
% \(V \) - velocity vector at current step \(i \) (size: \(6(n+1) \times 1 \))
% \(A \) - acceleration vector at current step \(i \) (size: \(6(n+1) \times 1 \))

% Outputs:
% \(Upd \) - predicted displacement vector at current step \(i \) (size: \(6(n+1) \times 1 \))
% \(Upd_next \) - predicted displacement vector at next step \(i+1 \) (size: \(6(n+1) \times 1 \))
% \(Uh_spec_prdt_next \) - predicted test specimen horizontal displacement at next step \(i+1 \) (scalar)
% \(Uv_spec_prdt \) - predicted test specimen vertical displacement at current step \(i \) (scalar)
% \(Uv_spec_prdt_next \) - predicted test specimen vertical displacement at next step \(i+1 \) (scalar)

%% Overall quantities
Upd = U - dt^2*Beta*A;
Upd_next = U + dt*V + dt^2*(1 - 2*Beta)*A/2;

%% Current step quantities
Uv_spec_prdt = Upd(3*n+3,:);

%% Next step quantities
Uh_spec_prdt_next = Upd_next(3*n+2,:);
Uv_spec_prdt_next = Upd_next(3*n+3,:);
After determining the predicted displacement, the second task was to obtain the resisting force vectors \(p_r(\tilde{u}_i) \) and \(p_r(\tilde{u}_{i+1}) \). The procedures for determining these resisting forces from different parts of the bridge described in Section 8.1.6 were implemented as shown in Figure 8.15. The associated Matlab code can be found in Appendix D.

The state determination in the longitudinal (denoted with springs 1 and 4) and the transverse (denoted with springs 2 and 5) directions of the abutments requires the predicted displacement and associated resisting force values from the previous step [i.e., \(\tilde{u}_{i-1} \) and \(p_r(\tilde{u}_{i-1}) \) to determine \(p_r(\tilde{u}_i) \)], as can be seen from Figure 8.10 and Figure 8.11. This was accounted for by the Simulink blocks “DataStoreWrite”, “DataStoreRead”, and “DataStoreMemory”. The calculation reads the predicted displacements \(\tilde{u}_{sp1,2,4,5,i-1} \) and resisting forces \(\tilde{p}_{r1,2,4,5,i-1} \) of the abutments at the previous time step \(i-1 \) through the “DataStoreRead” blocks, while it writes and stores \(\tilde{u}_{sp1,2,4,5,i} \) and \(\tilde{p}_{r1,2,4,5,i} \) at the current time step \(i \) to the respective “DataStoreWrite” and “DataStoreMemory” blocks. When the execution progresses, the new values being read then become the stored ones from the previous execution with the subscript \(i \). The starting values \(\tilde{u}_{sp1,2,4,5,0} \) and \(\tilde{p}_{r1,2,4,5,0} \) are obviously set to zero as \(\tilde{u}_0 = 0 \).

For the horizontal resisting force of the test specimen, the resisting force \(p_{rh}(\tilde{u}_i) \) at the current step \(i \) is read from the “DataStoreRead” block, and the next step value \(p_{rh}(\tilde{u}_{i+1}) \) is the one measured from the actuator load cell and scaled up by \(S_L^2 \). Note that by the time when the very first horizontal resisting force \(p_{rh}(\tilde{u}_2) \) is measured, the horizontal actuator remains still as the specimen displacement \(\tilde{u}_2 \) (denoted with “\(Uh_spec_prdt_next \)” in Figure 8.14) is equal to zero; see Equation (8.25). The measured value should be very close to zero if the load-cell noise is inevitable. The horizontal actuator starts moving until the predicted displacement \(\tilde{u}_3 \) (denoted with “\(Uh_spec_prdt_fol \)” in Figure 8.16) at the following step is calculated. Similarly, the vertical actuator under force control starts applying the earthquake-induced forces from \(p_{rv}(\tilde{u}_2) \) to \(p_{rv}(\tilde{u}_3) \) (denoted with “\(Prv_spec_prdt_next \)” and “\(Prv_spec_prdt_fol \)”, respectively in Figure 8.16) to the test specimen. Therefore, the displacement/force interpolation for the actuators, in fact, starts from \(i = 2 \) instead of \(i = 1 \).

\[
\begin{align*}
\mathbf{u}_1 &= 0, \mathbf{\dot{u}}_1 = 0, \mathbf{\ddot{u}}_1 = 0 \Rightarrow \mathbf{\ddot{u}}_2 = \mathbf{u}_1 + \Delta \mathbf{u}_1 + \frac{(\Delta t)^2}{2} [(1 - 2\beta) \mathbf{\ddot{u}}_1] = 0
\end{align*}
\] (8.25)
Finally, the numerical integration was performed using another Matlab function block shown in Figure 8.16. Per steps 4(b) to 4(f) in Figure 5.3, the function block takes as inputs the bridge deck’s subdivision number n, the discrete time step dt, the Newmark coefficients α and β, the Alpha-OS parameter γ, the mass/damping/initial stiffness matrices, the ground-motion inputs
from current step \(i\) and next step \(i + 1\), the velocity vector \(\vec{u}_i\) and the acceleration vector \(\vec{a}_i\) at current step \(i\), the next step predicted displacement vector \(\vec{u}_{i+1}\), and the resisting force vectors \(p_r(\vec{u}_i)\) and \(p_r(\vec{u}_{i+1})\). The output consists of the displacement vector \(\vec{u}_{i+1}\), the velocity vector \(\vec{u}_{i+1}\), and the acceleration vector \(\vec{a}_{i+1}\) at the next step \(i\). In addition, the test specimen’s predicted displacements in both directions at the following step \(i + 2\) were obtained for the displacement/force interpolations. The associated Matlab code for the numerical integration is included in Appendix D.

![Figure 8.16 Matlab function block for performing the Alpha-OS numerical integration.](image)

8.2.3 Simulink Model Verification

The newly developed HSS was shown to be robust and well-functioning during the verification and Phase I HS testing. Therefore, no more checks were necessary in terms of the
displacement/force interpolation, the D/A and A/D conversions, the communication between different hardware components, and the control quality of the actuators. Note: the Simulink model was changed in Phase II with the addition of the bridge model, including the formulation of the stiffness/mass/damping matrices, the change in the integration algorithm, and the assembly of the resisting force vector.

To ensure correctness of the new implementation, the bridge model was developed in OpenSees [McKenna et al. 2000] as a side check, utilizing the exact same geometry, modeling parameters, solution algorithm, and other modeling options as the Simulink model. For simplicity, the behavior of the bridge bent in the transverse and vertical directions was represented by linear elastic springs. The transverse stiffness was estimated by taking the secant value of the hysteretic curve from Phase I EQ7—refer to Figure 8.17—and scaled up by S_L. Moreover, the same vertical stiffness for the gravity analysis was applied; see Section 8.1.6.2. Both models were subjected to the same two-directional ground-motion inputs and the results compared.

Figure 8.18 to Figure 8.21 compare different response quantities of the bridge. The Simulink results agree completely with the response determined from OpenSees, thus proving the reliability of the developed Simulink model. In addition, the behaviors of different bridge components were observed. Figure 8.19 shows the linear elastic behavior in both directions of the bridge bent, which agrees with the model setting. Figure 8.21(a) shows the EPP response of the transverse abutment, with the correct initial stiffness and the yield strength. Figure 8.21(b) does not reflect the “no-tension” property of the vertical abutment because the maximum earthquake-induced uplift was smaller than the gravity-induced settlement. Therefore, the vertical abutment remained in the linear elastic compression state during the selected ground motion, as expected in any good design.

![Figure 8.17 Transverse stiffness estimation of the bridge bent from Phase I, EQ7.](image-url)
Figure 8.18 Displacement time history comparisons of the bridge bent (prototype scale) in (a) horizontal; and (b) vertical directions.

Figure 8.19 Force-displacement relationship comparisons of the bridge bent (prototype scale) in (a) transverse; and (b) vertical directions.
8.3 HYBRID SIMULATION TEST AND DISCUSSION OF RESULTS

8.3.1 Test Plan

Two runs were originally planned for this phase. The first run was the repetition of EQ7 on the full bridge system to investigate the effect of different analytical substructures on the response of the bridge bent. The second run was to have three combined motions with increasing intensity, similar to the idea of the run conducted during the V-connector testing. As the test progressed, a third run—a repetition of EQ6 but on the hybrid structure from Phase I using all parameters of Phase I HS testing—was added between the two originally planned runs to have a better
understanding on some of the unexpected phenomena that appeared during the first run. The final testing program of the Phase II HS is listed in Table 8.1.

<table>
<thead>
<tr>
<th>Test #</th>
<th>EQ information</th>
<th>Physical substructure</th>
<th>Analytical substructure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EQ7 from Phase I</td>
<td>Bridge bent</td>
<td>Bridge superstructure and abutments</td>
</tr>
<tr>
<td>2</td>
<td>EQ6 from Phase I</td>
<td>Bridge bent</td>
<td>Analytical mass of Phase I</td>
</tr>
<tr>
<td>3</td>
<td>Three motions combined</td>
<td>Bridge bent</td>
<td>Bridge superstructure and abutments</td>
</tr>
</tbody>
</table>

8.3.2 Loading

The loading sequence for Phase II was the same as in Phase I: gravity loading first, followed by selected two-directional ground-motion records (one transverse and the vertical component). The gravity load was 172 kips as explained before. In addition to the ground-motion records at hand, a new set of ground motions was selected based on the target spectrum of a high-seismicity region in the San Francisco Bay Area, with increasing intensity. The hazard spectrum calculation tool from the Open-source Seismic Hazard Analysis (OpenSHA) [Field et al. 2013] framework was used for this purpose. The average seismic shear-wave velocity from the surface to a depth of 30 m, denoted with V_{S30}, was chosen to be 560 m/sec, representing soil type C. By inputting the longitude and latitude of the site and varying the probability of exceedance in 50 years from 0.5 to 0.1 to 0.02, the spectrum calculator tool gives the target spectrum of SLE, DBE, and MCE for that specific site.

