Comparison of NGA-Sub Ground-Motion Models

Nicholas Gregor
Consultant

Linda Al Atik
Consultant

David M. Boore
Geophysicist

Kenneth W. Campbell
Core Logic

Zeynep Gülerce
Middle East Technical University

Tadahiro Kishida
Khalifa University of Science and Technology

Saburoh Midorikawa
Tokyo Institute of Technology

Grace A. Parker*
University of California, Los Angeles
*Now at the U.S. Geological Survey, Moffett Field, California

Jonathan P. Stewart
University of California, Los Angeles

Kofi Addo
BC Hydro

Gail M. Atkinson
University of Western Ontario

Yousef Bozorgnia
University of California, Los Angeles

Brian S.-J. Chiou
California Department of Transportation

Behzad Hassani
BC Hydro

Nico Kuehn
University of California, Los Angeles

Silvia Mazzoni
University of California, Los Angeles

Hongjun Si
Seismological Research Institute Inc.

Robert R. Youngs
Wood Environmental and Infrastructure Solutions, Inc.

PEER Report 2020/07
Pacific Earthquake Engineering Research Center
Headquarters, University of California at Berkeley

November 2020
Disclaimer

The opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the study sponsor(s), the Pacific Earthquake Engineering Research Center, or the Regents of the University of California.
ABSTRACT

Ground-motion models (GMMs) for subduction earthquakes recently developed as part of the NGA-Subduction (NGA-Sub) project are compared in this report. The three models presented in this comparison report are documented in their respective PEER reports. Two of the models are developed for a global version and as well regionalized models. The third model is developed based on earthquakes contain in the NGA-Sub dataset only from Japan and as such is applicable for Japan. As part of the comparisons presented in this report, deterministic calculations are provided for the global and regional cases amongst the models. The digital values and additional plots from these deterministic comparisons are provided as part of the electronic supplement for this report. In addition, ground-motion estimates are provided for currently published subduction GMMs. Two example probabilistic seismic hazard analysis calculations are also presented for two sites located in the Pacific Northwest Region in the state of Washington. Based on the limited comparisons presented in this report, a general understanding of these new GMMs can be appreciated with the expectation that the implementation for a specific seismic hazard study should incorporate similar and additional comparisons and sensitivity studies similar to the ones presented in this report.
ACKNOWLEDGMENTS

This study was supported by FM Global, United States Geological Survey (USGS), California Department of Transportation (Caltrans), and the Pacific Earthquake Engineering Research Center (PEER). Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the authors and do not necessarily reflect those of the sponsoring agencies.

Following the tradition of previous NGA projects, the ground-motion modeling teams as well as database developers have had continuous technical interactions, which resulted in a higher quality of the final products than each researcher could achieve individually. Acknowledgments and thanks should be given to the over 32 junior and senior researchers who worked on various parts of the NGA-Sub research program. Their contribution, dedication, and teamwork are greatly acknowledged.
CONTENTS

ABSTRACT .. iii

ACKNOWLEDGMENTS ... v

TABLE OF CONTENTS ... vii

LIST OF TABLES ... ix

LIST OF FIGURES ... xi

1 OVERVIEW ... 1

2 GMM REGIONALIZATION AND APPLICABILITY .. 3

3 MEDIAN VALUE COMPARISONS .. 7

3.1 Interface Events ... 8

3.1.1 Interface Attenuation Curves ... 9

3.1.2 Interface Spectra .. 42

3.1.3 Interface Magnitude Scaling .. 59

3.1.4 Interface Depth Dependence .. 62

3.2 Slab Events .. 65

3.2.1 Slab Attenuation Curves .. 66

3.2.2 Slab Spectra .. 100

3.2.3 Slab Magnitude Scaling ... 117

3.2.4 Slab Depth Dependence ... 120

3.3 Basin Amplification ... 123

3.4 Epistemic Uncertainty ... 134

4 ALEATORY UNCERTAINTY ... 137

5 EXAMPLE PSHA CALCULATION .. 141

5.1 Seattle Site Example PSHA ... 143

5.2 Centralia Site Example PSHA ... 167

6 SUMMARY ... 193
LIST OF TABLES

Table 2.1 Model applicability of the three GMMs for magnitude, distance, and V_{s30}.4
Table 2.2 Regionalized models and magnitude-scaling break point values.4
Table 2.3 Functional model parameters used for the three NGA-Sub GMMs.5
Table 3.1 Input parameters for interface global GMM comparisons.8
Table 3.2 Input parameters for slab global GMM comparisons.66
Table 5.1 Locations of sites used in the PSHA analyses. ..141
Table 5.2 GMC model weights for base case. ...142
Table 5.3 Ground motions for the mean total hazard at the Seattle site using the
 BCH subduction GMM for the subduction seismic sources..............................154
Table 5.4 Ground motions for the mean total hazard at the Seattle site using the
 BCHU subduction GMM for the subduction seismic sources............................154
Table 5.5 Ground motions for the mean total hazard at the Seattle site using the
 KBCG subduction GMM for the subduction seismic sources..............................154
Table 5.6 Ground motions for the mean total hazard at the Seattle site using the
 PSHAB subduction GMM for the subduction seismic sources.............................155
Table 5.7 Ground motions for the mean total hazard at the Seattle site using the
 BCHU subduction GMM with BCH aleatory sigma for the subduction
 seismic sources ...164
Table 5.8 Ground motions for the mean total hazard at the Seattle site using the
 KBCG subduction GMM with BCH aleatory sigma for the subduction
 seismic sources ...164
Table 5.9 Ground motions for the mean total hazard at the Seattle site using the
 PSHAB subduction GMM with BCH aleatory sigma for the subduction
 seismic sources ...164
Table 5.10 Ground motions for the mean total hazard at the Centralia site using the
 BCH subduction GMM for the subduction seismic sources...............................179
Table 5.11 Ground motions for the mean total hazard at the Centralia site using the
 BCHU subduction GMM for the subduction seismic sources............................179
Table 5.12 Ground motions for the mean total hazard at the Centralia site using the
 KBCG subduction GMM for the subduction seismic sources............................179
Table 5.13 Ground motions for the mean total hazard at the Centralia site using the
 PSHAB subduction GMM for the subduction seismic sources..........................179
Table 5.14 Ground motions for the mean total hazard at the Centralia site using the BCHU subduction GMM with BCH aleatory sigma for the subduction seismic sources..188

Table 5.15 Ground motions for the mean total hazard at the Centralia site using the KBCG subduction GMM with BCH aleatory sigma for the subduction seismic sources..188

Table 5.16 Ground motions for the mean total hazard at the Centralia site using the PSHAB subduction GMM with BCH aleatory sigma for the subduction seismic sources..188
LIST OF FIGURES

Figure 3.1 Comparison of global M_8 (interface) for PGA ($T = 0.01$ sec) (top) and 0.2 sec (bottom) attenuation curves for $V_{S30} = 760$ m/sec..10

Figure 3.2 Comparison of global M_8 (interface) for 1.0 (top) and 3.0 sec (bottom) attenuation curves for $V_{S30} = 760$ m/sec..11

Figure 3.3 Comparison of global M_8 (interface) for PGA ($T = 0.01$ sec) (top) and 0.2 sec (bottom) attenuation curves for $V_{S30} = 400$ m/sec..12

Figure 3.4 Comparison of global M_8 (interface) for 1.0 (top) and 3.0 sec (bottom) attenuation curves for $V_{S30} = 400$ m/sec..13

Figure 3.5 Comparison of Alaska regional M_8 (interface) for PGA ($T = 0.01$ sec) (top) and 0.2 sec (bottom) attenuation curves for $V_{S30} = 760$ m/sec.....................14

Figure 3.6 Comparison of Alaska regional M_8 (interface) for 1.0 (top) and 3.0 sec (bottom) attenuation curves for $V_{S30} = 760$ m/sec..15

Figure 3.7 Comparison of Alaska regional M_8 (interface) for PGA ($T = 0.01$ sec) (top) and 0.2 sec (bottom) attenuation curves for $V_{S30} = 400$ m/sec.....................16

Figure 3.8 Comparison of Alaska regional M_8 (interface) for 1.0 (top) and 3.0 sec (bottom) attenuation curves for $V_{S30} = 400$ m/sec..17

Figure 3.9 Comparison of Cascadia regional M_8 (interface) for PGA ($T = 0.01$ sec) (top) and 0.2 sec (bottom) attenuation curves for $V_{S30} = 760$ m/sec.....................18

Figure 3.10 Comparison of Cascadia regional M_8 (interface) for 1.0 (top) and 3.0 sec (bottom) attenuation curves for $V_{S30} = 760$ m/sec..19

Figure 3.11 Comparison of Cascadia regional M_8 (interface) for PGA ($T = 0.01$ sec) (top) and 0.2 sec (bottom) attenuation curves for $V_{S30} = 400$ m/sec.....................20

Figure 3.12 Comparison of Cascadia regional M_8 (interface) for 1.0 (top) and 3.0 sec (bottom) attenuation curves for $V_{S30} = 400$ m/sec..21

Figure 3.13 Comparison of Central America and Mexico regional M_8 (interface) for PGA ($T = 0.01$ sec) (top) and 0.2 sec (bottom) attenuation curves for $V_{S30} = 760$ m/sec..22

Figure 3.14 Comparison of Central America and Mexico regional M_8 (interface) for 1.0 (top) and 3.0 sec (bottom) attenuation curves for $V_{S30} = 760$ m/sec.....................23

Figure 3.15 Comparison of Central America and Mexico regional M_8 (interface) for PGA ($T = 0.01$ sec) (top) and 0.2 sec (bottom) attenuation curves for $V_{S30} = 400$ m/sec..24

Figure 3.16 Comparison of Central America and Mexico regional M_8 (interface) for 1.0 (top) and 3.0 sec (bottom) attenuation curves for $V_{S30} = 400$ m/sec.....................25
Figure 3.17 Comparison of Japan regional M8 for (interface) PGA ($T = 0.01$ sec) (top) and 0.2 sec (bottom) attenuation curves for $V_{S30} = 760$ m/sec.................................26

Figure 3.18 Comparison of Japan regional M8 (interface) for 1.0 (top) and 3.0 sec (bottom) attenuation curves for $V_{S30} = 760$ m/sec..27

Figure 3.19 Comparison of Japan regional M8 (interface) for PGA ($T = 0.01$ sec) (top) and 0.2 sec (bottom) attenuation curves for $V_{S30} = 400$ m/sec.................................28

Figure 3.20 Comparison of Japan regional M8 (interface) for 1.0 (top) and 3.0 sec (bottom) attenuation curves for $V_{S30} = 400$ m/sec..29

Figure 3.21 Comparison of South America regional M8 (interface) for PGA ($T = 0.01$ sec) (top) and 0.2 sec (bottom) attenuation curves for $V_{S30} = 760$ m/sec...........30

Figure 3.22 Comparison of South America regional M8 (interface) for 1.0 (top) and 3.0 sec (bottom) attenuation curves for $V_{S30} = 760$ m/sec...31

Figure 3.23 Comparison of South America regional M8 (interface) for PGA ($T = 0.01$ sec) (top) and 0.2 sec (bottom) attenuation curves for $V_{S30} = 400$ m/sec...............32

Figure 3.24 Comparison of South America regional M8 (interface) for 1.0 (top) and 3.0 sec (bottom) attenuation curves for $V_{S30} = 400$ m/sec...33

Figure 3.25 Comparison of Taiwan regional M8 (interface) for PGA ($T = 0.01$ sec) (top) and 0.2 sec (bottom) attenuation curves for $V_{S30} = 760$ m/sec.................34

Figure 3.26 Comparison of Taiwan regional M8 (interface) for 1.0 (top) and 3.0 sec (bottom) attenuation curves for $V_{S30} = 760$ m/sec...35

Figure 3.27 Comparison of Taiwan regional M8 (interface) for PGA ($T = 0.01$ sec) (top) and 0.2 sec (bottom) attenuation curves for $V_{S30} = 400$ m/sec...............36

Figure 3.28 Comparison of Taiwan regional M8 (interface) for 1.0 (top) and 3.0 sec (bottom) attenuation curves for $V_{S30} = 400$ m/sec...37

Figure 3.29 Comparison of New Zealand regional M8 (interface) for PGA ($T = 0.01$ sec) (top) and 0.2 sec (bottom) attenuation curves for $V_{S30} = 760$ m/sec........38

Figure 3.30 Comparison of New Zealand regional M8 (interface) for 1.0 (top) and 3.0 sec (bottom) attenuation curves for $V_{S30} = 760$ m/sec.................................39

Figure 3.31 Comparison of New Zealand regional M8 (interface) for PGA ($T = 0.01$ sec) (top) and 0.2 sec (bottom) attenuation curves for $V_{S30} = 400$ m/sec..............40

Figure 3.32 Comparison of New Zealand regional M8 (interface) for 1.0 (top) and 3.0 sec (bottom) attenuation curves for $V_{S30} = 400$ m/sec..41

Figure 3.33 Comparison of global M8 (interface) for distances of 75 km (top) and 200 km (bottom) spectra for $V_{S30} = 760$ m/sec. ...43

Figure 3.34 Comparison of global M8 (interface) for distances of 75 km (top) and 200 km (bottom) spectra for $V_{S30} = 400$ m/sec. ...44
Figure 3.35 Comparison of Alaska regional M8 (interface) for distances of 75 km (top) and 200 km (bottom) spectra for $V_{S30} = 760$ m/sec...45

Figure 3.36 Comparison of Alaska regional M8 (interface) for distances of 75 km (top) and 200 km (bottom) spectra for $V_{S30} = 400$ m/sec...46

Figure 3.37 Comparison of Cascadia regional M8 (interface) for distances of 75 km (top) and 200 km (bottom) spectra for $V_{S30} = 760$ m/sec...47

Figure 3.38 Comparison of Cascadia regional M8 (interface) for distances of 75 km (top) and 200 km (bottom) spectra for $V_{S30} = 400$ m/sec...48

Figure 3.39 Comparison of Central America and Mexico regional M8 (interface) for distances of 75 km (top) and 200 km (bottom) spectra for $V_{S30} = 760$ m/sec...49

Figure 3.40 Comparison of Central America and Mexico regional M8 (interface) for distances of 75 km (top) and 200 km (bottom) spectra for $V_{S30} = 400$ m/sec...50

Figure 3.41 Comparison of Japan regional M8 (interface) for distances of 75 km (top) and 200 km (bottom) spectra for $V_{S30} = 760$ m/sec...51

Figure 3.42 Comparison of Japan regional M8 (interface) for distances of 75 km (top) and 200 km (bottom) spectra for $V_{S30} = 400$ m/sec...52

Figure 3.43 Comparison of South America regional M8 (interface) for distances of 75 km (top) and 200 km (bottom) spectra for $V_{S30} = 760$ m/sec...53

Figure 3.44 Comparison of South America regional M8 (interface) for distances of 75 km (top) and 200 km (bottom) spectra for $V_{S30} = 400$ m/sec...54

Figure 3.45 Comparison of Taiwan regional M8 (interface) for distances of 75 km (top) and 200 km (bottom) spectra for $V_{S30} = 760$ m/sec...55

Figure 3.46 Comparison of Taiwan regional M8 (interface) for distances of 75 km (top) and 200 km (bottom) spectra for $V_{S30} = 400$ m/sec...56

Figure 3.47 Comparison of New Zealand regional M8 (interface) for distances of 75 km (top) and 200 km (bottom) spectra for $V_{S30} = 760$ m/sec...57

Figure 3.48 Comparison of New Zealand regional M8 (interface) for distances of 75 km (top) and 200 km (bottom) spectra for $V_{S30} = 400$ m/sec...58

Figure 3.49 Comparison of PGA magnitude scaling for interface events at a distance of 75 km for $V_{S30} = 760$ m/sec. ...60

Figure 3.50 Comparison of $T = 0.2$ sec spectral acceleration magnitude scaling for interface events at a distance of 75 km for $V_{S30} = 760$ m/sec. ...60

Figure 3.51 Comparison of $T = 1.0$ sec spectral acceleration magnitude scaling for interface events at a distance of 75 km for $V_{S30} = 760$ m/sec. ...61
Figure 3.52 Comparison of $T = 3.0$ sec spectral acceleration magnitude scaling for interface events at a distance of 75 km for $V_{S30} = 760$ m/sec. ..61

Figure 3.53 Comparison of $T = 5.0$ sec spectral acceleration magnitude scaling for interface events at a distance of 75 km for $V_{S30} = 760$ m/sec. ..62

Figure 3.54 Comparison of PGA ($T = 0.01$ sec) Z_{tor} scaling for a M8 interface event at a distance of 75 km for $V_{S30} = 760$ m/sec. ..63

Figure 3.55 Comparison of $T = 0.2$ sec Z_{tor} scaling for a M8 interface event at a distance of 75 km for $V_{S30} = 760$ m/sec. ..63

Figure 3.56 Comparison of $T = 1.0$ sec Z_{tor} scaling for a M8 interface event at a distance of 75 km for $V_{S30} = 760$ m/sec. ..64

Figure 3.57 Comparison of $T = 3.0$ sec Z_{tor} scaling for a M8 interface event at a distance of 75 km for $V_{S30} = 760$ m/sec. ..64

Figure 3.58 Comparison of $T = 5.0$ sec Z_{tor} scaling for a M8 interface event at a distance of 75 km for $V_{S30} = 760$ m/sec. ..65

Figure 3.59 Comparison of global M7 (slab) for PGA ($T = 0.01$ sec) (top) and 0.2 sec (bottom) attenuation curves for $V_{S30} = 760$ m/sec..68

Figure 3.60 Comparison of global M7 (slab) for 1.0 (top) and 3.0 sec (bottom) attenuation curves for $V_{S30} = 760$ m/sec..69

Figure 3.61 Comparison of global M7 (slab) for PGA ($T = 0.01$ sec) (top) and 0.2 sec (bottom) attenuation curves for $V_{S30} = 400$ m/sec..70

Figure 3.62 Comparison of global M7 (slab) for 1.0 (top) and 3.0 sec (bottom) attenuation curves for $V_{S30} = 400$ m/sec..71

Figure 3.63 Comparison of Alaska regional M7 (slab) for PGA ($T = 0.01$ sec) (top) and 0.2 sec (bottom) attenuation curves for $V_{S30} = 760$ m/sec..72

Figure 3.64 Comparison of Alaska regional M7 (slab) for 1.0 (top) and 3.0 sec (bottom) attenuation curves for $V_{S30} = 760$ m/sec..73

Figure 3.65 Comparison of Alaska regional M7 (slab) for PGA ($T = 0.01$ sec) (top) and 0.2 sec (bottom) attenuation curves for $V_{S30} = 400$ m/sec..74

Figure 3.66 Comparison of Alaska regional M7 (slab) for 1.0 (top) and 3.0 sec (bottom) attenuation curves for $V_{S30} = 400$ m/sec..75

Figure 3.67 Comparison of Cascadia regional M7 (slab) for PGA ($T = 0.01$ sec) (top) and 0.2 sec (bottom) attenuation curves for $V_{S30} = 760$ m/sec..76

Figure 3.68 Comparison of Cascadia regional M7 (slab) for 1.0 (top) and 3.0 sec (bottom) attenuation curves for $V_{S30} = 760$ m/sec..77

Figure 3.69 Comparison of Cascadia regional M7 (slab) for PGA ($T = 0.01$ sec) (top) and 0.2 sec (bottom) attenuation curves for $V_{S30} = 400$ m/sec..78
Figure 3.87 Comparison of New Zealand regional M7 (slab) for PGA ($T = 0.01 \text{ sec}$) (top) and 0.2 sec (bottom) attenuation curves for $V_{S30} = 760 \text{ m/sec}$.96

Figure 3.88 Comparison of New Zealand regional M7 for 1.0 (top) and 3.0 sec (bottom) attenuation curves for $V_{S30} = 760 \text{ m/sec}$. ..97

Figure 3.89 Comparison of New Zealand regional M7 (slab) for PGA ($T = 0.01 \text{ sec}$) (top) and 0.2 sec (bottom) attenuation curves for $V_{S30} = 400 \text{ m/sec}$.98

Figure 3.90 Comparison of New Zealand regional M7 (slab) for 1.0 (top) and 3.0 sec (bottom) attenuation curves for $V_{S30} = 400 \text{ m/sec}$. ...99

Figure 3.91 Comparison of global M7 (slab) for distances of 75 km (top) and 200 km (bottom) spectra for $V_{S30} = 760 \text{ m/sec}$. ...101

Figure 3.92 Comparison of global M7 (slab) for distances of 75 km (top) and 200 km (bottom) spectra for $V_{S30} = 400 \text{ m/sec}$. ..102

