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ABSTRACT 

Ground-motion models (GMMs) for subduction earthquakes recently developed as part of the 
NGA-Subduction (NGA-Sub) project are compared in this report. The three models presented in 
this comparison report are documented in their respective PEER reports. Two of the models are 
developed for a global version and as well regionalized models. The third model is developed 
based on earthquakes contain in the NGA-Sub dataset only from Japan and as such is applicable 
for Japan. As part of the comparisons presented in this report, deterministic calculations are 
provided for the global and regional cases amongst the models. The digital values and additional 
plots from these deterministic comparisons are provided as part of the electronic supplement for 
this report. In addition, ground-motion estimates are provided for currently published subduction 
GMMs. Two example probabilistic seismic hazard analysis calculations are also presented for two 
sites located in the Pacific Northwest Region in the state of Washington. Based on the limited 
comparisons presented in this report, a general understanding of these new GMMs can be 
appreciated with the expectation that the implementation for a specific seismic hazard study should 
incorporate similar and additional comparisons and sensitivity studies similar to the ones presented 
in this report. 
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1 Overview 

The Next generation attenuation (NGA) research program for subduction earthquakes (NGA- 
Sub) is the latest component of the NGA research series. NGA-Sub is a large multidisciplinary 
and multi-researcher research initiative to develop a comprehensive ground-motion database 
and multiple ground-motion models (GMMs) for subduction earthquakes. In the NGA-Sub 
project, a database of ground-motions recorded in worldwide subduction events [Bozorgnia 
and Stewart 2020] is developed. This database includes the processed recordings and 
supporting source, path, and site metadata from Japan, Taiwan, the U.S. Pacific Northwest, 
Alaska, Mexico and Central America, South America, and New Zealand. The NGA-Sub 
database includes 1570 events with moment magnitudes ranging from 4.0 to 9.1. The 
subduction events are classified as interface, intraslab, or outer-rise events. The NGA-Sub 
ground-motion database has over 210,000 individual ground-motion components. This is by 
far the largest ground-motion database that we have developed in any NGA project. Multiple 
GMMs have been developed by NGA-Sub developer teams using this empirical ground-motion 
database and supporting ground-motion simulations. 

This report discusses and compares the currently developed NGA-Sub GMMs from 
three developer teams. Additional GMMs are expected to be developed from other developer 
teams, and the digital files provided with this report will allow for the inclusion of these 
additional models in the future. The current comparisons will be presented in the form of 
attenuation curves and response spectra for selected scenario cases. Note that only a selected 
subset of the full suite of comparison plots are presented in this report with the additional plots 
in the associated electronic documents; see Appendix A for the full description of the files. 
Given the wide range of applicability of the GMMs, a complete and exhaustive set of scenario 
cases would not be practical. However, the selected scenario cases are based on commonly 
determined controlling scenario cases in seismic hazard analyses, especially for sites located 
in the Pacific Northwest. It is recommended that prior to implementing and using these new 
NGA-Sub GMMs for a seismic hazard study, an assessment of their relative comparison and 
predictive features should be performed by the user, in addition to the comparisons presented 
in this report. 

As part of the comparisons of the three new NGA-Sub models and their features, 
comparisons will also be provided relative to currently published and commonly used 
subduction GMMs. Similar to selection of a limited number of scenario cases, this comparison 
of the three new models with current models is not meant to be a complete comparison of all 
currently available subduction models. Rather it is a comparison with those models that have 
been considered in the USGS National Seismic Hazard Map [Petersen et al. 2014; 2020] and 
are commonly used in seismic hazard studies. More information about other models not 
selected for the comparison can be reviewed from the global database of GMMs maintained by 
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J. Douglas (http://www.gmpe.org.uk). In addition to the comparisons of median ground motion 
estimates, a summary comparison of the aleatory sigma models will be presented. 

Given the importance of these new GMMs for application to the Pacific Northwest 
region, an example PSHA calculation is performed for two representative sites. These sites 
were selected based on their relative contribution from the deeper slab events and the Cascadia 
interface source in the region. The USGS [2014] seismic-source model is used for the PSHA, 
and sensitivity calculations are presented based on the previously published GMMs and the 
newly developed GMMs. These results illustrate the differences in the median predictions as 
well as the differences in the aleatory sigma models from the different GMMs. 