The original geographical location of the prototype bridge is 37.753° N, 121.142° W, with the target spectra shown in Figure 8.22. The maximum spectral acceleration for the MCE is only about 0.75g, which is quite small for the purpose of this study. To ensure reasonable displacement amplitude during the Phase II HS testing, a higher seismicity site located at the intersection of I-80 and I-580 in the Bay Area (37.83° N, 122.294° W) was selected; see Figure 8.23. The resulting target spectra were entered into the NGA West2 ground-motion database [Bozorgnia et al. 2014] for the ground-motion selection. For each intensity level, several ground-motion records were selected and scaled to minimize the mean squared error (MSE) with respect to the target spectrum; see Figure 8.24. The matching period range of interest was limited to 0.1 sec to 3.0 sec as the fundamental period of the bridge was estimated to be around 1.1 sec. To avoid repetition of the same loading pattern, the ground motions with the same name but only different scale factors were eliminated. The final selected ground-motion records, one for each intensity level, are summarized in Table 8.2.
Table 8.2 Selected ground motions for each intensity level.

<table>
<thead>
<tr>
<th>EQ level</th>
<th>Event name</th>
<th>Station name</th>
<th>Unscaled PGA (g)</th>
<th>Scale factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLE</td>
<td>Livermore, 1980</td>
<td>Del Valle Dam</td>
<td>0.256</td>
<td>0.983</td>
</tr>
<tr>
<td>DBE</td>
<td>Tabas, 1978</td>
<td>Dayhook</td>
<td>0.41</td>
<td>1.402</td>
</tr>
<tr>
<td>MCE</td>
<td>Coyote Lake, 1979</td>
<td>Gilroy</td>
<td>0.42</td>
<td>2.411</td>
</tr>
</tbody>
</table>

Figure 8.22 Original site location (source: Google Maps) and the corresponding target spectra.

Figure 8.23 Selected site location (source: Google Maps) and the corresponding target spectra.
In order to have a reliable prediction of the 30% scale bridge bent in terms of the horizontal displacement amplitude and the vertical actuator force during the HS, the selected ground motions above were applied to the OpenSees [McKenna et al. 2000] bridge model in a concatenate manner with increasing intensity, and a nonlinear time history analysis was conducted before the Phase II HS experiment. A series of zero values were added in between the ground motions to allow for enough time for the damping-out phase. The bridge bent was modeled in the same simplified manner as mentioned in Section 8.2.3 (linear elastic spring in each direction). Figure 8.25 shows the response quantities of interest in the prototype scale. The horizontal displacement range was between -12 in. and 5 in., while the vertical force range was between -2600 kips and -940 kips. Therefore, the maximum horizontal displacement and vertical force to be applied to the test specimen were 3.6 in. and 235 kips, respectively. These values were considered acceptable.
8.3.3 Test Results

The test results and key observations are presented in this section. For the first and third test runs, the subdivision number \(n \) of the bridge deck was chosen to be 10; see Figure 8.26. Response quantities from different locations of the bridge, including the bridge bent, the end abutments, and the nodes at mid-span, were recorded during the test. At the beginning of each run, enough time was given for the test specimen to slowly adjust itself to its new self-equilibrium position (not necessarily the position with no residual deformations). In other words, the horizontal actuator load cell should have zero initial readings.
8.3.3.1 Test 1: Bridge System, Repeat EQ7

In the first run, the ground-motion record of EQ7 previously used in Phase I HS testing was repeated, and the behavior of the bridge bent compared. Figure 8.27 and Figure 8.28 show the comparison of the displacement time history, the resisting force time history, and the acceleration time history of the bridge bent in the transverse direction. Here, Phase I (single bent) represents the HS conducted using only mass and damping as the analytical substructure. Phase II (full bridge) represents the HS conducted to explore the system-level response with the remainder of the prototype bridge modeled as the analytical substructure.

The point of this comparison is not to compare the displacement amplitudes as they represent two completely different dynamic systems. Rather, the goal is to compare the general characteristics of the two responses to observe if there are fundamental differences between the two cases when the resilient bridge bent is simulated by itself versus the full bridge including the resilient bridge bent. As can be seen from the plots, the period elongation due to the change of the analytical substructure is quite obvious from both plots, which was expected as the bridge system was more flexible than the SDOF system. One important finding is that while the displacement amplitude from Phase II was smaller, a much larger residual displacement of 0.7 in.—about 35% of the peak value—was observed towards the end. This was not expected as the bridge bent failed to demonstrate its excellent re-centering capacity in Phase II HS testing compared with Phase I HS testing.

Figure 8.29 illustrates the horizontal force-displacement relationship comparison. There was a clear stiffness degradation after EQ7 in Phase I, as indicated from the lower initial stiffness in Phase II. This shows that even if the bridge bent was designed for self-centering and more resilient behavior, the damage in the form of the energy dissipator yielding, concrete spalling, and grout crushing at the interfaces was inevitable.

![Figure 8.27](image.png)
Figure 8.27 (a) Displacement time history; and (b) resisting force time history comparisons of the bridge bent (specimen scale) in the transverse direction.
Another observation is that the transverse displacement time histories from different bridge locations (nodes) are almost identical; see Figure 8.30(a). This means that the bridge deck behaved like a rigid body in the transverse direction with negligible bending deformation. A very simple calculation was conducted to verify this behavior, where one span of the bridge was treated as a simply supported beam, while the lateral inertia forces acting on the bridge were assumed to be represented by a uniformly distributed load w; see Figure 8.30(b). The geometric and section properties of this simplified model can be found in Table 4.1. The uniform load w was obtained by the following:
where

\[m = \text{the total mass of one span}; \]
\[a_{\text{max}} = \text{maximum transverse acceleration over the span}; \text{ and} \]
\[L = \text{length of a single span, which is half the length of the bridge}. \]

The maximum transverse acceleration from Phase II HS testing was around 0.35g; see Figure 8.28. To be on the conservative side, taking \(a_{\text{max}} = 0.5g \) yields:

\[w = \frac{ma_{\text{max}}}{L} = \frac{\rho A L a_{\text{max}}}{L} = 2.156 \times 10^{-7} \times 13946.46 \times 0.5 \times 386.4 = 0.58 \text{ kips/in.} \]

The maximum deflection of the simply supported beam under uniform load can be obtained by:

\[\delta = \frac{5wL^4}{384EI} \quad (8.27) \]

The value \(I \) was taken to be the second moment of area about the strong axis \(I_y \). Plugging in other relevant values gives:

\[\delta = \frac{5wL^4}{384EI} = \frac{5 \times 0.58 \times 1323^4}{384 \times 4030 \times 76911540} = 0.075 \text{ in.} \]

\[\Rightarrow \frac{\delta}{L} = 0.006\% \]

The small deflection value (0.006% of a single span length \(L \)) justifies the observation that the bridge deck behaved like a rigid body, with negligible deflection in the transverse direction during the ground shaking.

Finally, the displacement time histories and the force-displacement relationships of the end abutments are shown in Figure 8.31 and Figure 8.32. Yielding was observed in the transverse direction of the abutment response. This fact, combined with the flexural rigidity of the bridge deck as shown above, is most likely the cause of the large residual displacement of the bridge bent, which was verified in later runs. The abutment response in the vertical direction remained in compression without uplifting.
Figure 8.30 (a) Displacement time histories from different bridge locations (nodes) in the transverse direction (prototype scale); and (b) deformed shape of a simply supported beam under uniformly distributed load.

Figure 8.31 (a) Displacement time history; and (b) force-displacement relationship of the abutment (prototype scale) in the transverse direction.
8.3.3.2 **Test 2: Single Bent, Repeat EQ6**

The most important finding from Test 1 of Phase II HS testing was the large residual displacement at the end of the time history. Several factors might have contributed to this displacement, including the inherent properties of the bridge system, e.g., the yielding of the abutment in the transverse direction or unknown test-limitation induced errors like the friction force from the lateral supporting system. In order to further investigate this phenomenon, EQ6 was repeated, with the hybrid substructure changed back to a single bridge bent with modeled analytical mass/damping, as was the case in Phase I HS testing. This specific ground motion was chosen because of its comparable displacement amplitude [see Figure 7.43(a)] with Test 1 of Phase II HS testing. If the test specimen demonstrated a much better re-centering behavior compared with the first test, then it would demonstrate that the residual displacement indeed came from the bridge system rather than other external factors.