Figure 3.93 Comparison of Alaska regional M7 (slab) for distances of 75 km (top) and 200 km (bottom) spectra for $V_{S30} = 760 \text{ m/sec}$. ..103

Figure 3.94 Comparison of Alaska regional M7 (slab) for distances of 75 km (top) and 200 km (bottom) spectra for $V_{S30} = 400 \text{ m/sec}$. ...104

Figure 3.95 Comparison of Cascadia regional M7 (slab) for distances of 75 km (top) and 200 km (bottom) spectra for $V_{S30} = 760 \text{ m/sec}$. ...105

Figure 3.96 Comparison of Cascadia regional M7 (slab) for distances of 75 km (top) and 200 km (bottom) spectra for $V_{S30} = 400 \text{ m/sec}$. ...106

Figure 3.97 Comparison of Central America and Mexico regional M7 (slab) for distances of 75 km (top) and 200 km (bottom) spectra for $V_{S30} = 760 \text{ m/sec}$. ...107

Figure 3.98 Comparison of Central America and Mexico regional M7 (slab) for distances of 75 km (top) and 200 km (bottom) spectra for $V_{S30} = 400 \text{ m/sec}$. ...108

Figure 3.99 Comparison of Japan regional M7 (slab) for distances of 75 km (top) and 200 km (bottom) spectra for $V_{S30} = 760 \text{ m/sec}$. ...109

Figure 3.100 Comparison of Japan regional M7 (slab) for distances of 75 km (top) and 200 km (bottom) spectra for $V_{S30} = 400 \text{ m/sec}$. ...110

Figure 3.101 Comparison of South America regional M7 (slab) for distances of 75 km (top) and 200 km (bottom) spectra for $V_{S30} = 760 \text{ m/sec}$. ...111

Figure 3.102 Comparison of South America regional M7 (slab) for distances of 75 km (top) and 200 km (bottom) spectra for $V_{S30} = 400 \text{ m/sec}$. ...112

Figure 3.103 Comparison of Taiwan regional M7 (slab) for distances of 75 km (top) and 200 km (bottom) spectra for $V_{S30} = 760 \text{ m/sec}$. ...113
Figure 3.104 Comparison of Taiwan regional M7 (slab) for distances of 75 km (top) and 200 km (bottom) spectra for $V_{S30} = 400$ m/sec...114
Figure 3.105 Comparison of New Zealand regional M7 (slab) for distances of 75 km (top) and 200 km (bottom) spectra for $V_{S30} = 760$ m/sec...115
Figure 3.106 Comparison of New Zealand regional M7 (slab) for distances of 75 km (top) and 200 km (bottom) spectra for $V_{S30} = 400$ m/sec...116
Figure 3.107 Comparison of PGA magnitude scaling for slab events at a distance of 75 km for $V_{S30} = 760$ m/sec..118
Figure 3.108 Comparison of $T = 0.2$ sec spectral acceleration magnitude scaling for slab events at a distance of 75 km for $V_{S30} = 760$ m/sec. ...118
Figure 3.109 Comparison of $T = 1.0$ sec spectral acceleration magnitude scaling for slab events at a distance of 75 km for $V_{S30} = 760$ m/sec. ...119
Figure 3.110 Comparison of $T = 3.0$ sec spectral acceleration magnitude scaling for slab events at a distance of 75 km for $V_{S30} = 760$ m/sec. ...119
Figure 3.111 Comparison of $T = 5.0$ sec spectral acceleration magnitude scaling for slab events at a distance of 75 km for $V_{S30} = 760$ m/sec. ...120
Figure 3.112 Comparison of PGA ($T = 0.01$ sec) Z_{tor} scaling for a M7 slab event at a distance of 75 km for $V_{S30} = 760$ m/sec..121
Figure 3.113 Comparison of $T = 0.2$ sec Z_{tor} scaling for a M7 slab event at a distance of 75 km for $V_{S30} = 760$ m/sec..121
Figure 3.114 Comparison of $T = 1.0$ sec Z_{tor} scaling for a M7 slab event at a distance of 75 km for $V_{S30} = 760$ m/sec..122
Figure 3.115 Comparison of $T = 3.0$ sec Z_{tor} scaling for a M7 slab event at a distance of 75 km for $V_{S30} = 760$ m/sec..122
Figure 3.116 Comparison of $T = 5.0$ sec Z_{tor} scaling for a M7 slab event at a distance of 75 km for $V_{S30} = 760$ m/sec..122
Figure 3.117 Empirical relationships between V_{S30} and $Z_{2.5}$ for Japan and Cascadia from the KBCG and PSHAB models. ..124
Figure 3.118 Basin amplification factors for Cascadia from a M8 interface event at a distance of 100 km and with $V_{S30} = 600$ m/sec and $Z_{2.5}$ value of 1 km.............125
Figure 3.119 Basin amplification factors for Cascadia from a M8 interface event at a distance of 100 km and with $V_{S30} = 600$ m/sec and $Z_{2.5}$ value of 3 km.............126
Figure 3.120 Basin amplification factors for Cascadia from a M8 interface event at a distance of 100 km and with $V_{S30} = 600$ m/sec and $Z_{2.5}$ value of 5 km.............126
Figure 3.121 Basin amplification factors for Cascadia from a M8 interface event at a distance of 100 km and with $V_{S30} = 600$ m/sec and $Z_{2.5}$ value of 6 km.............127
Figure 3.122 Basin-amplification factors for Japan from a M8 interface event at a distance of 100 km with $V_{S30} = 400$ m/sec and $Z_{2.5}$ value of 0.1 km.

Figure 3.123 Basin-amplification factors for Japan from a M8 interface event at a distance of 100 km with $V_{S30} = 400$ m/sec and $Z_{2.5}$ value of 0.2 km.

Figure 3.124 Basin-amplification factors for Japan from a M8 interface event at a distance of 100 km with $V_{S30} = 400$ m/sec and $Z_{2.5}$ value of 0.4 km.

Figure 3.125 Basin-amplification factors for Japan from a M8 interface event at a distance of 100 km with $V_{S30} = 400$ m/sec and $Z_{2.5}$ value of 0.5 km.

Figure 3.126 Empirical relationships between V_{S30} and $Z_{1.0}$ for Taiwan and New Zealand from the KBCG model.

Figure 3.127 Basin-amplification factors for New Zealand from a M8 interface event at a distance of 100 km and with $V_{S30} = 400$ m/sec and $Z_{1.0}$ value of 0.3 km.

Figure 3.128 Basin-amplification factors for New Zealand from a M8 interface event at a distance of 100 km and with $V_{S30} = 400$ m/sec and $Z_{1.0}$ value of 0.5 km.

Figure 3.129 Basin-amplification factors for New Zealand from a M8 interface event at a distance of 100 km and with $V_{S30} = 400$ m/sec and $Z_{1.0}$ value of 0.7 km.

Figure 3.130 Basin-amplification factors for Taiwan from a M8 interface event at a distance of 100 km and with $V_{S30} = 400$ m/sec and $Z_{1.0}$ value of 0.3 km.

Figure 3.131 Basin-amplification factors for Taiwan from a M8 interface event at a distance of 100 km and with $V_{S30} = 400$ m/sec and $Z_{1.0}$ value of 0.5 km.

Figure 3.132 Basin-amplification factors for Taiwan from a M8 interface event at a distance of 100 km and with $V_{S30} = 400$ m/sec and $Z_{1.0}$ value of 0.7 km.

Figure 3.133 Epistemic uncertainty from the KBCG (blue line) and PSHAB (red line) models for interface events in Cascadia.

Figure 3.134 Comparison of median and epistemic 16th and 84th percentile spectra for a M9 Cascadia (no basin) interface event at a distance of 75 km ($Z_{tor} = 10$ km) for $V_{S30} = 760$ m/sec.

Figure 4.1 Comparison of within-event uncertainty (ϕ) from the three new NGA-Sub GMMs and the BCH and BCHU models.

Figure 4.2 Comparison of between-event uncertainty (τ) from the three new NGA-Sub GMMs and the BCH and BCHU models.

Figure 4.3 Comparison of aleatory uncertainty from the three new NGA-Sub GMMs and the BCH and BCHU models.

Figure 5.1 Map showing the location of the two site (Seattle and Centralia) used in the PSHA calculation along with the crustal faults (red and yellow lines) and subducting Cascadia subduction zone plate depth contours.
Figure 5.2 Total hazard curve (solid red line) and hazard curves differentiated by seismic source for the Seattle site for PGA ($T = 0.01$ sec).................................144

Figure 5.3 Total hazard curve (solid red line) and hazard curves differentiated by seismic source for the Seattle site for spectral period of 0.2 sec144

Figure 5.4 Total hazard curve (solid red line) and hazard curves differentiated by seismic source for the Seattle site for spectral period of 1.0 sec145

Figure 5.5 Total hazard curve (solid red line) and hazard curves differentiated by seismic source for the Seattle site for spectral period of 3.0 sec145

Figure 5.6 Total hazard curve (solid red line) and hazard curves differentiated by seismic source for the Seattle site for spectral period of 5.0 sec146

Figure 5.7 Comparison of the total hazard curve using BCH (solid orange line), BCHU (dotted line), KBCG (long dashed blue line), and PSHAB (short dashed red line) for the Seattle site for PGA ($T = 0.01$ sec) ...146

Figure 5.8 Comparison of the interface hazard curve using BCH (solid orange line), BCHU (dotted line), KBCG (long dashed blue line), and PSHAB (short dashed red line) for the Seattle site for PGA ($T = 0.01$ sec) ...147

Figure 5.9 Comparison of the slab hazard curve using BCH (solid orange line), BCHU (dotted line), KBCG (long dashed blue line), and PSHAB (short dashed red line) for the Seattle site for PGA ($T = 0.01$ sec) ...147

Figure 5.10 Comparison of the total hazard curve using BCH (solid orange line), BCHU (dotted line), KBCG (long dashed blue line), and PSHAB (short dashed red line) for the Seattle site for spectral period of $T = 0.2$ sec148

Figure 5.11 Comparison of the interface hazard curve using BCH (solid orange line), BCHU (dotted line), KBCG (long dashed blue line), and PSHAB (short dashed red line) for the Seattle site for spectral period of $T = 0.2$ sec148

Figure 5.12 Comparison of the slab hazard curve using BCH (solid orange line), BCHU (dotted line), KBCG (long dashed blue line), and PSHAB (short dashed red line) for the Seattle site for spectral period of $T = 0.2$ sec149

Figure 5.13 Comparison of the total hazard curve using BCH (solid orange line), BCHU (dotted line), KBCG (long dashed blue line), and PSHAB (short dashed red line) for the Seattle site for spectral period of $T = 1.0$ sec149

Figure 5.14 Comparison of the interface hazard curve using BCH (solid orange line), BCHU (dotted line), KBCG (long dashed blue line), and PSHAB (short dashed red line) for the Seattle site for spectral period of $T = 1.0$ sec150

Figure 5.15 Comparison of the slab hazard curve using BCH (solid orange line), BCHU (dotted line), KBCG (long dashed blue line), and PSHAB (short dashed red line) for the Seattle site for spectral period of $T = 1.0$ sec150
Figure 5.16 Comparison of the total hazard curve using BCH (solid orange line), BCHU (dotted line), KBCG (long dashed blue line), and PSHAB (short dashed red line) for the Seattle site for spectral period of $T = 3.0$ sec.151

Figure 5.17 Comparison of the interface hazard curve using BCH (solid orange line), BCHU (dotted line), KBCG (long dashed blue line), and PSHAB (short dashed red line) for the Seattle site for spectral period of $T = 3.0$ sec.151

Figure 5.18 Comparison of the slab hazard curve using BCH (solid orange line), BCHU (dotted line), KBCG (long dashed blue line), and PSHAB (short dashed red line) for the Seattle site for spectral period of $T = 3.0$ sec.151

Figure 5.19 Comparison of the total hazard curve using BCH (solid orange line), BCHU (dotted line), KBCG (long dashed blue line), and PSHAB (short dashed red line) for the Seattle site for spectral period of $T = 5.0$ sec.152

Figure 5.20 Comparison of the interface hazard curve using BCH (solid orange line), BCHU (dotted line), KBCG (long dashed blue line), and PSHAB (short dashed red line) for the Seattle site for spectral period of $T = 5.0$ sec.152

Figure 5.21 Comparison of the slab hazard curve using BCH (solid orange line), BCHU (dotted line), KBCG (long dashed blue line), and PSHAB (short dashed red line) for the Seattle site for spectral period of $T = 5.0$ sec.153

Figure 5.22 Comparison of UHS ground motions for the Seattle site based on the four separate subduction GMMs for the subduction seismic sources at the 500-year-return-period hazard level. ...155

Figure 5.23 Comparison of UHS ground motions for the Seattle site based on the four separate subduction GMMs for the subduction seismic sources at the 1000-year-return-period hazard level. ..155

Figure 5.24 Comparison of UHS ground motions for the Seattle site based on the four separate subduction GMMs for the subduction seismic sources at the 2475-year-return-period hazard level. ..156

Figure 5.25 Comparison of UHS ground motions for the Seattle site based on the four separate subduction GMMs for the subduction seismic sources at the 5000-year-return-period hazard level. ..157

Figure 5.26 Comparison of UHS ground motions for the Seattle site based on the four separate subduction GMMs for the subduction seismic sources at the 10,000-year-return-period hazard level. ..157

Figure 5.27 Binned deaggregation results for the Seattle site at the 500 year return period level for PGA ($T = 0.01$ sec) for the BCH (upper left), BCHU (upper right), KBCG (lower left) and PSHAB (lower right) models.158
Figure 5.28 Binned deaggregation results for the Seattle site at the 500 year return period level for $T = 0.2$ sec for the BCH (upper left), BCHU (upper right), KBCG (lower left), and PSHAB (lower right) models..159

Figure 5.29 Binned deaggregation results for the Seattle site at the 500 year return period level for $T = 1.0$ sec for the BCH (upper left), BCHU (upper right), KBCG (lower left), and PSHAB (lower right) models..159

Figure 5.30 Binned deaggregation results for the Seattle site at the 500 year return period level for $T = 3.0$ sec for the BCH (upper left), BCHU (upper right), KBCG (lower left), and PSHAB (lower right) models..160

Figure 5.31 Binned deaggregation results for the Seattle site at the 500 year return period level for $T = 5.0$ sec for the BCH (upper left), BCHU (upper right), KBCG (lower left), and PSHAB (lower right) models..160

Figure 5.32 Binned deaggregation results for the Seattle site at the 2475-year-return-period level for PGA ($T = 0.01$ sec) for the BCH (upper left), BCHU (upper right), KBCG (lower left), and PSHAB (lower right) models.161

Figure 5.33 Binned deaggregation results for the Seattle site at the 2475-year-return-period level for $T = 0.2$ sec for the BCH (upper left), BCHU (upper right), KBCG (lower left), and PSHAB (lower right) models..161

Figure 5.34 Binned deaggregation results for the Seattle site at the 2475-year-return-period level for $T = 1.0$ sec for the BCH (upper left), BCHU (upper right), KBCG (lower left), and PSHAB (lower right) models..162

Figure 5.35 Binned deaggregation results for the Seattle site at the 2475-year-return-period level for $T = 3.0$ sec for the BCH (upper left), BCHU (upper right), KBCG (lower left), and PSHAB (lower right) models..162

Figure 5.36 Binned deaggregation results for the Seattle site at the 2475-year-return-period level for $T = 5.0$ sec for the BCH (upper left), BCHU (upper right), KBCG (lower left), and PSHAB (lower right) models..163

Figure 5.37 Comparison of UHS ground motions for the Seattle site based on the four separate subduction GMMs, with the BCH aleatory sigma model for the subduction seismic sources at the 500-year-return-period hazard level.165

Figure 5.38 Comparison of UHS ground motions for the Seattle site based on the four separate subduction GMMs, with the BCH aleatory sigma model for the subduction seismic sources at the 1000-year-return-period hazard level..........165

Figure 5.39 Comparison of UHS ground motions for the Seattle site based on the four separate subduction GMMs, with the BCH aleatory sigma model for the subduction seismic sources at the 2475-year-return-period hazard level.166
Figure 5.40 Comparison of UHS ground motions for the Seattle site based on the four separate subduction GMMs for the subduction seismic sources at the 5000-year-return-period hazard level ...166

Figure 5.41 Comparison of UHS ground motions for the Seattle site based on the four separate subduction GMMs, with the BCH aleatory sigma model for the subduction seismic sources at the 10,000-year-return-period hazard level167

Figure 5.42 Total hazard curve (solid red line) and hazard curves differentiated by seismic source for the Centralia site for PGA ($T = 0.01$ sec) ...168

Figure 5.43 Total hazard curve (solid red line) and hazard curves differentiated by seismic source for the Centralia site for spectral period of 0.2 sec.................168

Figure 5.44 Total hazard curve (solid red line) and hazard curves differentiated by seismic source for the Centralia site for spectral period of 1.0 sec.......................169

Figure 5.45 Total hazard curve (solid red line) and hazard curves differentiated by seismic source for the Centralia site for spectral period of 3.0 sec169

Figure 5.46 Total hazard curve (solid red line) and hazard curves differentiated by seismic source for the Centralia site for spectral period of 5.0 sec170

Figure 5.47 Comparison of the total hazard curve using BCH (solid orange line), BCHU (dotted line), KBCG (long dashed blue line), and PSHAB (short dashed red line) for the Centralia site for PGA ($T = 0.01$ sec)171

Figure 5.48 Comparison of the interface hazard curve using BCH (solid orange line), BCHU (dotted line), KBCG (long dashed blue line), and PSHAB (short dashed red line) for the Centralia site for PGA ($T = 0.01$ sec)171

Figure 5.49 Comparison of the slab hazard curve using BCH (solid orange line), BCHU (dotted line), KBCG (long dashed blue line), and PSHAB (short dashed red line) for the Centralia site for PGA ($T = 0.01$ sec)172

Figure 5.50 Comparison of the total hazard curve using BCH (solid orange line), BCHU (dotted line), KBCG (long dashed blue line), and PSHAB (short dashed red line) for the Centralia site for spectral period of $T = 0.2$ sec172

Figure 5.51 Comparison of the interface hazard curve using BCH (solid orange line), BCHU (dotted line), KBCG (long dashed blue line), and PSHAB (short dashed red line) for the Centralia site for spectral period of $T = 0.2$ sec173

Figure 5.52 Comparison of the slab hazard curve using BCH (solid orange line), BCHU (dotted line), KBCG (long dashed blue line), and PSHAB (short dashed red line) for the Centralia site for spectral period of $T = 0.2$ sec173

Figure 5.53 Comparison of the total hazard curve using BCH (solid orange line), BCHU (dotted line), KBCG (long dashed blue line), and PSHAB (short dashed red line) for the Centralia site for spectral period of $T = 1.0$ sec174
Figure 5.54 Comparison of the interface hazard curve using BCH (solid orange line), BCHU (dotted line), KBCG (long dashed blue line), and PSHAB (short dashed red line) for the Seattle site for spectral period of \(T = 1.0 \) sec..............174

Figure 5.55 Comparison of the slab hazard curve using BCH (solid orange line), BCHU (dotted line), KBCG (long dashed blue line), and PSHAB (short dashed red line) for the Centralia site for spectral period of \(T = 1.0 \) sec..............175

Figure 5.56 Comparison of the total hazard curve using BCH (solid orange line), BCHU (dotted line), KBCG (long dashed blue line), and PSHAB (short dashed red line) for the Centralia site for spectral period of \(T = 1.0 \) sec..............175

Figure 5.57 Comparison of the interface hazard curve using BCH (solid orange line), BCHU (dotted line), KBCG (long dashed blue line), and PSHAB (short dashed red line) for the Centralia site for spectral period of \(T = 3.0 \) sec..............176

Figure 5.58 Comparison of the slab hazard curve using BCH (solid orange line), BCHU (dotted line), KBCG (long dashed blue line), and PSHAB (short dashed red line) for the Centralia site for spectral period of \(T = 3.0 \) sec..............176

Figure 5.59 Comparison of the total hazard curve using BCH (solid orange line), BCHU (dotted line), KBCG (long dashed blue line), and PSHAB (short dashed red line) for the Centralia site for spectral period of \(T = 3.0 \) sec..............176

Figure 5.60 Comparison of the interface hazard curve using BCH (solid orange line), BCHU (dotted line), KBCG (long dashed blue line), and PSHAB (short dashed red line) for the Centralia site for spectral period of \(T = 5.0 \) sec..............177

Figure 5.61 Comparison of the slab hazard curve using BCH (solid orange line), BCHU (dotted line), KBCG (long dashed blue line), and PSHAB (short dashed red line) for the Centralia site for spectral period of \(T = 5.0 \) sec..............177

Figure 5.62 Comparison of UHS ground motions for the Centralia site based on the four separate subduction GMMs for the subduction seismic sources at the 500-year-return-period hazard level. ...180

Figure 5.63 Comparison of UHS ground motions for the Centralia site based on the four separate subduction GMMs for the subduction seismic sources at the 1000-year-return-period hazard level. ...180

Figure 5.64 Comparison of UHS ground motions for the Centralia site based on the four separate subduction GMMs for the subduction seismic sources at the 2475-year-return-period hazard level. ...181

Figure 5.65 Comparison of UHS ground motions for the Centralia site based on the four separate subduction GMMs for the subduction seismic sources at the 5000-year-return-period hazard level. ...181
Figure 5.66 Comparison of UHS ground motions for the Centralia site based on the four separate subduction GMMs for the subduction seismic sources at the 10,000 year return period hazard level. ...182

Figure 5.67 Binned deaggregation results for the Centralia site at the 500-year-return-period level for PGA ($T = 0.01$ sec) for the BCH (upper left), BCHU (upper right), KBCG (lower left), and PSHAB (lower right) models.183

Figure 5.68 Binned deaggregation results for the Centralia site at the 500 year return period level for $T = 0.2$ sec for the BCH (upper left), BCHU (upper right), KBCG (lower left), and PSHAB (lower right) models. ...183

Figure 5.69 Binned deaggregation results for the Centralia site at the 500-year-return-period level for $T = 1.0$ sec for the BCH (upper left), BCHU (upper right), KBCG (lower left), and PSHAB (lower right) models..184

Figure 5.70 Binned deaggregation results for the Centralia site at the 500-year-return-period level for $T = 3.0$ sec for the BCH (upper left), BCHU (upper right), KBCG (lower left), and PSHAB (lower right) models..184

Figure 5.71 Binned deaggregation results for the Centralia site at the 500-year-return-period level for $T = 5.0$ sec for the BCH (upper left), BCHU (upper right), KBCG (lower left), and PSHAB (lower right) models..185

Figure 5.72 Binned deaggregation results for the Centralia site at the 2475-year-return-period level for PGA ($T = 0.01$ sec) for the BCH (upper left), BCHU (upper right), KBCG (lower left), and PSHAB (lower right) models.185

Figure 5.73 Binned deaggregation results for the Centralia site at the 2475-year-return-period level for $T = 0.2$ sec for the BCH (upper left), BCHU (upper right), KBCG (lower left), and PSHAB (lower right) models..186

Figure 5.74 Binned deaggregation results for the Centralia site at the 2475-year-return-period level for $T = 1.0$ sec for the BCH (upper left), BCHU (upper right), KBCG (lower left), and PSHAB (lower right) models..186

Figure 5.75 Binned deaggregation results for the Centralia site at the 2475-year-return-period level for $T = 3.0$ sec for the BCH (upper left), BCHU (upper right), KBCG (lower left), and PSHAB (lower right) models..187

Figure 5.76 Binned deaggregation results for the Centralia site at the 2475-year-return-period level for $T = 5.0$ sec for the BCH (upper left), BCHU (upper right), KBCG (lower left), and PSHAB (lower right) models..187

Figure 5.77 Comparison of UHS ground motions for the Centralia site based on the four separate subduction GMMs, with the BCH aleatory sigma model for the subduction seismic sources at the 500-year-return-period hazard level.189
Figure 5.78 Comparison of UHS ground motions for the Centralia site based on the four separate subduction GMMs, with the BCH aleatory sigma model for the subduction seismic sources at the 1000-year-return-period hazard level. ...189

Figure 5.79 Comparison of UHS ground motions for the Centralia site based on the four separate subduction GMMs, with the BCH aleatory sigma model for the subduction seismic sources at the 2475-year-return-period hazard level. ...190

Figure 5.80 Comparison of UHS ground motions for the Centralia site based on the four separate subduction GMMs for the subduction seismic sources at the 5000-year-return-period hazard level. ...190

Figure 5.81 Comparison of UHS ground motions for the Centralia site based on the four separate subduction GMMs, with the BCH aleatory sigma model for the subduction seismic sources at the 10,000-year-return-period hazard level. ...191
1 Overview

The Next generation attenuation (NGA) research program for subduction earthquakes (NGA-Sub) is the latest component of the NGA research series. NGA-Sub is a large multidisciplinary and multi-researcher research initiative to develop a comprehensive ground-motion database and multiple ground-motion models (GMMs) for subduction earthquakes. In the NGA-Sub project, a database of ground-motions recorded in worldwide subduction events [Bozorgnia and Stewart 2020] is developed. This database includes the processed recordings and supporting source, path, and site metadata from Japan, Taiwan, the U.S. Pacific Northwest, Alaska, Mexico and Central America, South America, and New Zealand. The NGA-Sub database includes 1570 events with moment magnitudes ranging from 4.0 to 9.1. The subduction events are classified as interface, intraslab, or outer-rise events. The NGA-Sub ground-motion database has over 210,000 individual ground-motion components. This is by far the largest ground-motion database that we have developed in any NGA project. Multiple GMMs have been developed by NGA-Sub developer teams using this empirical ground-motion database and supporting ground-motion simulations.

This report discusses and compares the currently developed NGA-Sub GMMs from three developer teams. Additional GMMs are expected to be developed from other developer teams, and the digital files provided with this report will allow for the inclusion of these additional models in the future. The current comparisons will be presented in the form of attenuation curves and response spectra for selected scenario cases. Note that only a selected subset of the full suite of comparison plots are presented in this report with the additional plots in the associated electronic documents; see Appendix A for the full description of the files. Given the wide range of applicability of the GMMs, a complete and exhaustive set of scenario cases would not be practical. However, the selected scenario cases are based on commonly determined controlling scenario cases in seismic hazard analyses, especially for sites located in the Pacific Northwest. It is recommended that prior to implementing and using these new NGA-Sub GMMs for a seismic hazard study, an assessment of their relative comparison and predictive features should be performed by the user, in addition to the comparisons presented in this report.

As part of the comparisons of the three new NGA-Sub models and their features, comparisons will also be provided relative to currently published and commonly used subduction GMMs. Similar to selection of a limited number of scenario cases, this comparison of the three new models with current models is not meant to be a complete comparison of all currently available subduction models. Rather it is a comparison with those models that have been considered in the USGS National Seismic Hazard Map [Petersen et al. 2014; 2020] and are commonly used in seismic hazard studies. More information about other models not selected for the comparison can be reviewed from the global database of GMMs maintained by
J. Douglas (http://www.gmpe.org.uk). In addition to the comparisons of median ground motion estimates, a summary comparison of the aleatory sigma models will be presented.

Given the importance of these new GMMs for application to the Pacific Northwest region, an example PSHA calculation is performed for two representative sites. These sites were selected based on their relative contribution from the deeper slab events and the Cascadia interface source in the region. The USGS [2014] seismic-source model is used for the PSHA, and sensitivity calculations are presented based on the previously published GMMs and the newly developed GMMs. These results illustrate the differences in the median predictions as well as the differences in the aleatory sigma models from the different GMMs.

The development and larger presentation of each of the three GMMs are provided in the individual PEER report from each developer team [Kuehn et al. 2020; Parker et al. 2020; and Si et al. 2020]. As such, this report will focus on the comparison of the results between the models and not discuss the technical decisions and choices used by the individual developer teams for the development of each model. For those decisions, the reader is referred to the individual PEER reports for each model.
2 GMM Regionalization and Applicability

Each developer team was provided the NGA-Sub database [Bozorgnia and Stewart 2020] from which their GMM would be developed. The selection criteria for the culling of the full database is presented for each developer team in their respective PEER reports. The NGA-Sub models presented in this comparison report are from the following three developer teams:

- Kuehn, N., Bozorgnia, Y., Campbell, K. and Gregor, N. [KBCG]
- Parker, G., Stewart, J., Hassani, B., Atkinson, G. and Boore, D. [PSHAB]
- Si, H., Midorikawa, S., and Kishida, T. [SMK]

The acronym for each of the three models is indicated in the brackets and will be used throughout this report to identify the three models. The full PEER report for the three developer teams are Kuehn et al. [2020], Parker et al. [2020], and Si et al. [2020].

Given the global distribution of empirical data from subduction earthquakes in the NGA-Sub database, two of the developer teams (KBCG and PSHAB) have developed a global as well as regionalized GMMs. Overall, the same functional form is used for both the global and regional versions of the models, with the difference being a regionalization in the constant, site response amplification scaling and linear attenuation coefficients. In addition, for these two models the magnitude-scaling break point is variable based on the subduction zone within a given region. These magnitude-scaling break points are based on the studies by Ji and Archuleta [2018] for slab events and Campbell [2020] for interface events. The SMK model is developed only from Japanese data and is therefore a model developed specifically for application for Japan.

Based on the station metadata information from sites located in Japan and the Pacific Northwest (i.e., Cascadia), all three models include a basin-amplification component. For KBCG and PSHAB, this component is further differentiated into sites located within and outside of the Seattle Basin, and is dependent on the depth to the 2.5 km/sec shear-wave velocity boundary ($Z_{2.5}$). Similarly, all three models parameterize the basin amplification for Japan based on the $Z_{2.5}$ values.

Table 2.1 provides a summary of the applicable range in magnitude, distance, and V_{S30} values for each of the three models. The use of these models outside of these defined applicability ranges should be performed with caution and—at a minimum—an analyses for the behavior of the models should be performed prior to the application of these models outside of their recommended applicable range. The regional versions of the KBCG and PSHAB models are listed in Table 2.2 along with the magnitude-scaling break points. Both models are defined for the same regions except that the PSHAB model does not have a New Zealand regional model whereas the KBCG model does. Note that the functional parameterization between the KBCG and PSHAB models are different; however, the overall feature of a change
in magnitude scaling below and above the magnitude-scaling break points is a common feature of both models. For the SMK model, the magnitude scaling in Japan changes above $M_{8.3}$. Comparisons will be presented later in this report showing the differences in the magnitude-scaling break points.

The parameterization and functional model development for each of the three GMMs is presented in the associated PEER reports for each model [Kuehn et al. 2020; Parker et al. 2020; and Si et al. 2020]. Table 2.3 summarizes the model parameters used in each of the three models.

Table 2.1 Model applicability of the three GMMs for magnitude, distance, and V_{530}.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>KBCG</th>
<th>PSHAB</th>
<th>SMK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnitude</td>
<td>$5 \leq M \leq 9.5$ (interface)</td>
<td>$4.5 \leq M \leq 9.5$ (interface)</td>
<td>$5.5 \leq M \leq 9.1$ (interface)</td>
</tr>
<tr>
<td></td>
<td>$5 \leq M \leq 8.5$ (slab)</td>
<td>$4.5 \leq M \leq 8.5$ (slab)</td>
<td>$5.6 \leq M \leq 8.3$ (slab)</td>
</tr>
<tr>
<td>Distance</td>
<td>$10 \leq R_{rup} \leq 1000$</td>
<td>$20 \leq R_{rup} \leq 1000$ (interface)</td>
<td>$14 \leq R_{rup} \leq 300$ (interface)</td>
</tr>
<tr>
<td>(km)</td>
<td></td>
<td>$35 \leq R_{rup} \leq 1000$ (slab)</td>
<td>$18 \leq R_{rup} \leq 300$ (slab)</td>
</tr>
<tr>
<td>V_{530} (m/sec)</td>
<td>$150 \leq V_{530} \leq 1500$</td>
<td>$150 \leq V_{530} \leq 2000$</td>
<td>$100 \leq V_{530} \leq 1900$</td>
</tr>
<tr>
<td>Source depth</td>
<td>$Z_{tor} \leq 50$ (interface)</td>
<td>$Z_{hyp} \leq 40$ (interface)</td>
<td>$4 \leq$ focal depth ≤ 50 (interface)</td>
</tr>
<tr>
<td>(km)</td>
<td>$Z_{tor} \leq 200$ (slab)</td>
<td>$0 \leq Z_{hyp} \leq 200$ (slab)</td>
<td>$18 \leq$ focal depth ≤ 100 (slab)</td>
</tr>
<tr>
<td>Region</td>
<td>Global and region</td>
<td>Global and region</td>
<td>Japan</td>
</tr>
</tbody>
</table>

1 For Columbia, $Z_{tor} \leq 150$ km for slab events.

Table 2.2 Regionalized models and magnitude-scaling break point values.

<table>
<thead>
<tr>
<th>Region</th>
<th>KBCG/interface</th>
<th>KBCG/slab</th>
<th>PSHAB/interface</th>
<th>PSHAB/slab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global</td>
<td>7.9</td>
<td>7.6</td>
<td>7.9</td>
<td>7.6</td>
</tr>
<tr>
<td>Alaska</td>
<td>8.6</td>
<td>7.2</td>
<td>8.6</td>
<td>7.2</td>
</tr>
<tr>
<td>Alaska - Aleutian</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>7.98</td>
</tr>
<tr>
<td>Cascadia</td>
<td>8.0</td>
<td>7.2</td>
<td>7.7</td>
<td>7.2</td>
</tr>
<tr>
<td>Northern Central America and Mexico</td>
<td>7.4</td>
<td>7.4</td>
<td>7.4</td>
<td>7.4</td>
</tr>
<tr>
<td>Southern Central America and Mexico</td>
<td>7.5</td>
<td>7.6</td>
<td>7.4</td>
<td>7.6</td>
</tr>
<tr>
<td>Japan – Pacific Plate</td>
<td>8.5</td>
<td>7.6</td>
<td>8.5</td>
<td>7.65</td>
</tr>
<tr>
<td>Japan – Philippine Plate</td>
<td>7.7</td>
<td>7.6</td>
<td>7.7</td>
<td>7.55</td>
</tr>
<tr>
<td>Northern South America</td>
<td>8.2</td>
<td>7.3</td>
<td>8.5</td>
<td>7.3</td>
</tr>
<tr>
<td>Southern South America</td>
<td>8.6</td>
<td>7.2</td>
<td>8.6</td>
<td>7.25</td>
</tr>
<tr>
<td>Taiwan</td>
<td>7.1</td>
<td>7.7</td>
<td>7.1</td>
<td>7.7</td>
</tr>
<tr>
<td>New Zealand</td>
<td>8.3</td>
<td>7.6</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
The parameterization and functional model development for each of the three GMMs is presented in the associated PEER reports for each model [Kuehn et al. 2020; Parker et al. 2020; and Si et al. 2020]. Table 2.3 summarizes the model parameters used in each of the three models.

Table 2.3 Functional model parameters used for the three NGA-Sub GMMs.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>KBCG</th>
<th>PSHAB</th>
<th>SMK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moment magnitude</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>Closest distance to rupture plane (km)</td>
<td>R_{rup}</td>
<td>R_{rup}</td>
<td>R_{rup}</td>
</tr>
<tr>
<td>Depth to top of rupture (km)</td>
<td>Z_{tor}</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Hypocentral depth (km)</td>
<td>---</td>
<td>Z_{hyp} (only Slab)</td>
<td>D</td>
</tr>
<tr>
<td>Moho depth (km)</td>
<td>---</td>
<td>---</td>
<td>Moho depth</td>
</tr>
<tr>
<td>Average shear-wave velocity in top 30 m (m/sec)</td>
<td>V_{S30}</td>
<td>V_{S30}</td>
<td>V_{S30}</td>
</tr>
<tr>
<td>Depth to 2.5 km/sec boundary (km)</td>
<td>$Z_{2.5}$ (only for Cascadia and Japan Basins)</td>
<td>$Z_{2.5}$ (only for Cascadia and Japan Basins)</td>
<td>$Z_{2.5}$ (only for Japan Basins)</td>
</tr>
<tr>
<td>Depth to 1.0 km/sec boundary (km)</td>
<td>$Z_{1.0}$ (only for Taiwan and New Zealand Basins)</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Interface/slab classification</td>
<td>0 = interface/1 = slab</td>
<td>0 = interface/1 = slab</td>
<td>0 = interface/1 = slab</td>
</tr>
<tr>
<td>Magnitude-scaling break point</td>
<td>(see Table 2.2)</td>
<td>(see Table 2.2)</td>
<td>8.3</td>
</tr>
</tbody>
</table>
3 Median Value Comparisons

This section presents the comparison of the median value estimates from the three NGA-Sub GMMs. Comparisons will be made for the two global models (KBCG and PSHAB) compared to other previous subduction GMMs and the individual regionalized models from the two new models, noting that the SMK model is only defined for Japan. Comparisons will be presented for attenuation curves, magnitude-scaling, depth to top of rupture, and basin amplifications. For all comparisons except the basin amplifications, these comparisons will be separated based on interface and slab events. Note that the basin-amplification effects are independent of the type of subduction earthquake. For both the attenuation curves and spectra, comparison plots will be presented for two V_{S30} values of 760 m/sec and 400 m/sec. The first value is representative of the common reference condition corresponding to NEHRP B/C boundary site conditions. The second and lower value is more consistent with soft-rock site conditions.

For the global comparisons, the following published models are presented:

- Atkinson and Boore [2003; 2008] (AB08)
- Atkinson and Macias [2009] (AM09)
- Zhao et al. [2006] (Zea06)
- Zhao et al. [2016a, b] (Zea16)
- BCHydro [Abrahamson et al. 2016] (BCH)
- BCHydro Update for USGS [Abrahamson et al. 2018] (BCHU)

The AM09 model was developed for Cascadia interface events only and is defined for a V_{S30} of 760 m/sec. Based on these limitations, the AM09 model is only compared for interface events with V_{S30} of 760 m/sec. For the AB08 model, the site conditions are defined based on NEHRP categories [Building Seismic Safety Council 2009] and for the V_{S30} of 760 m/sec, the average of NHERP B and C site conditions for which ground motions are computed. For the lower V_{S30} value of 400 m/sec, the AB08 ground motions are presented for NHERP C site conditions. Both the Zea06 and Zea16 are also defined based on a binned site classification. For the V_{S30} value of 760 m/sec, the average of the ground motions from the hard soil and rock-site conditions is computed; for the V_{S30} value of 400 m/sec, the hard-soil site conditions is selected for the comparisons. Both the BCH and BCHU models are defined as a continuous function of V_{S30} values.

The AB08 model was developed as a global model with two additional regionalized versions, specifically for Cascadia and Japan. Since these previously published models presented in this report are compared with global versions of the new models, the comparison with AB08 is based on the global version of that model. Although the AM09 model was developed specifically for Cascadia events, it is compared to the global version of the two new
NGA-Sub models. The Zea06 and Zea16 are both based on predominately Japanese data; however, because the application of these models has typically been applied globally, the comparisons will be presented with the global models.

The BCH global model is presented in the comparisons. For the attenuation curve plots, only the forearc ground motions are computed even though for the larger distances up to 1000 km one would expect that the sites would be located in the backarc region. Finally, the BCHU model was developed specifically for application by the USGS for Cascadia earthquakes rather than a global application. Similar to the inclusion of the AM09 model with the global models, the BCHU model is also included in the global-model comparisons. For both the BCH and BCHU models, the upper and lower versions of these models to account for epistemic uncertainty are also included in the comparison figures.

As noted earlier, the comparisons presented in this report (i.e., both in the report and as well in the associated electronic files) do not fully span the wide range of applicable comparisons. However, through the observations and understanding of these new NGA-Sub GMMs and with any additional comparison studies, it is anticipated that the evaluation and application of these new models can be technically informed.