Figure 8.33 compares the displacement time history between the first and the second test of Phase II HS testing. Similar to that observed in Figure 8.27(a), the single bent test yielded larger peak displacement, but smaller residual displacement (13% of the peak for the second test compared to 35% of the peak for the first test) than the system-level test, indicating an improved re-centering capacity. Note that this residual displacement was still higher than those reported from Phase I HS testing because of possible initial displacement offset inherited from all previous runs or because of the corresponding accumulated specimen damage.
8.3.3.3 Test 3: Bridge System, Ground Motions with Increasing Intensity

The earthquake excitation for Test 3 of Phase II HS testing was a combination of three selected ground motions with increasing intensity; see Table 8.2. Figure 8.34 shows the displacement time history and the hysteretic behavior of the test specimen in the transverse direction. Figure 8.35 and Figure 8.36 give the responses of the end abutments. For the SLE and DBE levels, the bridge bent maintained its good self-centering capabilities with negligible residual displacement (< 0.05 in., i.e., 0.04% drift), while the transverse response of the abutment remained mostly in the linear elastic range. When the MCE level was applied, the test specimen first went through a positive peak of 1.45 in. (1.09% drift), then suddenly reached a negative peak of 3.47 in. (-2.62% drift) due to the near-fault pulse-like nature of the ground motion; see Figure 8.37. After the peaks, it stayed and oscillated in the negative displacement region, with a final residual displacement of -1.59 in. (-1.2% drift); the implications of this response are discussed in detail below. The end abutments in the transverse direction experienced significant amount of yielding during the MCE level and ended up with similar residual displacement (-5.38 in.) to the bridge bent on the prototype scale because of the rigid body behavior of the bridge deck. Once again, the vertical response of the abutment stayed in its linear elastic compression-only state without going into positive (tension or uplift) displacement.
Figure 8.34 (a) Displacement time history; and (b) force-displacement relationship of the bridge bent (specimen scale) in the transverse direction for the three combined motions.

Figure 8.35 (a) Displacement time history; and (b) force-displacement relationship of the abutment (prototype scale) in the transverse direction for the three combined motions.
Figure 8.36 (a) Displacement time history; and (b) force-displacement relationship of the abutment (prototype scale) in the vertical direction for the three combined motions.

Figure 8.37 (a) Horizontal; and (b) vertical ground-motion records for the MCE level.

The residual displacement of 1.59 in., which corresponds to a residual drift of 1.2%, is discussed in the context of some current design code provisions for residual displacement. This discussion is summarized below:

- In Japan, over 100 RC bridge columns with residual drift ratios of more than 1.75% were demolished and rebuilt after the 1995 Kobe earthquake [Kawashima et al. 1998]. Following this earthquake, Japanese seismic design specifications for highway bridges were revised to specify an allowable residual displacement for bridge columns. Under these provisions, no more than 1% drift ratio is allowed;

- The Caltrans SDC [2013] includes provisions pertaining to near-fault ground motions by amplification of the design spectra; however, no limits on residual displacements are specified;
AASHTO [2012] requires site-specific analysis when the site is close to an active fault, but there are no guidelines for the design of RC bridge columns with respect to the control of residual displacement; and

The PEER tall buildings initiative [Hamburger et al. 2017] states that for the MCE, the mean of the absolute values of residual drift ratios from the suite of analyses shall not exceed 1% in each story. In addition, in the analysis of each story, the maximum residual story drift ratio shall not exceed 1.5%. Based on this guideline, the residual story drift ratio of 1% is intended to protect against excessive post-earthquake deformations that will likely cause condemnation or excessive downtime for a building. The limits on residual drifts are also based on the concern that tall buildings with large residual drifts may pose substantial hazards to surrounding construction in the event of strong aftershocks. Repair or demolition of tall buildings with large residual drifts also may pose risks to the community.

Although the PEER tall building initiative is not a bridge provision, it provided guidance herein. With all the information above, it can be concluded that the obtained 1.2% residual drift exceeded the strictest limit of 1%, but still below the 1.5% limit of maximum residual story drift for buildings or the 1.75% limit for bridge demolishing. Considering that the bridge bent had already incurred damage before the final test and that the large residual displacement was strongly related to the yielding in the transverse response of the abutment but not the loss of re-centering capacity, this residual drift was still considered to be acceptable.

8.4 PARAMETRIC STUDY

Based on the test results, it was proposed that the observed large residual displacement towards the end of the motion was caused by the yielding of the abutment in the transverse direction. To investigate the effect of the transverse abutment’s properties on the behavior of the bridge bent, a parametric study was analytically conducted in OpenSees [McKenna et al. 2000] since it was impractical to test the specimen in the laboratory repeatedly with different cases; moreover, the accumulated degrading behavior of the test specimen could not lead to an acceptable comparison. The bridge bent was represented by a zero-length spring in the transverse direction whose hysteretic response was calibrated against a representative test run. This simplified model, although impossible to replicate the force-displacement relationship of the bridge bent from all the runs, was sufficiently accurate for the intended comparative parametric study.

8.4.1 Simplified Bridge Bent Modeling

For the simplified model calibration, the horizontal hysteretic behavior of the test specimen from Phase I EQ7 HS was selected as a reference; see Figure 8.38(a). This is because the “flag-shaped” force-displacement curve for this run is an ideal reflection of the self-centering and energy-dissipation properties. Similar to the method used in the V-connector model calibration, the simplified bridge bent model was subjected to the displacement time history measured from EQ7,
with the resisting forces calculated based on the pre-assigned material model. Different materials in OpenSees were explored. It turned out that the hysteretic material model (see Section 4.3.1) gave the closest match between the test and the model by adjusting the parameters. Figure 8.38(b) gives the force-displacement comparison on the specimen scale (or reduced-scale).

To combine the calibrated transverse bridge bent model with the bridge, the modeling parameters were scaled up by $S_L = 3.333$. The modeling of the bridge bent’s vertical response remained unchanged, i.e., a linear elastic spring with the same stiffness used before; see Figure 8.39.

![Figure 8.38](image)

(a) Hysteretic curve of the bridge bent from phase I, EQ7; and (b) model calibration of the bridge bent (specimen scale).

![Figure 8.39](image)

Schematic representation of the bridge with updated bridge bent modeling.
8.4.2 Effect of the Abutment Initial Stiffness in the Transverse Direction

Two parameters controlling the behavior of the abutment in the transverse direction were investigated in the parametric study: the initial stiffness K_{abt} and the yield strength P_{abt}. The effect of the first parameter K_{abt} was investigated by keeping the yield strength constant and varying the stiffness value. EQ7 and the three combined motions for Phase II HS testing were again used as the ground-motion input. Table 8.3 provides different stiffness values used in the parametric study.

As can be seen from Figure 8.40, the transverse stiffness of the bridge was provided by the transverse response of the abutment and the bridge bent in parallel, assuming the bridge deck is sufficiently rigid. If the large residual displacement was indeed caused by the abutment yielding, a positive correlation between the residual displacement and the abutment stiffness should be expected. This is because as the abutment’s transverse stiffness increases, the transverse bridge response is dominated by the abutments rather than the bridge bent. Moreover, under the same yield strength, P_{abt}, the abutment with higher stiffness is more likely to yield.

Figure 8.41 and Figure 8.42 plot the transverse displacement time history of the bridge bent and force-displacement relationship of the abutment for different stiffness values. The absolute values of the residual displacements for each case were extracted and plotted against the abutment stiffness; see Figure 8.43. It can be concluded that the residual displacement increases “on average” as the abutment stiffness becomes larger, although some exceptions exist for certain cases. These exceptions can be explained as follows: the residual displacement not only depends on whether the abutment yields or not, but also on the prior history of yielding and the details of the input motions. If the abutment stopped vibrating at a small displacement value even if it yielded before, then the residual displacement of the bridge bent would also be small. Note: the general trend (in an average sense) agrees with the previous inferences, which proves the relationship between the abutment yielding and the residual displacement from one aspect.

<table>
<thead>
<tr>
<th>Case</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stiffness (kip/in.)</td>
<td>50</td>
<td>100</td>
<td>112.2 (original)</td>
<td>200</td>
<td>300</td>
<td>400</td>
<td>500</td>
<td>600</td>
<td>700</td>
<td>800</td>
</tr>
</tbody>
</table>

Figure 8.40 Composition of transverse bridge stiffness.
Figure 8.41 Transverse displacement time histories of the bridge bent (prototype scale) for different stiffness values in (a) EQ7; and (b) the three combined motions.

Figure 8.42 Hysteretic responses in the transverse direction of the abutment (prototype scale) for different stiffness values in (a) EQ7; and (b) the three combined motions.
8.4.3 Effect of the Abutment Yield Strength in the Transverse Direction

The effect of the other parameter, \(P_{abt} \), was investigated by keeping the initial stiffness constant and varying the value of yield strength. A legitimate assumption is that if the yield strength were high enough so that the abutment behaved elastically, then the residual displacement of the bridge bent would be very close to zero because of its self-centering nature. Table 8.4 summarizes the different yield strength values used in this parametric study. Two different sets of parameters were used for different ground motions such that the largest value in each set could lead to linear elastic response of the abutment in the transverse direction.

Figure 8.44 and Figure 8.45 plot the transverse displacement time history of the bridge bent and force-displacement relationship of the abutment for different yield strength values. The absolute values of the residual displacements for each case were extracted and plotted against the yield strength of the abutment in Figure 8.46. No clear relationship was observed between the residual displacement and the yield strength. The most important finding was that the linear elastic transverse response of the abutment resulted in the re-centering behavior of the bridge bent. This evidence, together with that from the previous subsection, strongly support the original conjecture that the large residual displacement at the end of the Phase II HS was caused by the yielding of the abutment model in the transverse direction.