3.1 INTERFACE EVENTS

For the interface event comparisons, the selected input parameters are listed in Table 3.1. Results are calculated for magnitudes 7, 8, and 9 and for distances of 10–1000 km for the attenuation curves and two specific distances of 75 and 200 km for the response spectra. Two V_{S30} values of 760 and 400 m/sec are selected along with the previously described site classifications for the older GMMs. A separate section will be presented for the basin-amplification results from the models and all other comparisons are for non-basin sites.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>KBCG</th>
<th>PSHAB</th>
<th>SMK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moment magnitude</td>
<td>7, 8, and 9</td>
<td>7, 8, and 9</td>
<td>7, 8, and 9</td>
</tr>
<tr>
<td>Closest distance to rupture plane (km)</td>
<td>10.0–1000.0</td>
<td>10.0–1000.0</td>
<td>10.0–1000.0</td>
</tr>
<tr>
<td></td>
<td>75.0</td>
<td>75.0</td>
<td>75.0</td>
</tr>
<tr>
<td></td>
<td>200.0</td>
<td>200.0</td>
<td>200.0</td>
</tr>
<tr>
<td>Depth to top of rupture (km)</td>
<td>10.0</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Hypocentral depth (km)</td>
<td>---</td>
<td>---</td>
<td>20.0</td>
</tr>
<tr>
<td>Moho depth (km)</td>
<td>---</td>
<td>---</td>
<td>30.0</td>
</tr>
<tr>
<td>Average shear-wave velocity in top 30 m (m/sec)</td>
<td>760.0</td>
<td>760.0</td>
<td>760.0</td>
</tr>
<tr>
<td></td>
<td>400.0</td>
<td>400.0</td>
<td>400.0</td>
</tr>
<tr>
<td>Depth to 2.5 km/sec boundary (km)</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Depth to 1.0 km/sec boundary (km)</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Interface/slab classification</td>
<td>0 = Interface</td>
<td>0 = Interface</td>
<td>0 = Interface</td>
</tr>
<tr>
<td>Magnitude-scaling break point</td>
<td>7.9 (Global)</td>
<td>7.9 (Global)</td>
<td>8.3</td>
</tr>
</tbody>
</table>

1 Distance range for attenuation curve plots.
2 Distance values for spectra plots.
3.1.1 Interface Attenuation Curves

Attenuation curves are compared for both the global versions and regional versions of the models. For the global model, the comparisons are presented with the previous suite of subduction GMMs. For the regional models, the comparison is presented between the global version and regional version of only the NGA-Sub GMMs. Attenuation curves are computed for spectral periods of 0.01 (i.e., to represent an approximate PGA), 0.2, 1, 3, and 5 sec. Representative attenuation curve plots for the M8 case for PGA (T = 0.01 sec), 0.2, 1.0, and 3.0 sec spectral periods are plotted in Figure 3.1 to Figure 3.32. The full suite of attenuation curves (i.e., both digital data and plots) are contained in the associated electronic files; see Appendix A.

In general, there is good agreement between the new NGA-Sub GMMs and the previous models for distances in the 100–200 km range. At shorter and longer distances, however, the dispersion of the models increases. These observations are not unexpected given the different datasets used in each GMM development as well the range of focus and applicability of each model. For example, calculating ground motions for distances out to 1000 km is beyond the applicable range of previous models (e.g., AB08). At these large distances, it would be expected that the sites would fall into the back-arc category and have lower ground motions for the shorter period ground motions and higher ground motions for the longer spectral period ground motions (e.g., BCH).

The regional comparisons for seven regions are plotted in Figure 3.5 through Figure 3.32. For the Japan region, the KBCG and PSHAB models have a Pacific Plate and Philippine Plate model based on the different magnitude-scaling break points associated with these two tectonic features (i.e., see Table 2.2). In addition, the SMK model is presented in these comparisons for the Japan region. Overall, variations between the global model and the individual regional models are noted based on the differences in the regional features of each model (e.g., constant, magnitude-scaling break point, site response, and anelastic attenuation).
Figure 3.1 Comparison of global M8 (interface) for PGA ($T = 0.01$ sec) (top) and 0.2 sec (bottom) attenuation curves for $V_{S30} = 760$ m/sec.
Figure 3.2 Comparison of global M8 (interface) for 1.0 (top) and 3.0 sec (bottom) attenuation curves for $V_{S30} = 760$ m/sec.
Figure 3.3 Comparison of global M8 (interface) for PGA ($T = 0.01$ sec) (top) and 0.2 sec (bottom) attenuation curves for $V_{s30} = 400$ m/sec.
Figure 3.4 Comparison of global M8 (interface) for 1.0 (top) and 3.0 sec (bottom) attenuation curves for $V_{S30} = 400$ m/sec.
Figure 3.5 Comparison of Alaska regional M8 (interface) for PGA ($T = 0.01$ sec) (top) and 0.2 sec (bottom) attenuation curves for $V_{s30} = 760$ m/sec.
Figure 3.6 Comparison of Alaska regional M8 (interface) for 1.0 (top) and 3.0 sec (bottom) attenuation curves for $V_{S30} = 760$ m/sec.
Figure 3.7 Comparison of Alaska regional M8 (interface) for PGA ($T = 0.01$ sec) (top) and 0.2 sec (bottom) attenuation curves for $V_{s30} = 400$ m/sec.
Figure 3.8 Comparison of Alaska regional M8 (interface) for 1.0 (top) and 3.0 sec (bottom) attenuation curves for $V_{S30} = 400$ m/sec.
Figure 3.9 Comparison of Cascadia regional M8 (interface) for PGA ($T = 0.01$ sec) (top) and 0.2 sec (bottom) attenuation curves for $V_{S30} = 760$ m/sec.
Figure 3.10 Comparison of Cascadia regional M8 (interface) for 1.0 (top) and 3.0 sec (bottom) attenuation curves for $V_{S30} = 760$ m/sec.
Figure 3.11 Comparison of Cascadia regional M8 (interface) for PGA ($T = 0.01$ sec) (top) and 0.2 sec (bottom) attenuation curves for $V_{s30} = 400$ m/sec.
Figure 3.12 Comparison of Cascadia regional M8 (interface) for 1.0 (top) and 3.0 sec (bottom) attenuation curves for $V_{530} = 400$ m/sec.
Figure 3.13 Comparison of Central America and Mexico regional M8 (interface) for PGA ($T = 0.01$ sec) (top) and 0.2 sec (bottom) attenuation curves for $V_{s30} = 760$ m/sec.
Figure 3.14 Comparison of Central America and Mexico regional M8 (interface) for 1.0 (top) and 3.0 sec (bottom) attenuation curves for $V_{s30} = 760$ m/sec.
Figure 3.15 Comparison of Central America and Mexico regional M8 (interface) for PGA ($T = 0.01$ sec) (top) and 0.2 sec (bottom) attenuation curves for $V_{S30} = 400$ m/sec.
Figure 3.16 Comparison of Central America and Mexico regional M8 (interface) for 1.0 (top) and 3.0 sec (bottom) attenuation curves for $V_{s30} = 400$ m/sec.
Figure 3.17 Comparison of Japan regional M8 for (interface) PGA ($T = 0.01$ sec) (top) and 0.2 sec (bottom) attenuation curves for $V_{S30} = 760$ m/sec.
Figure 3.18 Comparison of Japan regional M8 (interface) for 1.0 (top) and 3.0 sec (bottom) attenuation curves for $V_{s30} = 760$ m/sec.
Figure 3.19 Comparison of Japan regional M8 (interface) for PGA ($T = 0.01$ sec) (top) and 0.2 sec (bottom) attenuation curves for $V_{s30} = 400$ m/sec.
Figure 3.20 Comparison of Japan regional M8 (interface) for 1.0 (top) and 3.0 sec (bottom) attenuation curves for $V_{s30} = 400$ m/sec.
Figure 3.21 Comparison of South America regional M8 (interface) for PGA ($T = 0.01$ sec) (top) and 0.2 sec (bottom) attenuation curves for $V_{s30} = 760$ m/sec.
Figure 3.22 Comparison of South America regional M8 (interface) for 1.0 (top) and 3.0 sec (bottom) attenuation curves for $V_{S30} = 760$ m/sec.
Figure 3.23 Comparison of South America regional M8 (interface) for PGA ($T = 0.01$ sec) (top) and 0.2 sec (bottom) attenuation curves for $V_{S30} = 400$ m/sec.
Figure 3.24 Comparison of South America regional M8 (interface) for 1.0 (top) and 3.0 sec (bottom) attenuation curves for $V_{S30} = 400$ m/sec.
Figure 3.25 Comparison of Taiwan regional M8 (interface) for PGA ($T = 0.01$ sec) (top) and 0.2 sec (bottom) attenuation curves for $V_{s30} = 760$ m/sec.
Figure 3.26 Comparison of Taiwan regional M8 (interface) for 1.0 (top) and 3.0 sec (bottom) attenuation curves for $V_{S30} = 760$ m/sec.
Figure 3.27 Comparison of Taiwan regional M8 (interface) for PGA ($T = 0.01$ sec) (top) and 0.2 sec (bottom) attenuation curves for $V_{s30} = 400$ m/sec.
Figure 3.28 Comparison of Taiwan regional M8 (interface) for 1.0 (top) and 3.0 sec (bottom) attenuation curves for $V_{s30} = 400$ m/sec.
Figure 3.29 Comparison of New Zealand regional M8 (interface) for PGA ($T = 0.01$ sec) (top) and 0.2 sec (bottom) attenuation curves for $V_{s30} = 760$ m/sec.
Figure 3.30 Comparison of New Zealand regional M8 (interface) for 1.0 (top) and 3.0 sec (bottom) attenuation curves for $V_{s30} = 760$ m/sec.
Figure 3.31 Comparison of New Zealand regional M8 (interface) for PGA ($T = 0.01$ sec) (top) and 0.2 sec (bottom) attenuation curves for $V_{s30} = 400$ m/sec.
Figure 3.32 Comparison of New Zealand regional M8 (interface) for 1.0 (top) and 3.0 sec (bottom) attenuation curves for $V_{S30} = 400$ m/sec.
3.1.2 Interface Spectra

Interface event spectra are computed for magnitudes 7, 8, and 9 at two distances of 75 and 200 km; see Table 3.1. Ground motions are computed for the full spectral period range of 0.01 to 10 sec for the two selected V_{30} values of 760 and 400 m/sec. For the global case, the computed spectra from the NGA-Sub GMMs are compared with the previously developed GMMs. For each of the individual regional cases, the comparison is presented between the NGA-Sub GMM global model and the specific regional models. Representative spectra plots for the M_8 case for both distances of 75 and 200 km are plotted in Figure 3.33 to Figure 3.48. The full suite of spectra plots (i.e., both digital data and plots) are contained in the associated electronic files; see Appendix A.

In general, similar results are observed with the spectra comparisons as is noted for the attenuation curves. For the two NGA-Sub GMM global models, there are similar ground-motion spectra for the selected cases especially when compared to the previous GMMs, which show a larger distribution of ground-motion values. In comparing the regional models with the global models, the results for Alaska, South America, and Taiwan show the largest change from the global models.
Figure 3.33 Comparison of global M8 (interface) for distances of 75 km (top) and 200 km (bottom) spectra for $V_s^{30} = 760$ m/sec.
Figure 3.34 Comparison of global M8 (interface) for distances of 75 km (top) and 200 km (bottom) spectra for $V_{S30} = 400$ m/sec.
Figure 3.35 Comparison of Alaska regional M8 (interface) for distances of 75 km (top) and 200 km (bottom) spectra for $V_{S30} = 760$ m/sec.
Figure 3.36 Comparison of Alaska regional M8 (interface) for distances of 75 km (top) and 200 km (bottom) spectra for $V_{s30} = 400$ m/sec.
Figure 3.37 Comparison of Cascadia regional M8 (interface) for distances of 75 km (top) and 200 km (bottom) spectra for $V_{S30} = 760$ m/sec.
Figure 3.38 Comparison of Cascadia regional M8 (interface) for distances of 75 km (top) and 200 km (bottom) spectra for $V_{S30} = 400$ m/sec.
Figure 3.39 Comparison of Central America and Mexico regional M8 (interface) for distances of 75 km (top) and 200 km (bottom) spectra for $V_{S30} = 760$ m/sec.
Figure 3.40 Comparison of Central America and Mexico regional M8 (interface) for distances of 75 km (top) and 200 km (bottom) spectra for $V_{S30} = 400$ m/sec.
Figure 3.41 Comparison of Japan regional M8 (interface) for distances of 75 km (top) and 200 km (bottom) spectra for $V_{S30} = 760$ m/sec.
Figure 3.42 Comparison of Japan regional M8 (interface) for distances of 75 km (top) and 200 km (bottom) spectra for $V_{S30} = 400$ m/sec.
Figure 3.43 Comparison of South America regional M8 (interface) for distances of 75 km (top) and 200 km (bottom) spectra for $V_{S30} = 760$ m/sec.
Figure 3.44 Comparison of South America regional M8 (interface) for distances of 75 km (top) and 200 km (bottom) spectra for $V_{S30} = 400$ m/sec.
Figure 3.45 Comparison of Taiwan regional M8 (interface) for distances of 75 km (top) and 200 km (bottom) spectra for $V_{530} = 760$ m/sec.
Figure 3.46 Comparison of Taiwan regional M8 (interface) for distances of 75 km (top) and 200 km (bottom) spectra for $V_{S30} = 400$ m/sec.
Figure 3.47 Comparison of New Zealand regional M8 (interface) for distances of 75 km (top) and 200 km (bottom) spectra for $V_{S30} = 760$ m/sec.
Figure 3.48 Comparison of New Zealand regional M8 (interface) for distances of 75 km (top) and 200 km (bottom) spectra for $V_{s30} = 400$ m/sec.
3.1.3 Interface Magnitude Scaling

A common feature in all three of the NGA-Sub GMMs is the change in magnitude scaling at the magnitude-scaling break points listed in Table 2.2. This magnitude-scaling change is also a feature of previous GMMs—including the BCH and BCHU models—and is also modeled in crustal GMMs (e.g., see Gregor et al. [2014]). Although the magnitude-scaling break point is based on a single magnitude value, the impact on the calculated ground motions depends on spectral period. Both the KBCG and PSHAB model assign a global magnitude-scaling break point of 7.9 although the functional formulation within each model is different.

Comparisons of the median ground motions from an interface earthquake at a distance of 75 km for a V_{530} value of 760 m/sec are plotted in Figure 3.49 to Figure 3.53 for PGA ($T = 0.01$ sec) and spectral periods of 0.2, 1.0, 3.0, and 5.0 sec. The results from the KBCG and PSHAB model are for the global version of their models. The SMK results are also included in these comparison figures along with the results from the suite of previously developed GMMs.

In general, there is relative agreement between the results from the three NGA-Sub GMMs and the other published models with a few noted exceptions. Both the AM09 and AB09 models fall outside of the range of the other models for the smaller magnitude and shorter spectral periods (i.e., 1.0 sec and less). It should be noted that these smaller magnitude values are outside of the range of applicability for these models based on their respective datasets used in their development. For the longer spectral periods (e.g., 3.0 and 5.0 sec), the AB08 is more consistent with the other GMMs even at the lower magnitude range. The AM09 model has a more similar shape in the magnitude scaling for these longer spectral periods, but it is also offset from the other models, which can be related to other parts of the model.

For the large magnitude values exceeding the magnitude-scaling break point, the AB08 and SMK models predict complete saturation (i.e., constant ground motion values for increasing magnitudes). For the SMK model, this is true for the short spectral periods (i.e., 1.0 sec and less) but for the longer spectral period, the SMK model predicts an increase in the ground motions as a function of these larger magnitude values.
Figure 3.49 Comparison of PGA magnitude scaling for interface events at a distance of 75 km for $V_{s30} = 760$ m/sec.

Figure 3.50 Comparison of $T = 0.2$ sec spectral acceleration magnitude scaling for interface events at a distance of 75 km for $V_{s30} = 760$ m/sec.
Figure 3.51 Comparison of $T = 1.0$ sec spectral acceleration magnitude scaling for interface events at a distance of 75 km for $V_{S30} = 760$ m/sec.

Figure 3.52 Comparison of $T = 3.0$ sec spectral acceleration magnitude scaling for interface events at a distance of 75 km for $V_{S30} = 760$ m/sec.
3.1.4 Interface Depth Dependence

For interface events only the KBCG model includes a depth to the top of rupture (Z_{tor}) term. Note that both the KBCG and PSHAB model as well as previous models include a Z_{tor} term for slab events. This aspect of the KBCG model shows a strong period dependence, with the shorter spectral periods showing a larger increase in ground motions with increasing Z_{tor} values. A comparison with the KBCG global model and the other models is provided in Figure 3.54 through Figure 3.58 for PGA ($T = 0.01$ sec), 0.2, 1.0, 3.0, and 5.0 sec. These results are for a M8 interface earthquake at a distance of 75 km, with a V_{S30} value of 760 m/sec. For the low and intermediate spectral period cases of PGA ($T = 0.01$ sec) and 0.2 sec, the Z_{tor} scaling associated with the KBCG model is strong, leading to relatively low ground-motion estimates for the shallowest Z_{tor} values starting at 5 km and high ground-motion values for the deeper Z_{tor} values up to 40 km when compared to the other models, which are not dependent on Z_{tor}. At the longer spectral periods, the Z_{tor} dependency is reduced, and the estimated ground motions from the KBCG model are within the range of ground motions estimated from the other models.
Figure 3.54 Comparison of PGA ($T = 0.01 \text{ sec}$) Z_{tor} scaling for a M8 interface event at a distance of 75 km for $V_{S30} = 760 \text{ m/sec}$.

Figure 3.55 Comparison of $T = 0.2 \text{ sec}$ Z_{tor} scaling for a M8 interface event at a distance of 75 km for $V_{S30} = 760 \text{ m/sec}$.
Figure 3.56 Comparison of $T = 1.0$ sec Z_{tor} scaling for a M8 interface event at a distance of 75 km for $V_{S30} = 760$ m/sec.

Figure 3.57 Comparison of $T = 3.0$ sec Z_{tor} scaling for a M8 interface event at a distance of 75 km for $V_{S30} = 760$ m/sec.
3.2 SLAB EVENTS

For the slab event comparisons, the selected input parameters are listed in Table 3.2. Results are calculated for magnitudes 6, 7, and 8 and for distances of 50–1000 km for the attenuation curves and distances of 75 and 200 km for the spectra. Distances smaller than 50 km are not considered geometrically acceptable, with the depth of the slab source being a minimum of 50 km. Two V_{S30} values of 760 and 400 m/sec are selected along with the previously described site classifications for the other older GMMs. A separate section will be presented for the basin-amplification results from the models and all other comparisons are for non-basin sites.
Table 3.2 Input parameters for slab global GMM comparisons.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>KBCG</th>
<th>PSHAB</th>
<th>SMK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moment magnitude</td>
<td>6, 7, and 8</td>
<td>6, 7, and 8</td>
<td>6, 7, and 8</td>
</tr>
<tr>
<td>Closest distance to rupture plane (km)</td>
<td>50.0–1000.01(^1) 75.0(^2) 200.0(^2)</td>
<td>50.0–1000.01(^1) 75.0(^2) 200.0(^2)</td>
<td>50.0–1000.01(^1) 75.0(^2) 200.0(^2)</td>
</tr>
<tr>
<td>Depth to top of rupture (km)</td>
<td>50.0</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Hypocentral depth (km)</td>
<td>---</td>
<td>50.0 (M6.0)</td>
<td>50.0 (M6.0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>60.0 (M7.0)</td>
<td>60.0 (M7.0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>70.0 (M8.0)</td>
<td>70.0 (M8.0)</td>
</tr>
<tr>
<td>Moho depth (km)</td>
<td>---</td>
<td>---</td>
<td>30.0</td>
</tr>
<tr>
<td>Average shear-wave velocity in top 30 m (m/sec)</td>
<td>760.0</td>
<td>760.0</td>
<td>760.0</td>
</tr>
<tr>
<td></td>
<td>400.0</td>
<td>400.0</td>
<td>400.0</td>
</tr>
<tr>
<td>Depth to 2.5 km/sec boundary (km)</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Depth to 1.0 km/sec boundary (km)</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Interface/slab classification</td>
<td>1 = slab</td>
<td>1 = slab</td>
<td>1 = slab</td>
</tr>
<tr>
<td>Magnitude-scaling break point</td>
<td>7.6 (global)</td>
<td>7.6 (global)</td>
<td>8.3</td>
</tr>
</tbody>
</table>

\(^1\) Distance range for attenuation curve plots.
\(^2\) Distance values for spectra plots.

3.2.1 Slab Attenuation Curves

Attenuation curves are compared for both the global versions and regional versions of the models. For the global model, the comparisons are presented with the previous suite of subduction GMMs. For the regional models, the comparison is presented between the global version and regional version of only the NGA-Sub GMMs. Attenuation curves are computed for PGA \((T = 0.01 \text{ sec})\) and spectral periods of 0.2, 1.0, 3.0, and 5.0 sec. Representative attenuation curve plots for the M7 case for PGA \((T = 0.01 \text{ sec})\), 0.2, 1.0, and 3.0 sec spectral periods are plotted in Figure 3.59 to Figure 3.90. The full suite of attenuation curves (i.e., both digital data and plots) are contained in the associated electronic files; see Appendix A.

Based on the comparisons presented in these figures, both the KBCG and PSHAB global models are relatively similar and consistent with the other previous models for distances less than about 200 km. The one exception to this is observed for the BCHU model, which is offset and lower than the suite of GMMs for the shorter spectral period cases. At the longer spectral periods, this model is more consistent with the other GMMs. It should again be noted that the BCHU model is an update to the BCH model with specific application for Cascadia; hence, the comparison with other global models such as the KBCG and PSHAB models is not direct. It is also observed that for the Cascadia regional model, the KBCG model estimates ground motions that are lower than the global model for these low spectral periods and are more consistent with the BCHU model. The PSHAB Cascadia regional model has the opposite effect in estimating slightly larger ground motions for shorter distances. Given the stronger regional attenuation for the Cascadia region, the ground motions are lower than the global
estimates at longer distances. The global and Cascadia region-specific comparisons for the KBCG and PSHAB models are provided in Figure 3.67 through Figure 3.70.

Another observation for these slab attenuation curves is the more rapid attenuation for the AB08, BCH, BCHU, and SMK models for distances greater than about 200–300 km. This observed increase in the attenuation rate impacts the intermediate to shorter spectral periods (i.e., 1.0 sec and less) for the AB08 model, the longer spectral periods (i.e., 1.0 sec and longer) for the BCH model, and across all spectral periods for the BCHU and SMK models. The faster attenuation rate for the SMK model is shown in Figure 3.75 through Figure 3.78, which compares the SMK model, the global, and two Japan region-specific estimates to the KBCG and PSHAB models. Given the recommended applicability of the SMK model (see Table 2.1) of distances less than 300 km and the selection of the database for only these shorter distances used in its development, the attenuation curves shown in the comparison figures are based on the extrapolation of the model and may not be well constrained for these larger distances, especially when compared to the other models that did include more distant data in their development.
Figure 3.59 Comparison of global M7 (slab) for PGA (\(T = 0.01\) sec) (top) and 0.2 sec (bottom) attenuation curves for \(V_{S30} = 760\) m/sec.
Figure 3.60 Comparison of global M7 (slab) for 1.0 (top) and 3.0 sec (bottom) attenuation curves for $V_{S30} = 760$ m/sec.
Figure 3.61 Comparison of global M7 (slab) for PGA \((T = 0.01 \text{ sec})\) (top) and 0.2 sec (bottom) attenuation curves for \(V_{S30} = 400 \text{ m/sec}\).
Figure 3.62 Comparison of global M7 (slab) for 1.0 (top) and 3.0 sec (bottom) attenuation curves for $V_{S30} = 400$ m/sec.
Figure 3.63 Comparison of Alaska regional M7 (slab) for PGA ($T = 0.01$ sec) (top) and 0.2 sec (bottom) attenuation curves for $V_{s30} = 760$ m/sec.
Figure 3.64 Comparison of Alaska regional M7 (slab) for 1.0 (top) and 3.0 sec (bottom) attenuation curves for $V_{S30} = 760$ m/sec.
Figure 3.65 Comparison of Alaska regional M7 (slab) for PGA ($T = 0.01$ sec) (top) and 0.2 sec (bottom) attenuation curves for $V_{s30} = 400$ m/sec.
Figure 3.66 Comparison of Alaska regional M7 (slab) for 1.0 (top) and 3.0 sec (bottom) attenuation curves for $V_{S30} = 400$ m/sec.
Figure 3.67 Comparison of Cascadia regional M7 (slab) for PGA ($T = 0.01$ sec) (top) and 0.2 sec (bottom) attenuation curves for $V_{s30} = 760$ m/sec.
Figure 3.68 Comparison of Cascadia regional M7 (slab) for 1.0 (top) and 3.0 sec (bottom) attenuation curves for $V_{s30} = 760$ m/sec.
Figure 3.69 Comparison of Cascadia regional M7 (slab) for PGA ($T = 0.01$ sec) (top) and 0.2 sec (bottom) attenuation curves for $V_{30} = 400$ m/sec.
Figure 3.70 Comparison of Cascadia regional M7 (slab) for 1.0 (top) and 3.0 sec (bottom) attenuation curves for $V_{S30} = 400$ m/sec.
Figure 3.71 Comparison of Central America and Mexico regional M7 (slab) for PGA ($T = 0.01$ sec) (top) and 0.2 sec (bottom) attenuation curves for $V_{S30} = 760$ m/sec.
Figure 3.72 Comparison of Central America and Mexico regional M7 (slab) for 1.0 (top) and 3.0 sec (bottom) attenuation curves for $V_{so} = 760$ m/sec.
Figure 3.73 Comparison of Central America and Mexico regional M7 (slab) for PGA ($T = 0.01$ sec) (top) and 0.2 sec (bottom) attenuation curves for $V_{S30} = 400$ m/sec.
Figure 3.74 Comparison of Central America and Mexico regional M7 (slab) for 1.0 (top) and 3.0 sec (bottom) attenuation curves for $V_{S30} = 400$ m/sec.
Figure 3.75 Comparison of Japan regional M7 (slab) for PGA ($T = 0.01$ sec) (top) and 0.2 sec (bottom) attenuation curves for $V_{330} = 760$ m/sec.
Figure 3.76 Comparison of Japan regional M7 (slab) for 1.0 (top) and 3.0 sec (bottom) attenuation curves for $V_{S30} = 760$ m/sec.
Figure 3.77 Comparison of Japan regional M7 (slab) for PGA ($T = 0.01$ sec) (top) and 0.2 sec (bottom) attenuation curves for $V_{s30} = 400$ m/sec.
Figure 3.78 Comparison of Japan regional M7 (slab) for 1.0 (top) and 3.0 sec (bottom) attenuation curves for $V_{s30} = 400$ m/sec.
Figure 3.79 Comparison of South America regional M7 (slab) for PGA ($T = 0.01$ sec) (top) and 0.2 sec (bottom) attenuation curves for $V_{s30} = 760$ m/sec.
Figure 3.80 Comparison of South America regional M7 (slab) for 1.0 (top) and 3.0 sec (bottom) attenuation curves for $V_{S30} = 760$ m/sec.
Figure 3.81 Comparison of South America regional M7 (slab) for PGA ($T = 0.01$ sec) (top) and 0.2 sec (bottom) attenuation curves for $V_{s30} = 400$ m/sec.
Figure 3.82 Comparison of South America regional M7 (slab) for 1.0 (top) and 3.0 sec (bottom) attenuation curves for $V_{s30} = 400$ m/sec.
Figure 3.83 Comparison of Taiwan regional M7 (slab) for PGA ($T = 0.01$ sec) (top) and 0.2 sec (bottom) attenuation curves for $V_{30} = 760$ m/sec.
Figure 3.84 Comparison of Taiwan regional M7 (slab) for 1.0 (top) and 3.0 sec (bottom) attenuation curves for $V_{s30} = 760$ m/sec.
Figure 3.85 Comparison of Taiwan regional M7 (slab) for PGA (T = 0.01 sec) (top) and 0.2 sec (bottom) attenuation curves for $V_{S30} = 400$ m/sec.
Figure 3.86 Comparison of Taiwan regional M7 (slab) for 1.0 (top) and 3.0 sec (bottom) attenuation curves for $V_{S30} = 400$ m/sec.
Figure 3.87 Comparison of New Zealand regional M7 (slab) for PGA ($T = 0.01$ sec) (top) and 0.2 sec (bottom) attenuation curves for $V_{s30} = 760$ m/sec.
Figure 3.88 Comparison of New Zealand regional M7 for 1.0 (top) and 3.0 sec (bottom) attenuation curves for $V_{s30} = 760$ m/sec.
Figure 3.89 Comparison of New Zealand regional M7 (slab) for PGA ($T = 0.01$ sec) (top) and 0.2 sec (bottom) attenuation curves for $V_{s30} = 400$ m/sec.
Figure 3.90 Comparison of New Zealand regional M7 (slab) for 1.0 (top) and 3.0 sec (bottom) attenuation curves for $V_{s30} = 400$ m/sec.
3.2.2 Slab Spectra

Slab event response spectra are computed for magnitudes 6, 7, and 8 at two distances of 75 and 200 km; see Table 3.2. Ground motions are computed for the full spectral period range of 0.01 to 10 sec for the two selected V_{S30} values of 760 and 400 m/sec. For the global case, the computed spectra from the NGA-Sub GMMs are compared with the previously developed GMMs. For each of the individual regional cases, the comparison is presented between the NGA-Sub GMM global model and the specific regional models. Representative spectra plots for the M7 case for both distances of 75 and 200 km are plotted in Figure 3.91 to Figure 3.106. The full suite of spectra plots (i.e., both digital data and plots) are contained in the associated electronic files; see Appendix A.

Overall, the comparison between the KBCG and PSHAB global models indicate similar ground motions from the two models. For comparison with the other previous GMMs, the BCHU and AB08 models tend to estimate lower ground motions than the other models, including the KBCG and PSHAB global models in the intermediate and lower spectral period range. The agreement between all models improves in the longer spectral period range.

As noted in the attenuation plots, the regional comparisons for Cascadia (see Figure 3.95 and Figure 3.96) indicate a reduction in the KBCG model. This reduction for the KBCG is observed for spectral periods of less than about 1.0 sec. For longer spectral periods, the Cascadia regional model is consistent with the KBCG global model. For the PSHAB model, the spectra are slightly higher at the shorter 75 km distance case and similar for the 200 km distance case between the global model and Cascadia model for the M7 events plotted in the comparisons. For the smaller M6 provided in the electronic files, the Cascadia spectra is larger than the global model at both distances, with the opposite effect for the M8 case (i.e., approximately equal or smaller Cascadia ground motions than the global estimates).

For the Japan region comparisons (see Figure 3.99 and Figure 3.100), the SMK model is only slightly lower or approximately equal to the other GMMs; however, as observed in the comparison of the attenuation curves, the SMK model would be expected to estimate lower ground motions for distances greater than the 200 km shown in the spectra comparisons. Additional regional differences are noted in the various comparisons between the global and regional versions of the KBCG and PSHAB models.
Figure 3.91 Comparison of global M7 (slab) for distances of 75 km (top) and 200 km (bottom) spectra for $V_{30} = 760$ m/sec.
Figure 3.92 Comparison of global M7 (slab) for distances of 75 km (top) and 200 km (bottom) spectra for $V_{s30} = 400$ m/sec.
Figure 3.93 Comparison of Alaska regional M7 (slab) for distances of 75 km (top) and 200 km (bottom) spectra for $V_{S30} = 760$ m/sec.
Figure 3.94 Comparison of Alaska regional M7 (slab) for distances of 75 km (top) and 200 km (bottom) spectra for $V_{s30} = 400$ m/sec.
Figure 3.95 Comparison of Cascadia regional M7 (slab) for distances of 75 km (top) and 200 km (bottom) spectra for $V_{S30} = 760$ m/sec.
Figure 3.96 Comparison of Cascadia regional M7 (slab) for distances of 75 km (top) and 200 km (bottom) spectra for $V_{s30} = 400$ m/sec.
Figure 3.97 Comparison of Central America and Mexico regional M7 (slab) for distances of 75 km (top) and 200 km (bottom) spectra for \(V_{S30} = 760 \) m/sec.
Figure 3.98 Comparison of Central America and Mexico regional M7 (slab) for distances of 75 km (top) and 200 km (bottom) spectra for $V_{S30} = 400$ m/sec.
Figure 3.99 Comparison of Japan regional M7 (slab) for distances of 75 km (top) and 200 km (bottom) spectra for $V_{s30} = 760$ m/sec.
Figure 3.100 Comparison of Japan regional M7 (slab) for distances of 75 km (top) and 200 km (bottom) spectra for $V_{S30} = 400$ m/sec.
Figure 3.101 Comparison of South America regional M7 (slab) for distances of 75 km (top) and 200 km (bottom) spectra for $V_{s30} = 760$ m/sec.
Figure 3.102 Comparison of South America regional M7 (slab) for distances of 75 km (top) and 200 km (bottom) spectra for $V_{S30} = 400$ m/sec.
Figure 3.103 Comparison of Taiwan regional M7 (slab) for distances of 75 km (top) and 200 km (bottom) spectra for $V_{S30} = 760$ m/sec.
Figure 3.104 Comparison of Taiwan regional M7 (slab) for distances of 75 km (top) and 200 km (bottom) spectra for $V_{S30} = 400$ m/sec.
Figure 3.105 Comparison of New Zealand regional M7 (slab) for distances of 75 km (top) and 200 km (bottom) spectra for $V_{s30} = 760$ m/sec.
Figure 3.106 Comparison of New Zealand regional M7 (slab) for distances of 75 km (top) and 200 km (bottom) spectra for $V_{S30} = 400$ m/sec.
3.2.3 Slab Magnitude Scaling

Similar to the interface versions of the GMMs, all three of the NGA-Sub GMMs have a magnitude breakpoint where there is a change in the slab magnitude scaling; see Table 2.2. Although the magnitude-scaling breakpoint is based on a single magnitude value, the impact on the calculated ground motions is spectral period dependent. Both the KBCG and PSHAB models assign a global slab magnitude-scaling breakpoint of 7.6 although the functional formulation within each model is different.

Comparisons of the median ground motions from a slab earthquake at a distance of 75 km for a V_{S30} value of 760 m/sec are plotted in Figure 3.107 through Figure 3.111 for PGA ($T = 0.01$ sec) and spectral periods of 0.2, 1.0, 3.0, and 5.0 sec. The results from the KBCG and PSHAB models are for the global version of their models. The SMK results are also included in these comparison figures, along with the results from the suite of previously developed GMMs.

With a few noted exceptions, there is relative agreement between the results from the three NGA-Sub GMMs and the other published models. The models have a wider distribution for the smaller and largest magnitude values, which would be expected based on the limited distribution of data contained and used in the individual model development for these magnitude ranges. The BCHU model shows a lower magnitude-scaling dependency than the other models across all spectral periods, which leads to lower estimated ground motions for the larger magnitude cases. The AB08 model is modeled with complete saturation for slab events for earthquake with M_8 and larger, which is similar to the complete saturation for the interface events for this GMM. The SMK model, however, does not completely saturate for the largest magnitude slab events unlike for the interface events. The SMK model does show a change in the magnitude scaling that is consistent with the other GMMs.
Figure 3.107 Comparison of PGA magnitude scaling for slab events at a distance of 75 km for $V_{S30} = 760$ m/sec.

Figure 3.108 Comparison of $T = 0.2$ sec spectral acceleration magnitude scaling for slab events at a distance of 75 km for $V_{S30} = 760$ m/sec.
Figure 3.109 Comparison of $T = 1.0$ sec spectral acceleration magnitude scaling for slab events at a distance of 75 km for $V_{S30} = 760$ m/sec.

Figure 3.110 Comparison of $T = 3.0$ sec spectral acceleration magnitude scaling for slab events at a distance of 75 km for $V_{S30} = 760$ m/sec.
3.2.4 Slab Depth Dependence

The depth dependence of slab ground motions has been previously observed to be a strong feature of deeper slab earthquakes [Abrahamson et al. 2016]. This is captured in the three NGA-Sub GMMs and as well in the previous GMMs evaluated in these comparisons. The comparison of the estimated ground motions from the global KBCG and PSHAB models, and the SMK model and other GMMs are provided in Figure 3.112 through Figure 3.116. These ground-motion curves are plotted as a function of Z_{tor} for slab earthquakes at a distance of 75 km and with a V_{s30} value of 760 m/sec. For these comparisons, the Z_{tor} for the KBCG model and the hypocentral depth for the PSHAB model were assumed to be equal. For the three NGA-Sub GMMs, this depth dependence is spectral period dependent with a stronger impact at the shorter to intermediate spectral periods compared to the longer spectral periods. For the KBCG and PSHAB models, saturation is observed for the depths greater than about 65 km for spectral periods of 1.0 sec and less. For the longer spectral periods, this depth dependency is observed to be approximately constant over the range of depth values.

Figure 3.111 Comparison of $T = 5.0$ sec spectral acceleration magnitude scaling for slab events at a distance of 75 km for $V_{s30} = 760$ m/sec.
Figure 3.112 Comparison of PGA ($T = 0.01$ sec) Z_{tor} scaling for a M7 slab event at a distance of 75 km for $V_{S30} = 760$ m/sec.

Figure 3.113 Comparison of $T = 0.2$ sec Z_{tor} scaling for a M7 slab event at a distance of 75 km for $V_{S30} = 760$ m/sec.
Figure 3.114 Comparison of $T = 1.0$ sec Z_{tor} scaling for a M7 slab event at a distance of 75 km for $V_{S30} = 760$ m/sec.

Figure 3.115 Comparison of $T = 3.0$ sec Z_{tor} scaling for a M7 slab event at a distance of 75 km for $V_{S30} = 760$ m/sec.
3.3 BASIN AMPLIFICATION

In addition to the site response model contained in each of the NGA-Sub GMMs, an additional term is included for the deeper structure associated with sedimentary basins. All three models include this feature for Japan and both the KBCG and PSAHB models for sites located in Cascadia. The KBCG model also includes a term for basins in New Zealand and Taiwan. These basin-amplification functions are independent of the earthquake type and would apply to both interface and slab events for a given region.

For sites in Japan, the basin amplification is dependent on the $Z_{2.5}$ depth. For the SMK model, this basin amplification is a linear function of $Z_{2.5}$, whereas for the KBCG and PSHAB models, the functional form is centered based on the difference between the site-specific $Z_{2.5}$ value and the median predicted $Z_{2.5}$ value given the V_{S30} value and the empirical relationship developed from the database. These specific $Z_{2.5}$ and V_{S30} empirical relationships for the different regions and GMMs are presented in the separate PEER report for each model. The same centering approach is applied for sites in the Pacific Northwest for both the KBCG and PSHAB models. Note that since the SMK model is only developed from Japanese data, it is not applicable for sites in the Pacific Northwest. The empirical relationships from the two NGA-Sub models for Japan and Cascadia are plotted in Figure 3.117. The two models are very similar for Japan but show a large difference for Cascadia, especially in the higher V_{S30} range. These differing results are attributable to the large dispersion in the empirical data from sites in the Pacific Northwest region.
For the Cascadia region, both the KBCG and PSHAB further differentiate the basin response as being located within the Seattle basin, within other basins in the region (e.g., Tacoma), or for the PSHAB model, being located outside of a basin but in Cascadia with the amplification based on the $Z_{2.5}$ relationship. The centering relationships plotted in Figure 3.117 are the same for all of these additional cases, but the specific basin-amplification response is varied depending on the specific basin location. For a V_{S30} value of 600 m/sec, the median $Z_{2.5}$ values are 0.20 km and 1.28 km from the KBCG and PSHAB models, respectively.

As an example, a series of comparisons plots are provided in Figure 3.118 through Figure 3.121 for a M8 interface earthquake at a distance of 100 km with a V_{S30} value of 600 m/sec. These plots are for the spectral ratio of the acceleration response spectra from the defined $Z_{2.5}$ value divided by the ground motions from the median $Z_{2.5}$ value. Thus, a ratio of unity would be computed for a defined $Z_{2.5}$ of 0.20 km for the KBCG model and 1.28 km for the PSHAB model.

The results for the KBCG model are presented for both Seattle basin sites (dashed blue lines) and non-Seattle basin sites (solid blue lines). This model has an additional constraint in that any basin-amplification factors for non-Seattle basin sites cannot exceed the factors from the Seattle basin sites, which are independent of the $Z_{2.5}$ term. For this reason, the non-Seattle basin-amplification ratios are equal to the Seattle amplification ratios for those longer spectral periods for $Z_{2.5}$ greater than 1 km.

The results or the PSHAB model show similar basin-amplification factors for the deeper $Z_{2.5}$ values. For the shallowest $Z_{2.5}$ value, the PSHAB shows minimal basin
amplification for all three potential sites. Also note that for the range of $Z_{2.5}$ values presented in the comparison figures, the basin amplification for sites outside of a basin (solid red line) is near unity, especially in the longer spectral period range. Another observation from both models is the predicted de-amplification of ground motions for basin sites in the spectral period range around 0.1 sec, especially for the larger $Z_{2.5}$ values.

Given the potential importance of expected increase in the ground motions response for longer spectral periods in the greater Seattle area, a recent basin-amplification adjustment function has been adopted by the City of Seattle [SDCI 2018]. This adopted amplification function is based on M9 simulation results [Wirth et al. 2018] for a Cascadia interface earthquake. The amplification function plotted in Figure 3.121 was developed based on the spectral ratio from sites in and around the Seattle area located within the Seattle basin. The simulations are based on a V_{S30} of 600 m/sec, and the computed ratios are for a $Z_{2.5}$ value of 6 km for the Seattle basin. Overall, the comparison between the SDCI-recommended amplification function [2018] and the two results from NGA-Sub model is favorable, with the noted observation that the SDCI [2018] factors envelope the NGA-Sub model factors.

![Graph](image.png)

Figure 3.118 Basin amplification factors for Cascadia from a M8 interface event at a distance of 100 km and with $V_{S30} = 600$ m/sec and $Z_{2.5}$ value of 1 km.
Figure 3.119 Basin amplification factors for Cascadia from a M8 interface event at a distance of 100 km and with $V_{S30} = 600$ m/sec and $Z_{2.5}$ value of 3 km.