Table 8.4 Different yield strength values for the parametric study.

<table>
<thead>
<tr>
<th>Case</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield strength (kip)</td>
<td>EQ7</td>
<td>100</td>
<td>104.1 (original)</td>
<td>200</td>
<td>400</td>
<td>600</td>
</tr>
<tr>
<td></td>
<td>Combined motion</td>
<td>104.1 (original)</td>
<td>200</td>
<td>400</td>
<td>800</td>
<td>1200</td>
</tr>
</tbody>
</table>
Figure 8.44 Transverse displacement time histories of the bridge bent (prototype scale) for different yield strength values in (a) EQ7; and (b) the three combined motions.

Figure 8.45 Hysteretic responses in the transverse direction of the abutment (prototype scale) for different yield strength values in (a) EQ7; and (b) the three combined motions.
Figure 8.46 Transverse residual displacement of the bridge bent vs. the abutment yield strength (prototype scale) for (a) EQ7; and (b) the three combined motions.
9 Conclusions and Future Extensions

A summary of the developed computational and experimental studies is presented in this chapter. This is followed by the main conclusions and recommendations for future work based on the entire study.

9.1 SUMMARY

Reported herein are the results of a combined numerical and experimental research program. The scope of the project was to investigate the structural behavior and system-level response of two bridge subsystems, aiming at introducing seismic resiliency and accelerated bridge construction (ABC) to bridge engineering practice.

The first study focused on the system response of reinforced concrete highway bridges incorporating a class of innovative connecting devices called the “V-connector”. This device is used to connect two components in a structural system, e.g., the column and the bridge deck, or the column and its foundation. By providing an isolation surface and limiting the amount of transferred forces between the two connection parts through a flexible connection rod, the V-connector elongates the fundamental period of the bridge and protects the bridge columns from being damaged, leading to a resilient bridge system design. The intrinsic energy-dissipating mechanism is provided by the interface friction forces generated along the sliding contact surfaces. Furthermore, the device facilitates ABC by allowing on-site assembly of precast structural elements.

A single-column two-span highway bridge located in California (the Jack Tone Road On-Ramp Overcrossing) was used as a prototype bridge for validating system’s performance. Before embarking on the experimental program, a pre-test nonlinear time history analysis of the bridge model was carried out, with an idealized hysteretic behavior of the V-connector. This resulted in a set of design parameters for the V-connector to elicit an elastic bridge response. A one-third-scale V-connector was fabricated accordingly. A quasi-static cyclic test was first conducted on the V-connector to obtain its hysteretic response, with two 1D OpenSees [McKenna et al. 2000] models calibrated based on the test results. These models were then used to select the ground-motion scale factors for the hybrid simulation (HS) test, where all bridge components were analytically modeled except for the V-connector, which was simulated as the experimental substructure in a specially designed and constructed test setup. The proper communication among
the HS components, the validity of the geometric transformation, and the verification of the hybrid simulation system (HSS) were performed using a low-intensity HS trial run with actuators attached to the test specimen. This was important because the geometric transformation depends on the actuator layout during the real test. Finally, one single HS test run with three combined ground motions of increasing intensity was conducted. Linear elastic bridge response was confirmed by the HS results. The comparison of the bridge response with and without the V-connector justified the usage of these connectors in ABC.

The study of the second bridge subsystem had two main objectives: (1) conduct HS tests on a single two-column bridge bent with innovative design features and compare the test results against a previously conducted shaking table test; and (2) conduct HS tests on a full bridge system and evaluate the system-level performance of the bridge involving the same bridge bent. The design of the re-centering columns was rationally derived from that of an existing monolithic bridge, the Massachusetts Avenue Over Crossing (MAOC). The final configuration was selected on the basis of a parametric analysis performed on the 3D OpenSees model of the MAOC bridge. The specimen construction was performed following the principles of ABC and utilized readily available technologies. The use of a socket connection provided the possibility for the simultaneous fabrication of all the subcomponents to improve the quality of the construction, which was further simplified by the proposed use of an external steel shell specially engineered around rocking behavior to serve as both the formwork and the transverse reinforcement of the bridge column. As an added benefit, this technology eliminated the need for a mortar bed at the column base, commonly used to accommodate construction tolerances in systems with precast columns over the clear height, which can limit the optimal performance of the system under earthquake loading.

To fulfill the goals of the experimental program, a new HSS was designed, utilizing the computational platform Matlab/Simulink [MathWorks 2015], the interface hardware/software platform dSPACE [2017], and the MTS controllers and data acquisition (DAQ) system for the utilized actuators and sensors. The operation of the HSS was verified by a HS trial run without utilizing the test specimen.

In the Phase I HS testing, the inertia mass blocks attached to the top of the specimen in the shaking table test were removed and modeled in the computer (analytical substructure), with the modeling parameters estimated based on the shaking table test results. The two-column bridge bent with the same design was treated as the experimental substructure. Six out of the twelve ground motions from the shaking table test were repeated and the results were compared. Good matching was achieved in terms of the different measured response quantities.

In the Phase II HS testing, the analytical substructure was expanded to include the remaining part of a two-span bridge, including the entire bridge deck and its abutments. A 3D linear elastic frame element was used for the bridge deck, while the abutments were modeled using spring elements with different force-displacement relationships in different directions. The formulation of the stiffness/mass/damping matrices and the resisting force vector followed the standard finite-element method and was validated against OpenSees results. A set of additional ground-motion records were selected based on the target response spectrum of different earthquake...
intensities for a specific high-seismicity region in the San Francisco Bay Area. The test results were further interpreted through a parametric study, which shed more light on the system-level performance of the entire bridge system with an innovative bridge bent and provided a blueprint to the engineering communities in how to design a resilient structural system that incorporates sound modeling of the bridge bents, deck, and abutments.

9.2 CONCLUSIONS

Several conclusions were drawn from this study and are summarized as follows:

- Both bridge subsystems proved to be effective in mitigating the earthquake-induced damage, thus protecting the key components of the bridge system within the provenance of ABC;
- The hysteretic behavior and the energy-dissipating mechanism of the V-connector remained stable and consistent after large deformation amplitudes, indicating its reliability as a seismic protective system. The resiliency of the bridge with a V-connector was achieved in terms of the linear elastic behavior of the bridge column, which would otherwise have experienced severe damage following conventional design approaches;
- A hardening behavior and an increase of the friction force were observed in the V-connector’s hysteresis loop. The change of the V-pin’s free length, possible strain hardening due to yielding of the V-pin, and the abrasion between the Teflon washer and the stainless-steel surface were believed to be the reasons. The developed 1D OpenSees [McKenna et al. 2000] models were able to capture these observations;
- A new HSS was developed using Matlab/Simulink [MathWorks 2015] as a computational platform for single- and multi-degrees-of-freedom analytical substructures and has been verified through a HS trial run;
- Phase I HS of the bridge bent utilizing self-centering columns was successfully conducted. The small residual drift and the observed re-centering behavior demonstrated the resilient nature of the subsystem, thus reducing down time for repairs or bridge closures;
- The results from phase I HS were compared against the shaking table test. Good matching of the test results indicated:
 - Correctness of the utilized equations of motion;
 - Minimum level of simulation errors;
 - The reliability of the newly developed HSS; and
 - Correctness of the employed damping model.
This proves that HS is a good alternative to costly shaking table tests and will increase the confidence of using HS in the testing of new and innovative structural/geotechnical systems; and

- The bridge bent showed larger residual displacement during the Phase II system-level HS test compared to Phase I due to the yielding of the transverse abutments modeled in the computer as part of the analytical substructure. An important conclusion to be drawn from this is that the resiliency of the bridge cannot be guaranteed by solely making the bridge bent resilient, as different parts of the bridge system are interacting in a complicated manner in the system response. Therefore, attention should be given to the bridge system response including not only the main components like the bridge bents and the deck, but should include other parts of the bridge, e.g., the abutments, for achieving the optimal bridge performance.