Figure 3.120 Basin amplification factors for Cascadia from a M8 interface event at a distance of 100 km and with $V_{S30} = 600$ m/sec and $Z_{2.5}$ value of 5 km.
Figure 3.121 Basin amplification factors for Cascadia from a M8 interface event at a distance of 100 km and with $V_{S30} = 600$ m/sec and $Z_{2.5}$ value of 6 km.

For Japan, comparisons are presented for all three NGA-Sub models given a M8 interface event at a distance of 100 km with an assigned V_{S30} value of 400 m/sec. The median $Z_{2.5}$ values are 0.259 km and 0.272 km from the KBCG and PSHAB models, respectively. For the SMK model, a reference $Z_{2.5}$ value of 0.28 km was selected for the spectral ratio. Spectral ratio values are plotted in Figure 3.122 through Figure 3.125. For the lowest $Z_{2.5}$ value, the models predict a de-amplification in the ground motions for intermediate to long spectral periods. As the $Z_{2.5}$ value increases, however, the models predict amplification from this basin modeling function for the intermediate to longer spectral periods.
Figure 3.122 Basin-amplification factors for Japan from a M8 interface event at a distance of 100 km with $V_{s30} = 400$ m/sec and $Z_{2.5}$ value of 0.1 km.

Figure 3.123 Basin-amplification factors for Japan from a M8 interface event at a distance of 100 km with $V_{s30} = 400$ m/sec and $Z_{2.5}$ value of 0.2 km.
Figure 3.124 Basin-amplification factors for Japan from a M8 interface event at a distance of 100 km with $V_{S30} = 400$ m/sec and $Z_{2.5}$ value of 0.4 km.

Figure 3.125 Basin-amplification factors for Japan from a M8 interface event at a distance of 100 km with $V_{S30} = 400$ m/sec and $Z_{2.5}$ value of 0.5 km.
For the KBCG mode, the basin-amplification model for Taiwan and New Zealand is defined in terms of the $Z_{1.0}$ value. The empirical median estimates given a V_{S30} value are shown in Figure 3.126 for the two regions of New Zealand and Taiwan. For a V_{S30} value of 400 m/sec, the median $Z_{1.0}$ values are 0.072 km and 0.097 km for New Zealand and Taiwan, respectively. Based on these $Z_{1.0}$ values, the comparison of spectral ratio values for a M8 interface earthquake at a distance of 100 km with a V_{S30} value of 400 m/sec are presented in Figure 3.127 to Figure 3.129 for New Zealand and Figure 3.130 to Figure 3.132 for Taiwan. For New Zealand, the model predicts de-amplification for spectral periods less than 0.8 sec and amplification for the longer spectral periods. For Taiwan, the KBCG model predicts amplification across all spectral periods with an increase in the longer spectral period range.

Figure 3.126 Empirical relationships between V_{S30} and $Z_{1.0}$ for Taiwan and New Zealand from the KBCG model.
Figure 3.127 Basin-amplification factors for New Zealand from a M8 interface event at a distance of 100 km and with $V_{S30} = 400$ m/sec and $Z_{1.0}$ value of 0.3 km.

Figure 3.128 Basin-amplification factors for New Zealand from a M8 interface event at a distance of 100 km and with $V_{S30} = 400$ m/sec and $Z_{1.0}$ value of 0.5 km.
Figure 3.129 Basin-amplification factors for New Zealand from a M8 interface event at a distance of 100 km and with $V_{S30} = 400$ m/sec and $Z_{1.0}$ value of 0.7 km.

Figure 3.130 Basin amplification factors for Taiwan from a M8 interface event at a distance of 100 km and with $V_{S30} = 400$ m/sec and $Z_{1.0}$ value of 0.3 km.
Figure 3.131 Basin-amplification factors for Taiwan from a M8 interface event at a distance of 100 km and with $V_{S30} = 400$ m/sec and $Z_{1.0}$ value of 0.5 km.

Figure 3.132 Basin-amplification factors for Taiwan from a M8 interface event at a distance of 100 km and with $V_{S30} = 400$ m/sec and $Z_{1.0}$ value of 0.7 km.
3.4 EPISTEMIC UNCERTAINTY

Both the KBCG and PSHAB models provide estimates of the associated epistemic uncertainty in the median ground motion. The SMK model does not currently provide such estimates. The expanded discussion and details on the epistemic models for the KBCG and PSHAB models are contained in their respective reports [Kuehn et al. 2020; Parker et al. 2020]. For the KBCG model, the epistemic uncertainty can be estimated from the sample of 800 posterior distributions of the model coefficients. These 800 sample cases are provided at each spectral period; however, the sampling is not correlated across each spectral period. For a given spectral period, the ground motions from the 800 sample coefficients can be computed, ranked, and the epistemic uncertainty calculated. In repeating this process for all spectral periods, epistemic uncertainty for a given scenario event can be computed. For the PSHAB model, a functional model is provided that can be applied to the median ground-motion estimates. For both models, the epistemic uncertainties are based on region and earthquake type (i.e., interface or slab), and are spectral period dependent.

As an example, the epistemic uncertainty for interface events in Cascadia from the two models is plotted in Figure 3.133. Both models show a larger uncertainty in the short-period range relative to the longer spectral periods, with the PSHAB model having higher overall epistemic uncertainty. Applying these epistemic models to a M9 Cascadia (no basin) interface earthquake at a distance of 75 km with a Ztor value of 10 km and a V30 value of 760 m/sec, the resulting median, epistemic 16th and 84th percentile response spectra are plotted in Figure 3.134.

In addition to this regional epistemic uncertainty models associated with the KBCG and PSHAB models, it is expected that an evaluation of the model-to-model uncertainty will be performed upon completion of the other NGA-Sub GMMs. This will allow for the potential development of an applicable epistemic model that could be implemented for seismic hazard studies that is similar to how the Al Atik and Youngs [2014] model is typically implemented for the NGA-West2 GMMs.
Figure 3.133 Epistemic uncertainty from the KBCG (blue line) and PSHAB (red line) models for interface events in Cascadia.

Figure 3.134 Comparison of median and epistemic 16th and 84th percentile spectra for a M9 Cascadia (no basin) interface event at a distance of 75 km ($Z_{tor} = 10$ km) for $V_{S30} = 760$ m/sec.
4 Aleatory Uncertainty

The aleatory uncertainty is based on the between-event (τ) and within-event uncertainty (ϕ) following the structure of Al Atik et al. [2010]. Similar to the development of the median GMM, each modeler team investigated, evaluated, and developed an aleatory uncertainty model based on the between-event and within-event variations. For the KBCG and SMK models, these variations are independent of prediction parameters such as distance, magnitude, and or site conditions. For the PSHAB model, the within-event model is defined as a function of distance and V_{S30} site conditions. Note that a single-station model is also developed for the PSHAB model but is not currently developed for the other two NGA-Sub models. The between-event variation is independent of these variables for the PSHAB model, which is consistent with the other two models. All three models are equal for both interface and slab events and are the same for the global and regionalized models.

A comparison of the within-event variability models from the three NGA-Sub GMMs and the BCH and BCHU models is presented in Figure 4.1. For the PSHAB model, the bounding distance and V_{S30} values outside of which the values are constant are plotted individually. For distance and V_{S30} values between these bounding values, the within-event variation would be interpolated consistent with Parker et al. [2020]. For spectral periods of 2 sec and longer, the variation based on distance and V_{S30} values is constant, and the four bounding results are equal. For shorter spectral periods, the low V_{S30} values (i.e., less than 200 m/sec) at distances less than 200 km yields the lowest within-event variation with values around 0.5. For distances less than 200 km but larger V_{S30} values, the within-event variation is similar to the results from the other models in addition to both the BCH and BCHU models. Finally, for the two cases for the larger distances of 500 km and larger, the results are the highest for the PSHAB model and exceed the results from the other models.

The between-event comparisons are presented in Figure 4.2 for the same set of models. Overall, there is good agreement between the KBCG and PSHAB models, and a large variation with the SMK model. As was noted earlier, the SMK model is based solely on data from Japan, whereas the other two models are based a more global dataset. Also note that BCHU model is also based on this larger global dataset, whereas the BCH model was based on a smaller global dataset.

Given these two components of the uncertainty, the total aleatory uncertainty is compared in Figure 4.3 for the same suite of models. For the PSHAB model, the combinations of the bounding cases are again plotted in the comparison. Focusing on the cases for distances less than 200 km and V_{S30} values in the range of 400–500 m/sec, the aleatory uncertainty noted in the KBCG and PSHAB models is observed to be similar. These results are also generally similar to the BCHU model results, which are all higher than the BCH model results. The results from the SMK model are higher. Note that the final results for BCH and BCHU models
presented in the comparison plots are smoothed model values, which will lead to a smoother spectrum compared to the other NGA-Sub models when the uncertainty model is applied.

Figure 4.1 Comparison of within-event uncertainty (ϕ) from the three new NGA-Sub GMMs and the BCH and BCHU models.

Figure 4.2 Comparison of between-event uncertainty (τ) from the three new NGA-Sub GMMs and the BCH and BCHU models.
Figure 4.3 Comparison of aleatory uncertainty from the three new NGA-Sub GMMs and the BCH and BCHU models.
5 Example PSHA Calculation

Given the development of the NGA-Sub GMMs, their implementation can be expected to have an impact on the resulting ground motions within a standard PSHA analysis. To illustrate the potential impacts given the incorporation of these new models, PSHA calculations are performed for two sites in Washington state, in the Pacific Northwest region of the U.S. The first site is for a general location in the city of Seattle; the second site is located in the town of Centralia. The chosen site latitude and longitude values for these two cities are listed in Table 5.1. The location of these two sites is also plotted in Figure 5.1. The PSHA results presented in this section for these two sites are only meant to illustrate the potential impact from the use of these new models. It is expected that as part of the implementation of these new NGA-Sub GMMs for either sites in the Pacific Northwest or other global sites, sensitivity studies should be conducted to provide technical support for the use of these new models and any associated logic-tree weights.

Results are computed following a standard PSHA methodology [EERI 1989] using the seismic-source model from the 2014 USGS national seismic hazard maps for the region [Petersen et al. 2014]. This source model consists of crustal faults (e.g., the Seattle fault and other regional faults), and both large interface events and deeper slab events associated with the Cascadia subduction zone. For the Seattle site, the contribution to the total seismic hazard is based on a combination of the local Seattle crustal fault and both the interface and slab events. The Centralia site is located closer to the coast; therefore, the influence from the crustal faults is diminished, and the relative contribution from the interface events is larger than from the deeper slab events.

For the ground-motion characterization (GMC) model, four separate cases are performed: one base case and three separate subduction GMMs. For all crustal seismic sources, the suite of five NGA-West2 models are used with the weighting scheme used in the USGS [2014] National Seismic Hazard Maps. These weights are listed along with the five models in Table 5.2. No additional epistemic model (e.g., Al Atik and Youngs [2014]) is applied to these crustal GMMs in the PSHA calculations. The four subduction GMMs that are used in this example analyses are the BCH, BCHU, KBCG, and PSHAB models. Since the SMK model is developed solely for application in Japan, it was not considered in these example calculations.

<table>
<thead>
<tr>
<th>City</th>
<th>Latitude</th>
<th>Longitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seattle</td>
<td>47.60</td>
<td>-122.35</td>
</tr>
<tr>
<td>Centralia</td>
<td>46.72</td>
<td>-122.95</td>
</tr>
</tbody>
</table>

Table 5.1 Locations of sites used in the PSHA analyses.
Table 5.2 GMC model weights for base case.

<table>
<thead>
<tr>
<th>GMM Model</th>
<th>Source Type</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abrahamson et al. [2014]</td>
<td>Crustal</td>
<td>0.22</td>
</tr>
<tr>
<td>Boore et al. [2014]</td>
<td>Crustal</td>
<td>0.22</td>
</tr>
<tr>
<td>Campbell and Bozorgnia [2014]</td>
<td>Crustal</td>
<td>0.22</td>
</tr>
<tr>
<td>Chiou and Youngs [2014]</td>
<td>Crustal</td>
<td>0.22</td>
</tr>
<tr>
<td>Idriss [2014]</td>
<td>Crustal</td>
<td>0.12</td>
</tr>
<tr>
<td>Abrahamson et al. [2016] (BCH)</td>
<td>Subduction</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Figure 5.1 Map showing the location of the two site (Seattle and Centralia) used in the PSHA calculation along with the crustal faults (red and yellow lines) and subducting Cascadia subduction zone plate depth contours.

For the base case example using the BCH model, only the central branch of the model is used rather than the full suite of upper and lower branches. For the slab events, however, both the global and Cascadia branches of the logic tree with their respective weights of 0.7 and 0.3 are implemented. All calculations are performed for V_{S30} value of 760 m/sec. For the KBCG and PSHAB models, it is assumed that the sites are not located in a basin. Note that the Seattle site is clearly located in the Seattle basin; however, given that the previous BCHU and BCH models do not include an adjustment for basin locations, the PSHA calculations are based on the site not being located within the Seattle basin. The crustal model default values for $Z_{1.0}$ and $Z_{2.5}$ given the V_{S30} value of 760 m/sec are applied for the NGA-West2 models. Note that if the example calculations were to be computed for sites located within a basin, the default $Z_{2.5}$ values given a V_{S30} value of 760 m/sec would be different for both the KBCG and PSHAB models, and the crustal models and would need to be accounted for within a PSHA calculation.
For each site, hazard curves are computed for PGA \((T = 0.01 \text{ sec}) \) and spectral periods of 0.2, 1.0, 3.0, and 5.0 sec. Comparisons of these hazard curves—separated by source type and GMMs—are presented in this report. A minimum magnitude of 5 and a sigma truncation value of 6 is implemented for the PSHA calculations. Uniform hazard spectrum (UHS) ground-motion values are computed for the different GMC cases for return period hazard levels of 500, 1000, 2475, 5000, and 10,000 years. Finally, comparisons of the deaggregation results for the 500- and 2475-year-return-period levels are presented for the two sites.

To further isolate the impact of the new GMMs, an additional set of PSHA calculations is performed using the median ground-motion estimates from the BCHU, KBCG, and PSHAB models with the aleatory sigma model from the BCH model. Since the sigma models are identical, this combination of the median and sigma models allows for the direct comparison of the impact on the ground motions from the differences in the median estimates. The results from these example PSHA calculations are presented below.

5.1 SEATTLE SITE EXAMPLE PSHA

The representative Seattle site is located close to the Seattle fault; see Figure 5.1. For the base case (i.e., BCH subduction GMM), the resulting mean annual frequency of exceedance (MAFE) hazard curves are plotted in Figure 5.2 through Figure 5.6. In each of these plots, the contribution from the seismic sources are separated by the Seattle fault (dotted line), combined other crustal faults (long dashed green line), combined background gridded seismicity (short dashed line), slab sources (solid blue line), and interface source (solid green line). These plots show that the Seattle fault, slab, and interface events all contribute significantly to the total hazard, and the specific variation of their contribution is based on the hazard level of interest and the spectral period of consideration. For the longer return period hazard levels and longer spectral periods, the contribution from the Seattle fault increases.

Given these base case hazard curves, the same PSHA calculation is performed by swapping out the BCH subduction GMM with the BCHU, KBCG, and PSHAB subduction GMMs. The same NGA-West2 crustal models are used for these additional example calculations. Comparisons are presented in Figure 5.10 through Figure 5.21 for the total hazard curve, interface, and slab hazard curves plotted as a function of the different subduction GMMs. These figures provide insight on the impact between the different subduction GMMs. The largest impact is observed in the differences between the models in the estimation of ground motions for slab events. Specifically for the PGA and spectral period cases of 0.2 and 1.0 sec, the larger ground motion estimates from the PSHAB model relative to the other models is noted, which is the cause of the differences (i.e., larger) results for the total hazard. For the longer spectral periods, the differences in the slab ground motions is reduced as well as the contribution from the slab sources to the total hazard such that the differences in the resulting ground motions is reduced given the different subduction GMMs.
Figure 5.2 Total hazard curve (solid red line) and hazard curves differentiated by seismic source for the Seattle site for PGA ($T = 0.01$ sec).

Figure 5.3 Total hazard curve (solid red line) and hazard curves differentiated by seismic source for the Seattle site for spectral period of 0.2 sec.
Figure 5.4 Total hazard curve (solid red line) and hazard curves differentiated by seismic source for the Seattle site for spectral period of 1.0 sec.

Figure 5.5 Total hazard curve (solid red line) and hazard curves differentiated by seismic source for the Seattle site for spectral period of 3.0 sec.
Figure 5.6 Total hazard curve (solid red line) and hazard curves differentiated by seismic source for the Seattle site for spectral period of 5.0 sec.

Figure 5.7 Comparison of the total hazard curve using BCH (solid orange line), BCHU (dotted line), KBCG (long dashed blue line), and PSHAB (short dashed red line) for the Seattle site for PGA ($T = 0.01$ sec).
Figure 5.8 Comparison of the interface hazard curve using BCH (solid orange line), BCHU (dotted line), KBCG (long dashed blue line), and PSHAB (short dashed red line) for the Seattle site for PGA ($T = 0.01$ sec).

Figure 5.9 Comparison of the slab hazard curve using BCH (solid orange line), BCHU (dotted line), KBCG (long dashed blue line), and PSHAB (short dashed red line) for the Seattle site for PGA ($T = 0.01$ sec).
Figure 5.10 Comparison of the total hazard curve using BCH (solid orange line), BCHU (dotted line), KBCG (long dashed blue line), and PSHAB (short dashed red line) for the Seattle site for spectral period of $T = 0.2$ sec.

Figure 5.11 Comparison of the interface hazard curve using BCH (solid orange line), BCHU (dotted line), KBCG (long dashed blue line), and PSHAB (short dashed red line) for the Seattle site for spectral period of $T = 0.2$ sec.
Figure 5.12 Comparison of the slab hazard curve using BCH (solid orange line), BCHU (dotted line), KBCG (long dashed blue line), and PSHAB (short dashed red line) for the Seattle site for spectral period of $T = 0.2$ sec.

Figure 5.13 Comparison of the total hazard curve using BCH (solid orange line), BCHU (dotted line), KBCG (long dashed blue line), and PSHAB (short dashed red line) for the Seattle site for spectral period of $T = 1.0$ sec.
Figure 5.14 Comparison of the interface hazard curve using BCH (solid orange line), BCHU (dotted line), KBCG (long dashed blue line), and PSHAB (short dashed red line) for the Seattle site for spectral period of $T = 1.0$ sec.

Figure 5.15 Comparison of the slab hazard curve using BCH (solid orange line), BCHU (dotted line), KBCG (long dashed blue line), and PSHAB (short dashed red line) for the Seattle site for spectral period of $T = 1.0$ sec.
Figure 5.16 Comparison of the total hazard curve using BCH (solid orange line), BCHU (dotted line), KBCG (long dashed blue line), and PSHAB (short dashed red line) for the Seattle site for spectral period of $T = 3.0$ sec.

Figure 5.17 Comparison of the interface hazard curve using BCH (solid orange line), BCHU (dotted line), KBCG (long dashed blue line), and PSHAB (short dashed red line) for the Seattle site for spectral period of $T = 3.0$ sec.
Figure 5.18 Comparison of the slab hazard curve using BCH (solid orange line), BCHU (dotted line), KBCG (long dashed blue line), and PSHAB (short dashed red line) for the Seattle site for spectral period of $T = 3.0$ sec.

Figure 5.19 Comparison of the total hazard curve using BCH (solid orange line), BCHU (dotted line), KBCG (long dashed blue line), and PSHAB (short dashed red line) for the Seattle site for spectral period of $T = 5.0$ sec.
Figure 5.20 Comparison of the interface hazard curve using BCH (solid orange line), BCHU (dotted line), KBCG (long dashed blue line), and PSHAB (short dashed red line) for the Seattle site for spectral period of $T = 5.0$ sec.

Figure 5.21 Comparison of the slab hazard curve using BCH (solid orange line), BCHU (dotted line), KBCG (long dashed blue line), and PSHAB (short dashed red line) for the Seattle site for spectral period of $T = 5.0$ sec.
The UHS ground motions for the suite of five return-period hazard levels consistent with the hazard curves plotted in the previous figures are listed in Table 5.3 through Table 5.6. The ground-motion results are plotted graphically in Figure 5.22 through Figure 5.26. As noted earlier, the largest difference in the ground motions is observed for the spectral period of 0.2 sec, with the results from the PSHAB model being higher by about 87% at the 10,000-year hazard level. Over all spectral periods and return period levels, the results from the PSHAB model are approximately 25% larger than the results from the BCH model. For the KBCG model, the average results are about 5% lower than the BCH model results.

Table 5.3 Ground motions for the mean total hazard at the Seattle site using the BCH subduction GMM for the subduction seismic sources.