9.3 RECOMMENDATIONS FOR FUTURE STUDIES

Several research topics that are appropriate for future investigations can be extended from this study. The following are relevant possible topics:

- **Improve the V-connector design:** the damage state of the V-connector shown in Section 5.3.1.4 indicates that the V-connector was damaged to some extent. Because of the plastic deformation of the V-pin, its response cannot be treated as elastic during the test, especially when subjected to large displacement amplitudes. Some unexpected scratch damage occurred on the surface of the ball hinge, which was originally designed to rotate freely. Improvements should be made in modifying the geometry of the V-tube to make sure the V-pin always stays in the linear elastic range, and reducing the friction between the ball hinge and the hinge holder, perhaps through lubrication or a smoother contact surface. Moreover, a residual displacement, even if not large, was observed at the end of the HS. Therefore, introducing a re-centering mechanism for the V-connector to mitigate the post-earthquake residual displacement should be considered;

- **Develop a more detailed 3D finite element model of the V-connector:** the 1D V-connector models described in Section 4.3 adequately represented the hysteretic behavior and predicted the response of the V-connector during the HS; however, they failed to provide valuable information in terms of stress–strain distribution, deformed shape, and contact surface interactions. In this case, a more detailed 3D finite-element model will be necessary. This, of course, requires the support from the V-connector manufacturer as the material properties and more accurate surface friction coefficients need to be provided and characterized;

- **Explore the effect of the computational model size on the HS:** the number of subdivisions for the bridge deck in the bridge bent study was chosen to be
10. The implemented Simulink model was generalized to any even number of subdivisions (this way a node exists at the center of the deck where the bridge bent is connected to the bridge deck). Future HS experiments can be conducted using the analytical substructure with varying degrees-of-freedom (DOFs) in an effort to determine the largest analytical substructure that remains appropriate for HS. The preliminary investigation of this task can be conducted with dry runs (i.e., using the HSS without hydraulics, similar to the HS trial run described in Section 7.3). After drawing conclusions, a few critical limiting cases can be validated by completing HS experiments involving the use of the hydraulics and actual specimens;

- **Explore different modeling techniques**: the abutment modeling in the system-level testing of the bridge bent was highly simplified. Although it captured essential behavioral aspects and is a good example of the computational formulation involved in modeling a full bridge system using self-developed code, it might not be able to accurately capture the complex behavior of the abutments in real-world situations (e.g., the torsional stiffness or the skew angles). Future research should explore different abutment modeling techniques, in terms of different hysteretic behavior, different element types, etc., and their effect on bridge response. This can be conducted in a pure analytical manner without involving the test specimen. In addition, the modeling of the test specimen can be revised. Instead of using a zero-length spring element, a more detailed model that better matches the test results and takes into account the effect of gravity/earthquake forces should be considered. Nema [2018] proposed an OpenSees model (see Figure 9.1), with room to improve it even further; and
Retrofit using external energy dissipators: both internal and external energy dissipators in the self-centering hybrid columns (Figure 9.2) have been extensively studied by researchers. In this study discussed herein, the internal energy dissipators have been employed for the convenience in the construction process because they also serve as part of the longitudinal reinforcement. During testing, the internal energy dissipators went through significant amount
of yielding, and they are difficult and disruptive to be replaced. In contrast, external energy dissipators are easy to install and replace and can be used to retrofit the test specimen for more promising responses towards the goal of designing even more resilient bridge systems in future studies.

![Figure 9.2](image)

Figure 9.2 (a) Internal; and (b) external energy dissipators [Guerrini et al. 2015].
REFERENCES

ACI Committee 318 (2011). *Building Code Requirements for Structural Concrete and Commentary*, ACI 318-11, American Concrete Institute, Farmington Hills, MI.

APPENDIX A Design of the Rigid Blocks of the V-Connectors

A.1 DESIGN FORCES

From the results of the pre-test analysis (Section 4.1.3.3) with $K_v = 30$ kips/in. and $F_0 = 200$ kips, the force demand on the V-connector (before and after proper scaling with length scale factor $S_L = 3.0$) is summarized in Table A.1. The top and bottom block should be designed to be able to resist axial force $P = 220.7$ kips and shear force $V = 80.4$ kips. More importantly, the elastic design approach for the blocks should be adopted without utilizing their ultimate capacities to make sure that the rigid assumption of the top and bottom block is valid.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Axial force P (kip)</th>
<th>Shear force V (kip)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before scaling</td>
<td>1986.4</td>
<td>723.7</td>
</tr>
<tr>
<td>After scaling</td>
<td>220.7</td>
<td>80.4</td>
</tr>
</tbody>
</table>

A.2 MATERIAL PROPERTIES

A.2.1 Concrete

Concrete compressive strength: $f_c' = 5$ ksi

Concrete elastic modulus: $E_c = 57000 \sqrt{f_c'} = 4030$ ksi

A.2.2 Reinforcing Steel

Reinforcing steel yield strength: $f_y = 60$ ksi

Reinforcing steel elastic modulus: $E_s = 29,000$ ksi
A.3 SHEAR DESIGN AND CHECK

A.3.1 Design Dimensions

According to ACI 318 [2011] section 11.1.1, design of cross sections subjected to shear shall be based on:

$$\phi V_n \geq V_u$$ \hspace{1cm} (A.1)

where V_u is the factored shear force at the section considered, and V_n is the nominal shear force capacity computed by:

$$V_n = V_c + V_s$$ \hspace{1cm} (A.2)

Based on ACI 318 [2011] section 11.2.1.2, for members subject to axial compression:

$$V_c = 2 \left(1 + \frac{N_u}{2000A_g}\right) \lambda \sqrt{f_c b_w d}$$ \hspace{1cm} (A.3)

$$V_s = \frac{A_v f_{vl} d}{s}$$

To be on the conservative side, V_u was taken to be $1.25 \times V = 100$ kips. The contribution from the transverse reinforcement was neglected, and N_u was set to zero. Assuming the cross section for the shear resistance to be square, leads to:

$$\phi V_n = \phi V_c = \phi \times 2\lambda \times \sqrt{\frac{f_c b_w d}{s}} \approx 0.75 \times 2 \times \sqrt{5000} \times b_w^2 \geq V_u = 100 \text{ kips}$$ \hspace{1cm} (A.4)

$$\Rightarrow b_w \geq 30.7 \text{ in.}$$

Based on the laboratory setup, the cross section of the top block was chosen to be 45 in. \times 45 in. and the bottom block to be 81 in. \times 46 in. Obviously, these dimensions are more than sufficient. The reinforcement design and check were based on these dimensions.

A.3.2 Shear Reinforcement

Shear Reinforcement Requirement

According to ACI 318 [2011] section 7.10.5.1, all non-prestressed bars shall be enclosed by transverse ties, at least No. 3 in size for longitudinal bars No. 10 or smaller, and at least No. 4 in size for No. 11, No. 14, No. 18, and bundled longitudinal bars. According to ACI 318 [2011] section 7.10.5.2, vertical spacing of ties shall not exceed 16 longitudinal bar diameters, 48 tie bar or wire diameters, or least dimension of the compression member. According to ACI 318 [2011] section 7.10.5.3, rectilinear ties shall be arranged such that every corner and alternate longitudinal bar shall have lateral support provided by the corner of a tie with an included angle of not more than 135°, and no bar shall be farther than 6 in. clear on each side along the tie from such a laterally supported bar. According to ACI 318 [2011] section 11.4.5.1, spacing of shear reinforcement placed perpendicular to the axis of the member shall not exceed $d/2$ in non-prestressed members or $0.75h$ in prestressed members, nor 24 in. The shear reinforcement design satisfying all the above-mentioned requirements is given below in Figure A.1 and Figure A.2.
Figure A.1 Top block shear reinforcement design.
Shear Reinforcement Amount

Based on previous calculations, only a minimum amount of shear reinforcement needs to be provided. According to ACI 318 [2011] section 11.4.6, $A_{v,\text{min}}$, prestressed and non-prestressed members shall be computed by Equation (A.5), but shall not be less than $(50b_w s)/f_{yt}$.

$$A_{v,\text{min}} = 0.75 \sqrt{\frac{f'c}{f_{yt}}} \frac{b_w s}{f_{yt}} \quad \text{(A.5)}$$

In this case, the top block:

$$A_v = 6 \times A_{\#4} = 6 \times 0.2 = 1.2 \text{ in.}^2 > A_{v,\text{min}}$$

$$= 0.75 \sqrt{\frac{f'c}{f_{yt}}} \frac{b_w s}{f_{yt}} = 0.75 \times \sqrt{5000} \times 45 \times 8 \times 1000 \times 60 = 0.318 \text{ in.}^2 \Rightarrow OK.$$

$$A_v = 6 \times A_{\#4} = 6 \times 0.2 = 1.2 \text{ in.}^2 > (50b_w s)/f_{yt} = \frac{50 \times 45 \times 8}{60000} = 0.3 \text{ in.}^2 \Rightarrow OK.$$

The bottom block:

$$A_{v1} = 8 \times A_{\#4} = 8 \times 0.2 = 1.6 \text{ in.}^2 > A_{v1,\text{min}}$$
To achieve ductile response of an axially loaded column, the rectilinear hoop-confined compression member should also satisfy:

\[
\min \left(\frac{A_{sh2}f_{yt}}{b_{c3}s}, \frac{A_{sh3}f_{yt}}{b_{c2}s} \right) \geq 0.3 \left(\frac{A_g}{A_{ch}} - 1 \right) f'_c
\]

(A.6)

It is assumed that the concrete clear cover to be 1.5 in. For the top block:

\[
\min \left(\frac{1.2 \times 60}{42 \times 8}, \frac{1.6 \times 60}{78 \times 7} \right) = 0.214
\]

\[
< 0.3 \left(\frac{A_g}{A_{ch}} - 1 \right) f'_c = 0.3 \times \left(\frac{45^2}{41.5^2} - 1 \right) \times 5 = 0.264 \Rightarrow \text{not OK}
\]

For the bottom block:

\[
\min \left(\frac{1.2 \times 60}{43 \times 7}, \frac{1.6 \times 60}{78 \times 7} \right) = 0.176
\]

\[
< 0.3 \left(\frac{A_g}{A_{ch}} - 1 \right) f'_c = 0.3 \times \left(\frac{81 \times 46}{77.5 \times 42.5} - 1 \right) \times 5 = 0.197 \Rightarrow \text{not OK}
\]

Although the proposed design does not meet the ductility requirement for axially loaded members, the parameters here are different because the design goal is to keep the blocks elastic without utilizing any of the ductility capacities. Therefore, it is OK to accept the above design and move on to the next design step.

A.4 AXIAL DESIGN

A.4.1 Dimension Check

To proceed with the axial design, the cross-sectional dimension 45 in. × 45 in. for the top block and 81 in. × 46 in. for the bottom block were obtained from the shear design used. As stated before, the behavior of the blocks is expected to remain the linear elastic range.

The axial design should satisfy:

\[
\phi P_n \geq P_u
\]

(A.7)
where P_u is the factored axial force at the section considered, and P_n is the axial capacity. For linear elastic response, the relationship between axial load and internal stresses can be written as:

\[
P_n = (A_g - A_{st})f'c + A_{st}f'x
\]

\[
= (A_g - A_{st})\varepsilon E_c + A_{st}\varepsilon E_s
\]

\[
= \varepsilon E_c \left[(A_g - A_{st}) + nA_{st} \right]
\]

\[
= f'c \left[A_g + (n - 1)A_{st} \right]
\]

\[
n = \frac{E_s}{E_c} = \frac{29000}{4030} = 7.2
\]

To be on the conservative side, we take $P_u = 1.25P = 1.25 \times 220.7 = 276$ kips and ignore the contribution from the longitudinal reinforcement. In addition, we set $f'c = 3$ ksi in calculating the axial capacity and take the strength reduction factor ϕ to be 0.5 instead of 0.9. Based on all these assumptions, for the top block:

\[
\phi P_n = \phi A_g f'c = 0.5 \times 45^2 \times 3 = 3037.5 \text{ kips} \gg P_u = 276 \text{ kips}, \text{OK.}
\]

The bottom block is also OK, which is obvious because of its larger dimensions.

A.4.2 Longitudinal Reinforcement

It was proposed to use 40 #7 longitudinal bars with proper bending, resulting in the total area of longitudinal reinforcement to be $A_{st} = 40 \times 0.6 = 24$ in.2 for the top block, and 48 #8 ($A_{st} = 37.92$ in.2) for the bottom block. The cross sections are shown below in Figure A.3.

![Figure A.3](image-url)
Longitudinal Reinforcement Amount

According to ACI 318 [2011] section 10.9.1, the area of longitudinal reinforcement A_{st} for non-composite compression members shall be not less than $0.01A_g$ or more than $0.08A_g$. Here, the top block is then:

$$0.01A_g = 20.25 \text{ in.}^2 < 24 \text{ in.}^2 < 0.08A_g = 162 \text{ in.}^2 \Rightarrow OK.$$

and the bottom block is

$$0.01A_g = 37.26 \text{ in.}^2 < 37.92 \text{ in.}^2 < 0.08A_g = 298.1 \text{ in.}^2 \Rightarrow OK.$$

According to ACI 318 [2011] section 10.9.2, the minimum number of longitudinal bars in compression members shall be four (4) for bars within rectangular or circular ties. This requirement is clearly satisfied for the proposed design.

Longitudinal Reinforcement Requirement

According to ACI 318 [2011] section 7.6.1, the minimum clear spacing between parallel bars in a layer shall be d_b, but not less than 1 in. According to ACI 318 [2011] section 7.6.3, in spirally reinforced or tied reinforced compression members, clear distance between longitudinal bars shall be not less than $1.5d_b$ nor less than 1-1/2 in. It is clear that the proposed design satisfies these two requirements.

A.5 REINFORCEMENT DETAILING CHECK

A.5.1 Standard Hooks

According to ACI 318 [2011] section 7.1.2, standard hooks should satisfy 90° bend plus $12d_b$ extension at the free end of the bar. According to ACI 318 [2011] section 7.1.3 (a), stirrup and tie hooks using No. 5 bar and smaller should satisfy 90° bend plus $6d_b$ extension at the free end of the bar. According to ACI 318 [2011] section 7.1.3 (c), stirrup and tie hooks using No. 8 bar and smaller should satisfy 135° bend plus $6d_b$ extension at the free end of the bar. From the detailed drawing of the longitudinal and transverse reinforcement shown in Figure A.4 and Figure A.5, these requirements are clearly satisfied.
A.5.2 Minimum Bending Diameters

According to ACI 318 [2011] section 7.2.1 for No. 3 through No. 8 bars, the diameter of bending measured on the inside of the bar shall not be less than $6d_h$. According to ACI 318 [2011] section 7.2.2, the inside diameter of bending for stirrups and ties shall not be less than $4d_h$ for No. 5 bars and smaller. From Figure A.4 and Figure A.5 above, these requirements are clearly satisfied.

A.6 DEMAND TO CAPACITY RATIO (DCR)

A.6.1 Axial DCR

Based on Section A.1, the axial force demand P is 220.7 kips. To calculate the ultimate axial capacity of the proposed design, the hollow portion in the top block used to place the top hinge of
the V-connector was not considered, and the concrete net section was used. The net section area is

given by:

\[A_n \approx 45^2 - 11^2 = 1904 \text{ in}^2 \]

The axial strength at the onset of spalling can be calculated as:

\[P_0 = 0.85 f'_c (A_n - A_{st}) + A_{st} f_y \]
\[= 0.85 \times 5 \times (1904 - 24) + 24 \times 60 = 9430 \text{ kips} \]

The post-spalling strength can be calculated as:

\[P_{00} = f'_c (A_{ch} - A_{st}) + \eta A_{st} f_y \]
\[= 4.9 \times (41.5^2 - 11^2 - 24) + 0.5 \times 24 \times 60 = 8448.5 \text{ kips} \]

where

\[f'_c = 0.85 f'_c + 4.1 f_{emin} = 0.85 \times 5 + 4.1 \times 0.158 = 4.9 \text{ ksi} \]
\[f_{emin} = k_e f_{min,2,3} = n_l - 2 \left(1 - \frac{s}{b_c}\right) \times \frac{f'_{A_{sh}}}{b_{c,s}} = \frac{20 - 2}{20} \times \left(1 - \frac{8}{41.5}\right) \times \frac{60 \times 6 \times 0.2}{41.5} = 0.158 \text{ ksi} \]
\[\eta = 0.5 \]

We take the ultimate capacity \(P_n = \min\{P_0, P_{00}\} = 8448.5 \text{ kips} \), and the axial DCR is given as:

\[DCR_{axial} = P/P_n = 220.7/8448.5 = 0.026 \Rightarrow OK. \]

A.6.2 Shear DCR

Similar to Section A.6.1, only the concrete net section was considered in calculating the ultimate shear capacity. From Section A.1, the shear force demand \(V \) is 80.4 kips. The ultimate shear capacity is given by:

\[V_n = V_c + V_s = 275.3 + 389.25 = 664.55 \text{ kips} \]

where

\[V_c = 2 \left(1 + \frac{N_u}{2000A_n}\right) \lambda f'_{bw} \]
\[= 2 \times \left[1 + \frac{220.7}{2000 \times (45^2 - 11^2)}\right] \times \frac{\sqrt{5000}}{1000} \times 45 \times 43.25 = 275.3 \text{ kips} \]
\[V_s = \frac{A_v f_{yr} d}{s} = \frac{6 \times 0.2 \times 60 \times 43.25}{8} = 389.25 \text{ kips} \]

Therefore, the shear DCR is given as:

\[DCR_{shear} = V/V_n = 80.4/664.55 = 0.121 \Rightarrow OK. \]
APPENDIX B Bridge Bent Construction

This appendix illustrates the two stages for constructing the bridge bent, including the construction of the bridge columns and the cap beam/foundation. The two bridge columns used in this study were constructed together with those used in the shaking table test by a professional construction company located in the city of Richmond and then delivered to the laboratory. The construction of the cap beam and the foundation was performed by student interns and laboratory technicians.

B.1 COLUMN CONSTRUCTION

Figure B.1 (a) Column steel shells; and (b) details of weld beads at column ends.
Figure B.2 (a) Column reinforcing bar cages; and (b) mild steel debonding details.
Figure B.3 (a) Insertion of the PVC pipe used to debond the PT bar; (b) the sliding the tape-wrapped PT bar into the PVC pipe; (c) installation of the PT bar anchorage system at the column end; and (d) PT bar anchorage details.
Figure B.4 Concrete placing setup: (a) erection of the column steel shells as the permanent formwork; and (b) installation of the column reinforcing bar cages.

Figure B.5 (a) Casting of the concrete; and (b) completed columns.
B.2 FOUNDATION/CAP BEAM CONSTRUCTION

Figure B.6 Different stages of construction of the foundation reinforcing bar cages.

Figure B.7 Detailing of the cap-beam reinforcing bar cage.
Figure B.8 (a) Reinforcing bar cage in the formwork; (b) preparation of the holes for cap beam grouting and PT bars; (c) finished foundation reinforcing bar cage and formwork before placement of the concrete and (d) finished cap beam reinforcing bar cage and formwork before placement of the concrete.
Figure B.9 (a) Preparation prior to concrete placing; (b) cap–beam concrete casting; (c) foundation concrete casting; and (d) curing blankets in addition to the E-CURE to avoid shrinkage cracks.

Figure B.10 Removal of the formwork.
Figure B.11 Finished (a) cap beam; and (b) foundation after all formwork was removed.
APPENDIX C Bridge Bent Assembly and Test Setup

Figure C.1 to Figure C.14 illustrate different stages and phases for setting up the two-column bridge bent subassembly at the PEER Earthquake Simulation Laboratory located at the Richmond Field Station.