<table>
<thead>
<tr>
<th>Period (sec)</th>
<th>500-year PSA (g)</th>
<th>1000-year PSA (g)</th>
<th>2475-year PSA (g)</th>
<th>5000-year PSA (g)</th>
<th>10,000-year PSA (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGA (0.010)</td>
<td>0.303</td>
<td>0.415</td>
<td>0.600</td>
<td>0.775</td>
<td>0.968</td>
</tr>
<tr>
<td>0.200</td>
<td>0.737</td>
<td>1.018</td>
<td>1.470</td>
<td>1.889</td>
<td>2.355</td>
</tr>
<tr>
<td>1.000</td>
<td>0.174</td>
<td>0.252</td>
<td>0.381</td>
<td>0.512</td>
<td>0.656</td>
</tr>
<tr>
<td>3.000</td>
<td>0.044</td>
<td>0.065</td>
<td>0.103</td>
<td>0.136</td>
<td>0.179</td>
</tr>
<tr>
<td>5.000</td>
<td>0.022</td>
<td>0.034</td>
<td>0.053</td>
<td>0.071</td>
<td>0.093</td>
</tr>
</tbody>
</table>

Table 5.4 Ground motions for the mean total hazard at the Seattle site using the BCHU subduction GMM for the subduction seismic sources.

<table>
<thead>
<tr>
<th>Period (sec)</th>
<th>500-year PSA (g)</th>
<th>1000-year PSA (g)</th>
<th>2475-year PSA (g)</th>
<th>5000-year PSA (g)</th>
<th>10,000-year PSA (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGA (0.010)</td>
<td>0.302</td>
<td>0.408</td>
<td>0.583</td>
<td>0.748</td>
<td>0.923</td>
</tr>
<tr>
<td>0.200</td>
<td>0.710</td>
<td>0.986</td>
<td>1.421</td>
<td>1.829</td>
<td>2.282</td>
</tr>
<tr>
<td>1.000</td>
<td>0.176</td>
<td>0.250</td>
<td>0.371</td>
<td>0.494</td>
<td>0.630</td>
</tr>
<tr>
<td>3.000</td>
<td>0.046</td>
<td>0.066</td>
<td>0.103</td>
<td>0.135</td>
<td>0.176</td>
</tr>
<tr>
<td>5.000</td>
<td>0.022</td>
<td>0.034</td>
<td>0.053</td>
<td>0.070</td>
<td>0.092</td>
</tr>
</tbody>
</table>

Table 5.5 Ground motions for the mean total hazard at the Seattle site using the KBCG subduction GMM for the subduction seismic sources.
Table 5.6 Ground motions for the mean total hazard at the Seattle site using the PSHAB subduction GMM for the subduction seismic sources.

<table>
<thead>
<tr>
<th>Period (sec)</th>
<th>500-year PSA (g)</th>
<th>1000-year PSA (g)</th>
<th>2475-year PSA (g)</th>
<th>5000-year PSA (g)</th>
<th>10,000-year PSA (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGA (0.010)</td>
<td>0.430</td>
<td>0.588</td>
<td>0.838</td>
<td>1.066</td>
<td>1.322</td>
</tr>
<tr>
<td>0.200</td>
<td>1.313</td>
<td>1.840</td>
<td>2.678</td>
<td>3.469</td>
<td>4.405</td>
</tr>
<tr>
<td>1.000</td>
<td>0.263</td>
<td>0.366</td>
<td>0.536</td>
<td>0.693</td>
<td>0.874</td>
</tr>
<tr>
<td>3.000</td>
<td>0.047</td>
<td>0.066</td>
<td>0.101</td>
<td>0.131</td>
<td>0.171</td>
</tr>
<tr>
<td>5.000</td>
<td>0.021</td>
<td>0.031</td>
<td>0.048</td>
<td>0.064</td>
<td>0.084</td>
</tr>
</tbody>
</table>

Figure 5.22 Comparison of UHS ground motions for the Seattle site based on the four separate subduction GMMs for the subduction seismic sources at the 500-year-return-period hazard level.
Figure 5.23 Comparison of UHS ground motions for the Seattle site based on the four separate subduction GMMs for the subduction seismic sources at the 1000-year-return-period hazard level.

Figure 5.24 Comparison of UHS ground motions for the Seattle site based on the four separate subduction GMMs for the subduction seismic sources at the 2475-year-return-period hazard level.
Figure 5.25 Comparison of UHS ground motions for the Seattle site based on the four separate subduction GMMs for the subduction seismic sources at the 5000-year-return-period hazard level.

Figure 5.26 Comparison of UHS ground motions for the Seattle site based on the four separate subduction GMMs for the subduction seismic sources at the 10,000-year-return-period hazard level.
The binned deaggregation results are summarized in Figure 5.27 through Figure 5.36 for the four subduction GMMs and for the return periods of 500 and 2475 years. These results show the contribution from the three controlling sources: (1) crustal faults for shorter distances and small to moderate magnitudes; (2) slab events with distances greater than 100 km and intermediate magnitudes; and (3) larger magnitude interface events at larger distances. Similar results and observations are noted for the other return-period levels. These plots are consistent with the previous hazard curve plots showing similar results for the BCH, BCHU, and KBCG models and an increase in contribution for slab events from the PSHAB model for PGA, 0.2, and 1.0 sec spectral periods.

![Graphs showing binned deaggregation results for the Seattle site at the 500 year return period level for PGA (T = 0.01 sec) for the BCH (upper left), BCHU (upper right), KBCG (lower left) and PSHAB (lower right) models.](image-url)
Figure 5.28 Binned deaggregation results for the Seattle site at the 500 year return period level for $T = 0.2$ sec for the BCH (upper left), BCHU (upper right), KBCG (lower left), and PSHAB (lower right) models.

Figure 5.29 Binned deaggregation results for the Seattle site at the 500 year return period level for $T = 1.0$ sec for the BCH (upper left), BCHU (upper right), KBCG (lower left), and PSHAB (lower right) models.
Figure 5.30 Binned deaggregation results for the Seattle site at the 500 year return period level for $T = 3.0$ sec for the BCH (upper left), BCHU (upper right), KBCG (lower left), and PSHAB (lower right) models.

Figure 5.31 Binned deaggregation results for the Seattle site at the 500 year return period level for $T = 5.0$ sec for the BCH (upper left), BCHU (upper right), KBCG (lower left), and PSHAB (lower right) models.
Figure 5.32 Binned deaggregation results for the Seattle site at the 2475-year-return-period level for PGA ($T = 0.01$ sec) for the BCH (upper left), BCHU (upper right), KBCG (lower left), and PSHAB (lower right) models.

Figure 5.33 Binned deaggregation results for the Seattle site at the 2475-year-return-period level for $T = 0.2$ sec for the BCH (upper left), BCHU (upper right), KBCG (lower left), and PSHAB (lower right) models.
Figure 5.34 Binned deaggregation results for the Seattle site at the 2475-year-return-period level for $T = 1.0$ sec for the BCH (upper left), BCHU (upper right), KBCG (lower left), and PSHAB (lower right) models.

Figure 5.35 Binned deaggregation results for the Seattle site at the 2475-year-return-period level for $T = 3.0$ sec for the BCH (upper left), BCHU (upper right), KBCG (lower left), and PSHAB (lower right) models.
Figure 5.36 Binned deaggregation results for the Seattle site at the 2475-year-return-period level for $T = 5.0$ sec for the BCH (upper left), BCHU (upper right), KBCG (lower left), and PSHAB (lower right) models.

An addition set of PSHA calculations is performed to isolate the impact of the median ground-motion differences between the four subduction GMMs. For these calculations, the aleatory sigma model from the BCH model is applied with the median ground-motion estimates from the other three GMMs. Given this approach, the observed differences are fully attributable to the differences in the median ground-motion estimates. The resulting UHS ground motions are listed in Table 5.7 through Table 5.9 for the three GMMs (note that the base case UHS ground-motion results based on the BCH model are listed in Table 5.3). Overall, the observed differences are less for the three models than those observed using both the median and aleatory sigma adjustments from the three subduction GMMs. The average reduction in ground motions for the BCHU and KBCG models is about 7%; however, the PSHAB model shows an observed average increase of about 16%, with the largest increase (i.e., approximately 55%) occurring for the $T = 0.2$ sec spectral periods. The ground-motion values are plotted in Figure 5.37 through Figure 5.41.
Table 5.7 Ground motions for the mean total hazard at the Seattle site using the BCHU subduction GMM with BCH aleatory sigma for the subduction seismic sources.

<table>
<thead>
<tr>
<th>Period (sec)</th>
<th>500-year PSA (g)</th>
<th>1000-year PSA (g)</th>
<th>2475-year PSA (g)</th>
<th>5000-year PSA (g)</th>
<th>10,000-year PSA (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGA (0.010)</td>
<td>0.281</td>
<td>0.384</td>
<td>0.556</td>
<td>0.714</td>
<td>0.887</td>
</tr>
<tr>
<td>0.200</td>
<td>0.689</td>
<td>0.951</td>
<td>1.362</td>
<td>1.749</td>
<td>2.183</td>
</tr>
<tr>
<td>1.000</td>
<td>0.171</td>
<td>0.248</td>
<td>0.374</td>
<td>0.503</td>
<td>0.643</td>
</tr>
<tr>
<td>3.000</td>
<td>0.043</td>
<td>0.064</td>
<td>0.102</td>
<td>0.133</td>
<td>0.174</td>
</tr>
<tr>
<td>5.000</td>
<td>0.021</td>
<td>0.033</td>
<td>0.052</td>
<td>0.069</td>
<td>0.091</td>
</tr>
</tbody>
</table>

Table 5.8 Ground motions for the mean total hazard at the Seattle site using the KBCG subduction GMM with BCH aleatory sigma for the subduction seismic sources.

<table>
<thead>
<tr>
<th>Period (sec)</th>
<th>500-year PSA (g)</th>
<th>1000-year PSA (g)</th>
<th>2475-year PSA (g)</th>
<th>5000-year PSA (g)</th>
<th>10,000-year PSA (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGA (0.010)</td>
<td>0.295</td>
<td>0.398</td>
<td>0.569</td>
<td>0.728</td>
<td>0.899</td>
</tr>
<tr>
<td>0.200</td>
<td>0.662</td>
<td>0.915</td>
<td>1.313</td>
<td>1.692</td>
<td>2.119</td>
</tr>
<tr>
<td>1.000</td>
<td>0.172</td>
<td>0.244</td>
<td>0.362</td>
<td>0.482</td>
<td>0.616</td>
</tr>
<tr>
<td>3.000</td>
<td>0.044</td>
<td>0.064</td>
<td>0.100</td>
<td>0.131</td>
<td>0.170</td>
</tr>
<tr>
<td>5.000</td>
<td>0.022</td>
<td>0.034</td>
<td>0.053</td>
<td>0.070</td>
<td>0.092</td>
</tr>
</tbody>
</table>

Table 5.9 Ground motions for the mean total hazard at the Seattle site using the PSHAB subduction GMM with BCH aleatory sigma for the subduction seismic sources.

<table>
<thead>
<tr>
<th>Period (sec)</th>
<th>500-year PSA (g)</th>
<th>1000-year PSA (g)</th>
<th>2475-year PSA (g)</th>
<th>5000-year PSA (g)</th>
<th>10,000-year PSA (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGA (0.010)</td>
<td>0.409</td>
<td>0.557</td>
<td>0.784</td>
<td>0.989</td>
<td>1.208</td>
</tr>
<tr>
<td>0.200</td>
<td>1.203</td>
<td>1.655</td>
<td>2.346</td>
<td>3.011</td>
<td>3.701</td>
</tr>
<tr>
<td>1.000</td>
<td>0.244</td>
<td>0.336</td>
<td>0.484</td>
<td>0.616</td>
<td>0.775</td>
</tr>
<tr>
<td>3.000</td>
<td>0.045</td>
<td>0.064</td>
<td>0.097</td>
<td>0.127</td>
<td>0.165</td>
</tr>
<tr>
<td>5.000</td>
<td>0.021</td>
<td>0.031</td>
<td>0.048</td>
<td>0.064</td>
<td>0.084</td>
</tr>
</tbody>
</table>
Figure 5.37 Comparison of UHS ground motions for the Seattle site based on the four separate subduction GMMs, with the BCH aleatory sigma model for the subduction seismic sources at the 500-year-return-period hazard level.

Figure 5.38 Comparison of UHS ground motions for the Seattle site based on the four separate subduction GMMs, with the BCH aleatory sigma model for the subduction seismic sources at the 1000-year-return-period hazard level.
Figure 5.39 Comparison of UHS ground motions for the Seattle site based on the four separate subduction GMMs, with the BCH aleatory sigma model for the subduction seismic sources at the 2475-year-return-period hazard level.

Figure 5.40 Comparison of UHS ground motions for the Seattle site based on the four separate subduction GMMs for the subduction seismic sources at the 5000-year-return-period hazard level.
Comparison of UHS ground motions for the Seattle site based on the four separate subduction GMMs, with the BCH aleatory sigma model for the subduction seismic sources at the 10,000-year-return-period hazard level.

5.2 CENTRALIA SITE EXAMPLE PSHA

The city of Centralia was selected for the second example PSHA calculation; see Figure 5.1. This location is more distant from any crustal fault than the Seattle site and is closer to the coast of Washington where the contribution from the Cascadia interface source can be expected to be larger than the contribution from the deeper slab events. This assumption is observed in the hazard curves for the base case (i.e., BCH subduction GMM) plotted in Figure 5.42 through Figure 5.46. In each of these plots, the contribution from the seismic sources are separated by the Seattle fault (dotted line), combined other crustal faults (long dashed green line), combined background gridded seismicity (short dashed line), slab sources (solid blue line), and interface source (solid green line). For return periods shorter than about 1000 years for PGA and $T = 0.2$ sec, the slab source is the controlling seismic source. For longer return periods, the Cascadia interface source controls. At the longer spectral periods of 1.0, 3.0, and 5.0 sec, the total hazard is controlled by the Cascadia interface source.
Figure 5.42 Total hazard curve (solid red line) and hazard curves differentiated by seismic source for the Centralia site for PGA ($T = 0.01$ sec).

Figure 5.43 Total hazard curve (solid red line) and hazard curves differentiated by seismic source for the Centralia site for spectral period of 0.2 sec.
Figure 5.44 Total hazard curve (solid red line) and hazard curves differentiated by seismic source for the Centralia site for spectral period of 1.0 sec.

Figure 5.45 Total hazard curve (solid red line) and hazard curves differentiated by seismic source for the Centralia site for spectral period of 3.0 sec.
The same approach that was used for the Seattle site is performed for the Centralia site, where the BCH subduction GMM is replaced with the BCHU, KBCG, and PSHAB subduction GMMs. The same NGA-West2 crustal models are used for these additional example calculations for the crustal sources. Comparisons are presented in Figure 5.47 through Figure 5.61 for the total hazard curve, interface, and slab hazard curves plotted as a function of the different subduction GMMs. These figures provide the observations on the impact between the different subduction GMMs. Variations are observed for the interface, slab, and resulting total hazard curves depending on the individual GMMs. For the longer spectral periods, the change in the total hazard is smaller than the observed changes in the PGA and $T = 0.2$ sec cases. The change in the slope of the total hazard curve for the BCHU model shown in the plots is based on the relative change in the individual hazard for the interface (i.e., approximately equal or higher) and slab (i.e., lower values) sources rather than a change in the sigma model. Consistent with the results for the Seattle site, the PSHAB model has higher results for PGA and $T = 0.2$ sec from slab events, and the KBCG model is lower for interface events. At the longer spectral periods, the agreement between the models is more favorable.
Figure 5.47 Comparison of the total hazard curve using BCH (solid orange line), BCHU (dotted line), KBCG (long dashed blue line), and PSHAB (short dashed red line) for the Centralia site for PGA ($T = 0.01$ sec).

Figure 5.48 Comparison of the interface hazard curve using BCH (solid orange line), BCHU (dotted line), KBCG (long dashed blue line), and PSHAB (short dashed red line) for the Centralia site for PGA ($T = 0.01$ sec).
Figure 5.49 Comparison of the slab hazard curve using BCH (solid orange line), BCHU (dotted line), KBCG (long dashed blue line), and PSHAB (short dashed red line) for the Centralia site for PGA ($T = 0.01$ sec).

Figure 5.50 Comparison of the total hazard curve using BCH (solid orange line), BCHU (dotted line), KBCG (long dashed blue line), and PSHAB (short dashed red line) for the Centralia site for spectral period of $T = 0.2$ sec.
Figure 5.51 Comparison of the interface hazard curve using BCH (solid orange line), BCHU (dotted line), KBCG (long dashed blue line), and PSHAB (short dashed red line) for the Centralia site for spectral period of $T = 0.2$ sec.

Figure 5.52 Comparison of the slab hazard curve using BCH (solid orange line), BCHU (dotted line), KBCG (long dashed blue line), and PSHAB (short dashed red line) for the Centralia site for spectral period of $T = 0.2$ sec.
Figure 5.53 Comparison of the total hazard curve using BCH (solid orange line), BCHU (dotted line), KBCG (long dashed blue line), and PSHAB (short dashed red line) for the Centralia site for spectral period of $T = 1.0$ sec.

Figure 5.54 Comparison of the interface hazard curve using BCH (solid orange line), BCHU (dotted line), KBCG (long dashed blue line), and PSHAB (short dashed red line) for the Seattle site for spectral period of $T = 1.0$ sec.
Figure 5.55 Comparison of the slab hazard curve using BCH (solid orange line), BCHU (dotted line), KBCG (long dashed blue line), and PSHAB (short dashed red line) for the Centralia site for spectral period of $T = 1.0$ sec.

Figure 5.56 Comparison of the total hazard curve using BCH (solid orange line), BCHU (dotted line), KBCG (long dashed blue line), and PSHAB (short dashed red line) for the Centralia site for spectral period of $T = 3.0$ sec.
Figure 5.57 Comparison of the interface hazard curve using BCH (solid orange line), BCHU (dotted line), KBCG (long dashed blue line), and PSHAB (short dashed red line) for the Centralia site for spectral period of $T = 3.0$ sec.

Figure 5.58 Comparison of the slab hazard curve using BCH (solid orange line), BCHU (dotted line), KBCG (long dashed blue line), and PSHAB (short dashed red line) for the Centralia site for spectral period of $T = 3.0$ sec.
Figure 5.59 Comparison of the total hazard curve using BCH (solid orange line), BCHU (dotted line), KBCG (long dashed blue line), and PSHAB (short dashed red line) for the Centralia site for spectral period of $T = 5.0$ sec.

Figure 5.60 Comparison of the interface hazard curve using BCH (solid orange line), BCHU (dotted line), KBCG (long dashed blue line), and PSHAB (short dashed red line) for the Centralia site for spectral period of $T = 5.0$ sec.
Figure 5.61 Comparison of the slab hazard curve using BCH (solid orange line), BCHU (dotted line), KBCG (long dashed blue line), and PSHAB (short dashed red line) for the Centralia site for spectral period of $T = 5.0$ sec.

The UHS ground motions for the suite of five return-period hazard levels are consistent with the hazard curves plotted in the previous figures are listed in Table 5.10 through Table 5.13. The ground-motion results are shown graphically in Figure 5.62 through Figure 5.66. The largest difference in the ground motions is observed for the spectral period of 0.2 sec, with the results from the PSHAB model being higher by about 45% at the 10,000-year hazard level. These observed differences are less than the results for the Seattle site based on the overall contribution of the slab source being less at the Centralia site than at the Seattle site. Over all spectral periods and return period levels, the results from the PSHAB model are approximately 10% larger than the results from the BCH model. For the KBCG model, the average results are about 12% lower than the BCH model results primarily due to the interface ground motion being lower than for the BCH model. For the BCHU model, the results on average are about 3% lower than the results from the BCH model.
Table 5.10 Ground motions for the mean total hazard at the Centralia site using the BCH subduction GMM for the subduction seismic sources.

<table>
<thead>
<tr>
<th>Period (sec)</th>
<th>500-year PSA (g)</th>
<th>1000-year PSA (g)</th>
<th>2475-year PSA (g)</th>
<th>5000-year PSA (g)</th>
<th>10,000-year PSA (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGA (0.010)</td>
<td>0.280</td>
<td>0.394</td>
<td>0.589</td>
<td>0.776</td>
<td>0.989</td>
</tr>
<tr>
<td>0.200</td>
<td>0.624</td>
<td>0.887</td>
<td>1.310</td>
<td>1.717</td>
<td>2.179</td>
</tr>
<tr>
<td>1.000</td>
<td>0.161</td>
<td>0.246</td>
<td>0.392</td>
<td>0.541</td>
<td>0.712</td>
</tr>
<tr>
<td>3.000</td>
<td>0.039</td>
<td>0.061</td>
<td>0.102</td>
<td>0.138</td>
<td>0.185</td>
</tr>
<tr>
<td>5.000</td>
<td>0.020</td>
<td>0.033</td>
<td>0.054</td>
<td>0.074</td>
<td>0.100</td>
</tr>
</tbody>
</table>

Table 5.11 Ground motions for the mean total hazard at the Centralia site using the BCHU subduction GMM for the subduction seismic sources.