Figure C.1 (a) Preparation of the surface and sealing of the holes in the supporting anchor beam; and (b) lifting up and installation of the foundation in place using the overhead crane.
Figure C.2 (a) Mixing the hydrostone; (b) placing of the hydrostone through corrugated metal pipes; and (c) prestressing of the foundation to the supporting beam.

Figure C.3 Removal of the 0.25 in. steel strips at the column rocking interfaces.
Figure C.4 (a) Elevation of the column; (b) installation and leveling of the column; and (c) installation of the vertical actuator between the two columns.

Figure C.5 Grouting of the foundation sockets.
Figure C.6 (a) Preparation of the end connection plates for the cap beam; and (b) installation, grouting, and prestressing of the end connection plates to the cap beam.

Figure C.7 (a) Installation of the cap beam and setting up of the temporary wood frame support; and (b) and sealing of the cap beam sockets from the bottom.
Figure C.8 (a) Placement of the grout from the top grouting holes; and (b) waiting for the grout to dry and then removing the wood sealing panel.
Figure C.9 (a) Preparation of the horizontal actuator reaction bracket; (b) setting of the actuator bracket in place; (c) grouting between the actuator bracket and the reaction wall; and (d) prestressing of the actuator bracket to the reaction wall.
Figure C.10 (a) Photograph of the T-beam to be welded to the embedded steel plates inside the cap beam for lateral support; and (b) the clamps used for the T-beam to slide on.

Figure C.11 (a) The lifting up and installation of the horizontal actuator; and (b) extension of the horizontal actuator and welding of the connection plate to the cap beam end plate.
Figure C.12 (a) Installation of additional spacer plates to fill the gap between the vertical actuator and the cap beam; and (b) extension of the vertical actuator, grouting of the vertical actuator to the cap beam, and installation of the vertical actuator connection rods.

Figure C.13 (a) Top view of the vertical actuator connection rods; and (b) the setup of the prestressing jacks and prestressing of the PT bars to 40% GUTS.
Figure C.14 Completed specimen and test setup.
APPENDIX D Matlab Function Blocks Implementation

The Matlab (MathWorks, 2015) codes associated with the Matlab function blocks shown in Figure 8.15 and Figure 8.16 from Section 8.2.2, is presented below.

Matlab code for the resisting force vector calculations

```matlab
function [Pr_prdt, Pr_prdt_next, Usp1_prdt, Usp4_prdt, Usp2_prdt, Usp5_prdt,
Pr1_prdt, Pr4_prdt, Pr2_prdt, Pr5_prdt] = ResistForce(n, Uprdt, Uprdt_next, K, gap_l, Kabl, Pbwl, Kabt, Pbwt, Kv,
Usp1_prdt_pre, Usp4_prdt_pre, Usp2_prdt_pre, Usp5_prdt_pre, Pr1_prdt_pre,
Pr4_prdt_pre, Pr2_prdt_pre, Pr5_prdt_pre, Prh_spec_prdt, Prh_spec_prdt_next,
Prv_spec_prdt, Prv_spec_prdt_next)
% calculate and assemble the resisting force vector
% Inputs: n - bridge deck subdivision number
%         Uprdt - predicted displacement vector at current step i (size: 6(n+1) x 1)
%         Uprdt_next - predicted displacement vector for all DOFs at next step i+1
%                        (size: 6(n+1) x 1)
%         K - stiffness matrix of the bridge deck (size: 6(n+1) x 6(n+1))
%      gap_l - longitudinal abutment expansion hinge gap (unit: in)
%       Kabl - longitudinal abutment stiffness (unit: kip/in)
%      Pbwl - longitudinal abutment strength (unit: kip)
%       Kabt - transverse abutment stiffness (unit: kip/in)
%      Pbwt - transverse abutment strength (unit: kip)
%       Kv - stiffness of the flexible bearing pad (unit: kip/in)
%      Usp1_prdt_pre - longitudinal abutment (spring 1) predicted displacement
%                        at previous step i-1 (scalar)
%      Usp4_prdt_pre - longitudinal abutment (spring 4) predicted displacement
%                        at previous step i-1 (scalar)
%      Usp2_prdt_pre - transverse abutment (spring 2) predicted displacement at
%                        previous step i-1 (scalar)
%      Usp5_prdt_pre - transverse abutment (spring 5) predicted displacement at
%                        previous step i-1 (scalar)
%      Pr1_prdt_pre - spring 1 resisting force corresponding to predicted
%                        displacement at previous step i-1 (scalar)
%      Pr4_prdt_pre - spring 4 resisting force corresponding to predicted
%                        displacement at previous step i-1 (scalar)
```

267
Pr2_prdt_pre - spring 2 resisting force corresponding to predicted displacement at previous step i-1 (scalar)
Pr5_prdt_pre - spring 5 resisting force corresponding to predicted displacement at previous step i-1 (scalar)
Prh_spec_prdt - test specimen horizontal resisting force corresponding to predicted displacement at current step i (scalar)
Prh_spec_prdt_next - test specimen horizontal resisting force corresponding to predicted displacement at next step i+1 (scalar)
Prv_spec_prdt - test specimen vertical resisting force corresponding to predicted displacement at current step i (scalar)
Prv_spec_prdt_next - test specimen vertical resisting force corresponding to predicted displacement at next step i+1 (scalar)

Outputs:
Pr_prdt - resisting force vector corresponding to predicted displacement at current step i (size: 6(n+1) x 1)
Pr_prdt_next - resisting force vector corresponding to predicted displacement at next step i+1 (size: 6(n+1) x 1)
Usp1_prdt - longitudinal abutment (spring 1) predicted displacement at current step i (scalar)
Usp4_prdt - longitudinal abutment (spring 4) predicted displacement at current step i (scalar)
Usp2_prdt - transverse abutment (spring 2) predicted displacement at current step i (scalar)
Usp5_prdt - transverse abutment (spring 5) predicted displacement at current step i (scalar)
Pr1_prdt - spring 1 resisting force corresponding to predicted displacement at current step i (scalar)
Pr4_prdt - spring 4 resisting force corresponding to predicted displacement at current step i (scalar)
Pr2_prdt - spring 2 resisting force corresponding to predicted displacement at current step i (scalar)
Pr5_prdt - spring 5 resisting force corresponding to predicted displacement at current step i (scalar)

written: WYJ 08/2019

Current step quantities
Usp1_prdt = Uprdt(1,:);
Usp2_prdt = Uprdt(2,:);
Usp3_prdt = Uprdt(3,:);
Usp4_prdt = Uprdt(6*n+1,:);
Usp5_prdt = Uprdt(6*n+2,:);
Usp6_prdt = Uprdt(6*n+3,:);

Next step quantities
Usp1_prdt_next = Uprdt_next(1,:);
Usp2_prdt_next = Uprdt_next(2,:);
Usp3_prdt_next = Uprdt_next(3,:);
Usp4_prdt_next = Uprdt_next(6*n+1,:);
Usp5_prdt_next = Uprdt_next(6*n+2,:);
Usp6_prdt_next = Uprdt_next(6*n+3,:);

Resisting forces from end abutments
% end spring 1 resisting force corresponding to predicted displacement at current step i
if Usp1_prdt >= -gap_l
Pr1_prdt = 0;
else
 Pr1_prdt = Pr1_prdt_pre + Kabl*(Usp1_prdt - Usp1_prdt_pre);
 if Pr1_prdt <= -Pbwl
 Pr1_prdt = -Pbwl;
 elseif Pr1_prdt >= 0
 Pr1_prdt = 0;
 end
end

% end spring 1 resisting force corresponding to predicted displacement at next step i+1
if Usp1_prdt_next >= -gap_l
 Pr1_prdt_next = 0;
else
 Pr1_prdt_next = Pr1_prdt + Kabl*(Usp1_prdt_next - Usp1_prdt);
 if Pr1_prdt_next <= -Pbwl
 Pr1_prdt_next = -Pbwl;
 elseif Pr1_prdt_next >= 0
 Pr1_prdt_next = 0;
 end
end

% end spring 4 resisting force corresponding to predicted displacement at current step i
if Usp4_prdt <= gap_l
 Pr4_prdt = 0;
else
 Pr4_prdt = Pr4_prdt_pre + Kabl*(Usp4_prdt - Usp4_prdt_pre);
 if Pr4_prdt >= Pbwl
 Pr4_prdt = Pbwl;
 elseif Pr4_prdt <= 0
 Pr4_prdt = 0;
 end
end

% end spring 4 resisting force corresponding to predicted displacement at next step i+1
if Usp4_prdt_next <= gap_l
 Pr4_prdt_next = 0;
else
 Pr4_prdt_next = Pr4_prdt + Kabl*(Usp4_prdt_next - Usp4_prdt);
 if Pr4_prdt_next >= Pbwl
 Pr4_prdt_next = Pbwl;
 elseif Pr4_prdt_next <= 0
 Pr4_prdt_next = 0;
 end
end

% end spring 2 resisting force corresponding to predicted displacement at current step i
Pr2_prdt = Pr2_prdt_pre + Kabt*(Usp2_prdt - Usp2_prdt_pre);
if Pr2_prdt >= Pbwt
 Pr2_prdt = Pbwt;
elseif Pr2_prdt <= -Pbwt
 Pr2_prdt = -Pbwt;
end

% end spring 2 resisting force corresponding to predicted displacement at next step i+1
Pr2_prdt_next = Pr2_prdt + Kabt*(Usp2_prdt_next - Usp2_prdt);
if Pr2_prdt_next >= Pbwt
 Pr2_prdt_next = Pbwt;
elseif Pr2_prdt_next <= -Pbwt
 Pr2_prdt_next = -Pbwt;
end

% end spring 5 resisting force corresponding to predicted displacement at current
step i
Pr5_prdt = Pr5_prdt_pre + Kabt*(Usp5_prdt - Usp5_prdt_pre);
if Pr5_prdt >= Pbwt
 Pr5_prdt = Pbwt;
elseif Pr5_prdt <= -Pbwt
 Pr5_prdt = -Pbwt;
end

% end spring 5 resisting force corresponding to predicted displacement at next
step i+1
Pr5_prdt_next = Pr5_prdt + Kabt*(Usp5_prdt_next - Usp5_prdt);
if Pr5_prdt_next >= Pbwt
 Pr5_prdt_next = Pbwt;
elseif Pr5_prdt_next <= -Pbwt
 Pr5_prdt_next = -Pbwt;
end

% end spring 3 resisting force corresponding to predicted displacement at current
step i
if Usp3_prdt >= F_st/Kv
 Pr3_prdt = F_st;
else
 Pr3_prdt = Kv*Usp3_prdt;
end

% end spring 3 resisting force corresponding to predicted displacement at next
step i+1
if Usp3_prdt_next >= F_st/Kv
 Pr3_prdt_next = F_st;
else
 Pr3_prdt_next = Kv*Usp3_prdt_next;
end

% end spring 6 resisting force corresponding to predicted displacement at current
step i
if Usp6_prdt >= F_st/Kv
 Pr6_prdt = F_st;
else
 Pr6_prdt = Kv*Usp6_prdt;
end

% end spring 6 resisting force corresponding to predicted displacement at next
step i+1
if Usp6_prdt_next >= F_st/Kv
 Pr6_prdt_next = F_st;
else
 Pr6_prdt_next = Kv*Usp6_prdt_next;
end

%% Resisting forces from bridge deck
Pr_prdt = K*Uprdt;
Pr_prdt_next = K*Uprdt_next;
%% Resisting force vector assembly
% resisting force vector at current step i (size: 6(n+1) x 1)
Pr_prdt(1,:) = Pr_prdt(1,:) + Pr1_prdt;
Pr_prdt(2,:) = Pr_prdt(2,:) + Pr2_prdt;
Pr_prdt(3,:) = Pr_prdt(3,:) + Pr3_prdt;
Pr_prdt(6*n+1,:) = Pr_prdt(6*n+1,:) + Pr4_prdt;
Pr_prdt(6*n+2,:) = Pr_prdt(6*n+2,:) + Pr5_prdt;
Pr_prdt(6*n+3,:) = Pr_prdt(6*n+3,:) + Pr6_prdt;
Pr_prdt(3*n+2,:) = Pr_prdt(3*n+2,:) + Prh_spec_prdt;
Pr_prdt(3*n+3,:) = Pr_prdt(3*n+3,:) + Prv_spec_prdt;

% resisting force vector at next step i+1 (size: 6(n+1) x 1)
Pr_prdt_next(1,:) = Pr_prdt_next(1,:) + Pr1_prdt_next;
Pr_prdt_next(2,:) = Pr_prdt_next(2,:) + Pr2_prdt_next;
Pr_prdt_next(3,:) = Pr_prdt_next(3,:) + Pr3_prdt_next;
Pr_prdt_next(6*n+1,:) = Pr_prdt_next(6*n+1,:) + Pr4_prdt_next;
Pr_prdt_next(6*n+2,:) = Pr_prdt_next(6*n+2,:) + Pr5_prdt_next;
Pr_prdt_next(6*n+3,:) = Pr_prdt_next(6*n+3,:) + Pr6_prdt_next;
Pr_prdt_next(3*n+2,:) = Pr_prdt_next(3*n+2,:) + Prh_spec_prdt_next;
Pr_prdt_next(3*n+3,:) = Pr_prdt_next(3*n+3,:) + Prv_spec_prdt_next;

Matlab code for performing the Alpha-OS numerical integration

function [A_next, U_next, V_next, Uh_spec_prdt_fol, Uv_spec_prdt_fol] = AlphaOS(n, dt, beta, Uprdt_next, V, A, KI, M, C, Agh, Agv, Agh_next, Agv_next, gamma, alpha, Pr_Uprdt, Pr_Uprdt_next)
% computation function of the HS system using Alpha-OS integration algorithm
%
% Inputs: n - bridge deck subdivision number
% dt - time step
% beta - Newmark acceleration coefficient
% Uprdt_next - predicted displacement vector for all DOFs at next step i+1
% (size: 6(n+1) x 1)
% V - velocity vector for all DOFs at current step i (size: 6(n+1) x 1)
% A - acceleration vector for all DOFs at current step i (size: 6(n+1) x 1)
% KI - initial stiffness matrix of the whole bridge system, including end
% springs and test specimen (size: 6(n+1) x 6(n+1))
% M - consistent mass matrix of the whole bridge system (size: 6(n+1) x
% 6(n+1))
% C - damping matrix of the whole bridge system (size: 6(n+1) x 6(n+1))
% Agh - horizontal ground acceleration at current step i (scalar)
% Agv - vertical ground acceleration at current step i (scalar)
% Agh_next - horizontal ground acceleration at next step i+1 (scalar)
% Agv_next - vertical ground acceleration at next step i+1 (scalar)
% gamma - Newmark velocity coefficient
% alpha - Alpha-OS parameter
% Pr_Uprdt - resisting force vector corresponding to the predicted
% displacement at current step i (size: 6(n+1) x 1)
% Pr_Uprdt_next - resisting force vector corresponding to the predicted
% displacement at next step i+1 (size: 6(n+1) x 1)

% Outputs:
% A_next - acceleration vector for all DOFs at next step i+1 (size: 6(n+1) x 1)
% U_next - displacement vector for all DOFs at next step i+1 (size: 6(n+1) x 1)
% V_next - velocity vector for all DOFs at next step i+1 (size: 6(n+1) x 1)
% Uh_spec_prdt_fol - predicted test specimen horizontal displacement at following step i+2 (scalar)
% Uv_spec_prdt_fol - predicted test specimen vertical displacement at following step i+2 (scalar)
%
% written: WYJ 08/2019

%% compute the acceleration vector for all DOFs at next step i+1 (size 6(n+1) x 1)
%% effective earthquake force (see section 8.2.1)

iota_node = [0; 1; Agv/Agh; 0; 0; 0];
iota_node_next = [0; 1; Agv_next/Agh_next; 0; 0; 0];
iota = repmat(iota_node, n+1, 1);
iota_next = repmat(iota_node_next, n+1, 1);

M_eff = M + (1 - alpha)*dt*gamma*C + dt^2*beta*(1 - alpha)*KI;
P_eff = (1 - alpha)*P_next + alpha*P - (1 - alpha)*Pr_Uprdt_next - alpha*Pr_Uprdt + ((1 - alpha)*C*dt*(1 - gamma) + alpha*dt^2*beta*KI)*A - C*V;
A_next = M_eff\P_eff;

%% compute the displacement vector for all DOFs at next step i+1 (size: 6(n+1) x 1)
U_next = Uprdt_next + dt^2*beta*A_next;

%% compute the velocity vector for all DOFs at next step i+1 (size: 6(n+1) x 1)
V_next = V + dt*({(1 - gamma)*A + gamma*A_next});

%% compute the predicted displacement vector for all DOFs at following step i+2 (size: 6(n+1) x 1)
Uprdt_fol = U_next + dt*V_next + dt^2*(1 - 2*beta)*A_next/2;

Uh_spec_prdt_fol = Uprdt_fol(3*n+2,:);
Uv_spec_prdt_fol = Uprdt_fol(3*n+3,:);
PEER reports are available as a free PDF download from https://peer.berkeley.edu/peer-reports. In addition, printed hard copies of PEER reports can be ordered directly from our printer by following the instructions at https://peer.berkeley.edu/peer-reports. For other related questions about the PEER Report Series, contact the Pacific Earthquake Engineering Research Center, 325 Davis Hall, Mail Code 1792, Berkeley, CA 94720. Tel.: (510) 642-3437; and Email: peer_center@berkeley.edu.

PEER 2020/02 Data Resources for NGA-Subduction Project. Yousef Bozorgnia (PI) and Jonathan P. Stewart (Editor). March 2020.

PEER REPORTS: ONE HUNDRED SERIES

PEER 2010/102 Analysis of Cumulative Absolute Velocity (CAV) and JMA Instrumental Seismic Intensity (I(JMA)) Using the PEER-NGA Strong Motion Database. Kenneth W. Campbell and Yousef Bozorgnia. February 2010.

The Pacific Earthquake Engineering Research Center (PEER) is a multi-institutional research and education center with headquarters at the University of California, Berkeley. Investigators from over 20 universities, several consulting companies, and researchers at various state and federal government agencies contribute to research programs focused on performance-based earthquake engineering.

These research programs aim to identify and reduce the risks from major earthquakes to life safety and to the economy by including research in a wide variety of disciplines including structural and geotechnical engineering, geology/seismology, lifelines, transportation, architecture, economics, risk management, and public policy.

PEER is supported by federal, state, local, and regional agencies, together with industry partners.