<table>
<thead>
<tr>
<th>Period (sec)</th>
<th>500-year PSA (g)</th>
<th>1000-year PSA (g)</th>
<th>2475-year PSA (g)</th>
<th>5000-year PSA (g)</th>
<th>10,000-year PSA (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGA (0.010)</td>
<td>0.239</td>
<td>0.358</td>
<td>0.579</td>
<td>0.811</td>
<td>1.092</td>
</tr>
<tr>
<td>0.200</td>
<td>0.602</td>
<td>0.911</td>
<td>1.482</td>
<td>2.073</td>
<td>2.797</td>
</tr>
<tr>
<td>1.000</td>
<td>0.143</td>
<td>0.226</td>
<td>0.369</td>
<td>0.517</td>
<td>0.683</td>
</tr>
<tr>
<td>3.000</td>
<td>0.036</td>
<td>0.057</td>
<td>0.096</td>
<td>0.130</td>
<td>0.173</td>
</tr>
<tr>
<td>5.000</td>
<td>0.018</td>
<td>0.030</td>
<td>0.049</td>
<td>0.065</td>
<td>0.087</td>
</tr>
</tbody>
</table>

Table 5.12 Ground motions for the mean total hazard at the Centralia site using the KBCG subduction GMM for the subduction seismic sources.

<table>
<thead>
<tr>
<th>Period (sec)</th>
<th>500-year PSA (g)</th>
<th>1000-year PSA (g)</th>
<th>2475-year PSA (g)</th>
<th>5000-year PSA (g)</th>
<th>10,000-year PSA (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGA (0.010)</td>
<td>0.224</td>
<td>0.316</td>
<td>0.467</td>
<td>0.610</td>
<td>0.782</td>
</tr>
<tr>
<td>0.200</td>
<td>0.528</td>
<td>0.758</td>
<td>1.138</td>
<td>1.521</td>
<td>1.966</td>
</tr>
<tr>
<td>1.000</td>
<td>0.141</td>
<td>0.210</td>
<td>0.324</td>
<td>0.435</td>
<td>0.568</td>
</tr>
<tr>
<td>3.000</td>
<td>0.038</td>
<td>0.059</td>
<td>0.098</td>
<td>0.132</td>
<td>0.176</td>
</tr>
<tr>
<td>5.000</td>
<td>0.019</td>
<td>0.031</td>
<td>0.052</td>
<td>0.069</td>
<td>0.092</td>
</tr>
</tbody>
</table>

Table 5.13 Ground motions for the mean total hazard at the Centralia site using the PSHAB subduction GMM for the subduction seismic sources.

<table>
<thead>
<tr>
<th>Period (sec)</th>
<th>500-year PSA (g)</th>
<th>1000-year PSA (g)</th>
<th>2475-year PSA (g)</th>
<th>5000-year PSA (g)</th>
<th>10,000-year PSA (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGA (0.010)</td>
<td>0.333</td>
<td>0.474</td>
<td>0.704</td>
<td>0.925</td>
<td>1.175</td>
</tr>
<tr>
<td>0.200</td>
<td>0.866</td>
<td>1.238</td>
<td>1.867</td>
<td>2.456</td>
<td>3.164</td>
</tr>
<tr>
<td>1.000</td>
<td>0.214</td>
<td>0.313</td>
<td>0.480</td>
<td>0.641</td>
<td>0.835</td>
</tr>
<tr>
<td>3.000</td>
<td>0.038</td>
<td>0.056</td>
<td>0.087</td>
<td>0.117</td>
<td>0.152</td>
</tr>
<tr>
<td>5.000</td>
<td>0.017</td>
<td>0.025</td>
<td>0.040</td>
<td>0.054</td>
<td>0.069</td>
</tr>
</tbody>
</table>
Figure 5.62 Comparison of UHS ground motions for the Centralia site based on the four separate subduction GMMs for the subduction seismic sources at the 500-year-return-period hazard level.

Figure 5.63 Comparison of UHS ground motions for the Centralia site based on the four separate subduction GMMs for the subduction seismic sources at the 1000-year-return-period hazard level.
Figure 5.64 Comparison of UHS ground motions for the Centralia site based on the four separate subduction GMMs for the subduction seismic sources at the 2475-year-return-period hazard level.

Figure 5.65 Comparison of UHS ground motions for the Centralia site based on the four separate subduction GMMs for the subduction seismic sources at the 5000-year-return-period hazard level.
Figure 5.66 **Comparison of UHS ground motions for the Centralia site based on the four separate subduction GMMs for the subduction seismic sources at the 10,000 year return period hazard level.**

The binned deaggregation results are summarized in Figure 5.67 through Figure 5.76 for the four subduction GMMs and for the return periods of 500 and 2475 years. For the Centralia site, the distribution is more bi-modal than for the Seattle site, with a limited contribution from the crustal sources for the 500-year and short-period cases. For the other spectral periods and the 2475-year cases, the distribution is controlled by the slab and interface sources. Overall, the comparison across the four GMM cases is in agreement with similar controlling magnitude and distance bins.

Following the same approach for the Seattle site, an additional set of PSHA calculations is performed to isolate the impact of the median ground-motion estimate differences between the four subduction GMMs for the Centralia site. For these calculations, the aleatory sigma model from the BCH model is applied with the median ground-motion estimates from the other three GMMs. Given this approach, the observed differences are fully attributable to the differences in the median ground-motion estimates. The resulting UHS ground motions are listed in Table 5.14 through Table 5.16 for the three GMMs (note that the base case UHS ground-motion results based on the BCH model are listed in Table 5.10). Overall, the observed differences are approximately similar (i.e., KBCG) or less (i.e., BCHU and PSHAB) for the three models than those observed using both the median and aleatory sigma adjustments from the three subduction GMMs. The average reduction in ground motions for the BCHU and KBCG models is about 9% and 16%, respectively. The PSHAB model shows an observed average increase of about 1%, with the largest increase—approximately 25%—occurring for the $T = 0.2$ sec spectral periods based on the slab model differences and the largest reduction of about 25% at $T = 5.0$ sec spectral period based on the interface model differences. The comparisons of the ground-motion values are plotted in Figure 5.77 through Figure 5.81.
Figure 5.67 Binned deaggregation results for the Centralia site at the 500-year return-period level for PGA ($T = 0.01$ sec) for the BCH (upper left), BCHU (upper right), KBCG (lower left), and PSHAB (lower right) models.

Figure 5.68 Binned deaggregation results for the Centralia site at the 500 year return period level for $T = 0.2$ sec for the BCH (upper left), BCHU (upper right), KBCG (lower left), and PSHAB (lower right) models.
Figure 5.69 Binned deaggregation results for the Centralia site at the 500-year-return-period level for $T = 1.0$ sec for the BCH (upper left), BCHU (upper right), KBCG (lower left), and PSHAB (lower right) models.

Figure 5.70 Binned deaggregation results for the Centralia site at the 500-year-return-period level for $T = 3.0$ sec for the BCH (upper left), BCHU (upper right), KBCG (lower left), and PSHAB (lower right) models.
Figure 5.71 Binned deaggregation results for the Centralia site at the 500-year-return-period level for $T = 5.0$ sec for the BCH (upper left), BCHU (upper right), KBCG (lower left), and PSHAB (lower right) models.

Figure 5.72 Binned deaggregation results for the Centralia site at the 2475-year-return-period level for PGA ($T = 0.01$ sec) for the BCH (upper left), BCHU (upper right), KBCG (lower left), and PSHAB (lower right) models.
Figure 5.73 Binned deaggregation results for the Centralia site at the 2475-year-return-period level for $T = 0.2$ sec for the BCH (upper left), BCHU (upper right), KBCG (lower left), and PSHAB (lower right) models.

Figure 5.74 Binned deaggregation results for the Centralia site at the 2475-year-return-period level for $T = 1.0$ sec for the BCH (upper left), BCHU (upper right), KBCG (lower left), and PSHAB (lower right) models.
Figure 5.75 Binned deaggregation results for the Centralia site at the 2475-year-return-period level for $T = 3.0$ sec for the BCH (upper left), BCHU (upper right), KBCG (lower left), and PSHAB (lower right) models.

Figure 5.76 Binned deaggregation results for the Centralia site at the 2475-year-return-period level for $T = 5.0$ sec for the BCH (upper left), BCHU (upper right), KBCG (lower left), and PSHAB (lower right) models.
Table 5.14 Ground motions for the mean total hazard at the Centralia site using the BCHU subduction GMM with BCH aleatory sigma for the subduction seismic sources.

<table>
<thead>
<tr>
<th>Period (sec)</th>
<th>500-year PSA (g)</th>
<th>1000-year PSA (g)</th>
<th>2475-year PSA (g)</th>
<th>5000-year PSA (g)</th>
<th>10,000-year PSA (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGA (0.010)</td>
<td>0.223</td>
<td>0.331</td>
<td>0.523</td>
<td>0.713</td>
<td>0.936</td>
</tr>
<tr>
<td>0.200</td>
<td>0.567</td>
<td>0.851</td>
<td>1.358</td>
<td>1.874</td>
<td>2.469</td>
</tr>
<tr>
<td>1.000</td>
<td>0.141</td>
<td>0.222</td>
<td>0.360</td>
<td>0.502</td>
<td>0.655</td>
</tr>
<tr>
<td>3.000</td>
<td>0.036</td>
<td>0.057</td>
<td>0.094</td>
<td>0.126</td>
<td>0.165</td>
</tr>
<tr>
<td>5.000</td>
<td>0.018</td>
<td>0.029</td>
<td>0.048</td>
<td>0.063</td>
<td>0.083</td>
</tr>
</tbody>
</table>

Table 5.15 Ground motions for the mean total hazard at the Centralia site using the KBCG subduction GMM with BCH aleatory sigma for the subduction seismic sources.

<table>
<thead>
<tr>
<th>Period (sec)</th>
<th>500-year PSA (g)</th>
<th>1000-year PSA (g)</th>
<th>2475-year PSA (g)</th>
<th>5000-year PSA (g)</th>
<th>10,000-year PSA (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGA (0.010)</td>
<td>0.219</td>
<td>0.308</td>
<td>0.450</td>
<td>0.586</td>
<td>0.748</td>
</tr>
<tr>
<td>0.200</td>
<td>0.493</td>
<td>0.694</td>
<td>1.029</td>
<td>1.342</td>
<td>1.710</td>
</tr>
<tr>
<td>1.000</td>
<td>0.138</td>
<td>0.205</td>
<td>0.315</td>
<td>0.418</td>
<td>0.544</td>
</tr>
<tr>
<td>3.000</td>
<td>0.037</td>
<td>0.058</td>
<td>0.094</td>
<td>0.126</td>
<td>0.165</td>
</tr>
<tr>
<td>5.000</td>
<td>0.019</td>
<td>0.031</td>
<td>0.052</td>
<td>0.069</td>
<td>0.092</td>
</tr>
</tbody>
</table>

Table 5.16 Ground motions for the mean total hazard at the Centralia site using the PSHAB subduction GMM with BCH aleatory sigma for the subduction seismic sources.

<table>
<thead>
<tr>
<th>Period (sec)</th>
<th>500-year PSA (g)</th>
<th>1000-year PSA (g)</th>
<th>2475-year PSA (g)</th>
<th>5000-year PSA (g)</th>
<th>10,000-year PSA (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGA (0.010)</td>
<td>0.318</td>
<td>0.445</td>
<td>0.651</td>
<td>0.847</td>
<td>1.068</td>
</tr>
<tr>
<td>0.200</td>
<td>0.798</td>
<td>1.118</td>
<td>1.639</td>
<td>2.120</td>
<td>2.664</td>
</tr>
<tr>
<td>1.000</td>
<td>0.200</td>
<td>0.287</td>
<td>0.426</td>
<td>0.563</td>
<td>0.722</td>
</tr>
<tr>
<td>3.000</td>
<td>0.037</td>
<td>0.054</td>
<td>0.082</td>
<td>0.111</td>
<td>0.142</td>
</tr>
<tr>
<td>5.000</td>
<td>0.017</td>
<td>0.025</td>
<td>0.040</td>
<td>0.054</td>
<td>0.069</td>
</tr>
</tbody>
</table>
Figure 5.77 Comparison of UHS ground motions for the Centralia site based on the four separate subduction GMMs, with the BCH aleatory sigma model for the subduction seismic sources at the 500-year-return-period hazard level.

Figure 5.78 Comparison of UHS ground motions for the Centralia site based on the four separate subduction GMMs, with the BCH aleatory sigma model for the subduction seismic sources at the 1000-year-return-period hazard level.
Figure 5.79 Comparison of UHS ground motions for the Centralia site based on the four separate subduction GMMs, with the BCH aleatory sigma model for the subduction seismic sources at the 2475-year-return-period hazard level.

Figure 5.80 Comparison of UHS ground motions for the Centralia site based on the four separate subduction GMMs for the subduction seismic sources at the 5000-year-return-period hazard level.
Figure 5.81 Comparison of UHS ground motions for the Centralia site based on the four separate subduction GMMs, with the BCH aleatory sigma model for the subduction seismic sources at the 10,000-year-return-period hazard level.
6 Summary

Currently three new subduction GMMs have been developed as part of the NGA-Sub program. These new GMMs are based on the NGA-Sub dataset [Bozorgnia and Stewart 2020], which represents a significant increase in the amount of empirical subduction ground-motion data. Two of the models, KBCG and PSHAB, have global and regionalized versions based on the regional datasets contained in the larger NGA-Sub database. The third newly developed model, SMK, is based on data from Japan and as such is applicable for seismic hazard studies for sites in Japan.

To assist with the understanding of these new models and their comparisons to previously published GMMs, this report shows various comparisons of the models. These comparisons are primarily in the form of attenuation curves and spectral response comparisons for a select set of scenario events. As noted in the report, these selected scenario events are not meant to capture the full range of the models or their expected implementation, but rather provide a small sample of representative scenario cases with a focus on the events controlling hazard in the Pacific Northwest region. Additional plots and the digital values for the attenuation curves and response spectra presented in this report are provided as part of the electronic supplement for this report; see Appendix A.

In addition to these attenuation curves and spectra comparisons, separate comparisons are provided for specific features contained in these models. Specifically, comparisons are provided for magnitude scaling, source depth and basin response.

In reviewing the various comparisons, observed differences are noted between the new GMMs and the previous published GMMs across different subduction source types (i.e., interface and slab events), magnitude, distance, site conditions, basin conditions, and spectral periods. Differences are also observed between the different aleatory models from the new and previous GMMs. Overall, the KBCG and PSHAB models estimate similar ground motions for the global cases (e.g., Figure 3.33 and Figure 3.34 for interface events and Figure 3.91 and Figure 3.92 for slab cases). For certain regionalized cases, such as Japan, the comparisons show a larger variation between the models along with the SMK model (see Figure 3.41 and Figure 3.42 for interface and Figure 3.99 and Figure 3.100 for slab) than observed for the global cases.

Two example sites are presented in the report for an example PSHA calculation. These sites—located in the state of Washington in the Pacific Northwest—highlight the potential impact of these new NGA-Sub GMMs. Given that the SMK model is developed for Japan, it was not included in these PSHA calculations.

Based on these limited comparisons and noted observations, it is expected that the implementation of these newly developed NGA-Sub GMMs will be supported by the types of comparisons presented in this report. For specific applications, additional comparison may and should be performed allowing for technical justifications for the implementation of these new
models, including for the development of logic-tree weights. It is also expected in the future that additional NGA-Sub GMMs will be released, and these comparisons can be updated to include those new models in the future.
REFERENCES

Ji C., Archuleta R. (2018). Scaling of PGA and PGV deduced from numerical simulations of intraslab earthquakes, Department of Earth Science, University of California, Santa Barbara, CA.

APPENDIX A Description of Electronic Supplement Excel files for Digital GMM Values and Additional Comparison Plots

Several comparison plots are presented in the report for attenuation curves and spectra. These plots are separated based on interface and slab events and as well for global and regional versions of the models. For the interface cases, the comparisons are plotted for M8 events and for the slab cases only the M7 cases are plotted. As noted in the main report, the additional two magnitude values for both cases and all digital values are provided in the supplement electronic files associated with this report. This appendix presents the specific files and their format that contain these additional plots and digital values.

The electronic files provided as an electronic supplement for this report are separated into two folders: Interface and Slab. Within these folders, a similar sub-folder structure and file nomenclature is presented. The file and folder structure is:

Interface Cases – Attenuation Curves
- Interface\Attenuation\Interface-Atten-Global-Rev001.xlsx
- Interface\Attenuation\Interface-Atten-Alaska-Rev001.xlsx
- Interface\Attenuation\Interface-Atten-CA&M-Rev001.xlsx
- Interface\Attenuation\Interface-Atten-Cascadia-Rev001.xlsx
- Interface\Attenuation\Interface-Atten-Japan-Rev001.xlsx
- Interface\Attenuation\Interface-Atten-NewZealand-Rev001.xlsx
- Interface\Attenuation\Interface-Atten-SA-Rev001.xlsx
- Interface\Attenuation\Interface-Atten-Taiwan-Rev001.xlsx

Interface Cases – Spectra
- Interface\Attenuation\Interface-Spectra-Global-Rev001.xlsx
- Interface\Attenuation\Interface-Spectra-Alaska-Rev001.xlsx
- Interface\Attenuation\Interface-Spectra-CA&M-Rev001.xlsx
- Interface\Attenuation\Interface-Spectra-Cascadia-Rev001.xlsx
- Interface\Attenuation\Interface-Spectra-Japan-Rev001.xlsx
- Interface\Attenuation\Interface-Spectra-NewZealand-Rev001.xlsx
- Interface\Attenuation\Interface-Spectra-SA-Rev001.xlsx
- Interface\Attenuation\Interface-Spectra-Taiwan-Rev001.xlsx
The regional versions of the comparisons are differentiated in the filename. Within each of these files there are several data pages, summary data pages (indicated with blue tabs), a plot summary sheet (green tab), and numerous comparison plots. The specific models and plots are indicated on the abbreviated tabs names for each data sheet and chart plot.
PEER reports are available as a free PDF download from https://peer.berkeley.edu/peer-reports. In addition, printed hard copies of PEER reports can be ordered directly from our printer by following the instructions at https://peer.berkeley.edu/peer-reports. For other related questions about the PEER Report Series, contact the Pacific Earthquake Engineering Research Center, 325 Davis Hall, Mail Code 1792, Berkeley, CA 94720. Tel.: (510) 642-3437; and Email: peer_center@berkeley.edu.

PEER 2020/02 Data Resources for NGA-Subduction Project. Yousef Bozorgnia (PI) and Jonathan P. Stewart (Editor). March 2020.

|-------------|--|
PEER REPORTS: ONE HUNDRED SERIES

PEER 2010/102 Analysis of Cumulative Absolute Velocity (CAV) and JMA Instrumental Seismic Intensity (I_12) Using the PEER–NGA Strong Motion Database. Kenneth W. Campbell and Yousef Bozorgnia. February 2010.

The Pacific Earthquake Engineering Research Center (PEER) is a multi-institutional research and education center with headquarters at the University of California, Berkeley. Investigators from over 20 universities, several consulting companies, and researchers at various state and federal government agencies contribute to research programs focused on performance-based earthquake engineering.

These research programs aim to identify and reduce the risks from major earthquakes to life safety and to the economy by including research in a wide variety of disciplines including structural and geotechnical engineering, geology/seismology, lifelines, transportation, architecture, economics, risk management, and public policy.

PEER is supported by federal, state, local, and regional agencies, together with industry partners.

PEER Core Institutions

University of California, Berkeley (Lead Institution)
California Institute of Technology
Oregon State University
Stanford University
University of California, Davis
University of California, Irvine
University of California, Los Angeles
University of California, San Diego
University of Nevada, Reno
University of Southern California
University of Washington

PEER reports can be ordered at https://peer.berkeley.edu/peer-reports or by contacting

Pacific Earthquake Engineering Research Center
University of California, Berkeley
325 Davis Hall, Mail Code 1792
Berkeley, CA 94720-1792
Tel: 510-642-3437
Email: peer_center@berkeley.edu

ISSN 2770-8314
https://doi.org/10.55461/UBDV7944