The development and larger presentation of each of the three GMMs are provided in 
the individual PEER report from each developer team [Kuehn et al. 2020; Parker et al. 2020; 
and Si et al. 2020]. As such, this report will focus on the comparison of the results between the 
models and not discuss the technical decisions and choices used by the individual developer 
teams for the development of each model. For those decisions, the reader is referred to the 
individual PEER reports for each model. 
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2 GMM Regionalization and Applicability 

Each developer team was provided the NGA-Sub database [Bozorgnia and Stewart 2020] from 
which their GMM would be developed. The selection criteria for the culling of the full database 
is presented for each developer team in their respective PEER reports. The NGA-Sub models 
presented in this comparison report are from the following three developer teams: 

 Kuehn, N., Bozorgnia, Y., Campbell, K. and Gregor, N.  [KBCG] 

 Parker, G., Stewart, J., Hassani, B., Atkinson, G. and Boore, D. [PSHAB] 

 Si, H., Midorikawa, S., and Kishida, T.    [SMK] 

The acronym for each of the three models is indicated in the brackets and will be used 
throughout this report to identify the three models. The full PEER report for the three developer 
teams are Kuehn et al. [2020], Parker et al. [2020], and Si et al. [2020]. 

Given the global distribution of empirical data from subduction earthquakes in the 
NGA-Sub database, two of the developer teams (KBCG and PSHAB) have developed a global 
as well as regionalized GMMs. Overall, the same functional form is used for both the global 
and regional versions of the models, with the difference being a regionalization in the constant, 
site response amplification scaling and linear attenuation coefficients. In addition, for these two 
models the magnitude-scaling break point is variable based on the subduction zone within a 
given region. These magnitude-scaling break points are based on the studies by Ji and 
Archuleta [2018] for slab events and Campbell [2020] for interface events. The SMK model is 
developed only from Japanese data and is therefore a model developed specifically for 
application for Japan. 

Based on the station metadata information from sites located in Japan and the Pacific 
Northwest (i.e., Cascadia), all three models include a basin-amplification component. For 
KBCG and PSHAB, this component is further differentiated into sites located within and 
outside of the Seattle Basin, and is dependent on the depth to the 2.5 km/sec shear-wave 
velocity boundary (Z2.5). Similarly, all three models parameterize the basin amplification for 
Japan based on the Z2.5 values. 

Table 2.1 provides a summary of the applicable range in magnitude, distance, and VS30 
values for each of the three models. The use of these models outside of these defined 
applicability ranges should be performed with caution and—at a minimum—an analyses for 
the behavior of the models should be performed prior to the application of these models outside 
of their recommended applicable range. The regional versions of the KBCG and PSHAB 
models are listed in Table 2.2 along with the magnitude-scaling break points. Both models are 
defined for the same regions except that the PSHAB model does not have a New Zealand 
regional model whereas the KBCG model does. Note that the functional parameterization 
between the KBCG and PSHAB models are different; however, the overall feature of a change 
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in magnitude scaling below and above the magnitude-scaling break points is a common feature 
of both models. For the SMK model, the magnitude scaling in Japan changes above M8.3. 
Comparisons will be presented later in this report showing the differences in the magnitude-
scaling break points. 

The parameterization and functional model development for each of the three GMMs 
is presented in the associated PEER reports for each model [Kuehn et al. 2020; Parker et al. 
2020; and Si et al. 2020]. Table 2.3 summarizes the model parameters used in each of the three 
models. 

 

Table 2.1 Model applicability of the three GMMs for magnitude, distance, 
and VS30. 

 KBCG PSHAB SMK 

Magnitude 5 < M <9.5 (interface) 

5 < M < 8.5 (slab) 

4.5 < M <9.5 (interface) 

4.5 < M < 8.5 (slab) 

5.5 < M <9.1 (interface) 

5.6 < M <8.3 (slab) 

Distance 

(km) 

10 < Rrup < 1000 20 < Rrup < 1000 (interface) 

35 < Rrup < 1000 (slab) 

14 < Rrup < 300 (interface) 

18 < Rrup < 300 (slab) 

VS30 (m/sec) 150 < VS30 < 1500 150 < VS30 < 2,000 100 < VS30 < 1,900 

Source depth 

(km) 

Ztor < 50 (interface) 

Ztor < 200 (slab)1 

Zhyp < 40 (interface) 

0 < Zhyp < 200 (sab) 

4 < focal depth < 50 (interface) 

18 < focal depth < 100 (slab) 

Region Global and region Global and region Japan 

1 For Columbia, Ztor < 150 km for slab events. 

Table 2.2 Regionalized models and magnitude-scaling break point values. 

Region KBCG/interface KBCG/slab PSHAB/interface PSHAB/slab 

Global 7.9 7.6 7.9 7.6 

Alaska 8.6 7.2 8.6 7.2 

Alaska - Aleutian 8.0 8.0 8.0 7.98 

Cascadia 8.0 7.2 7.7 7.2 

Northern Central America 
and Mexico 

7.4 7.4 7.4 7.4 

Southern Central America 
and Mexico 

7.5 7.6 7.4 7.6 

Japan – Pacific Plate 8.5 7.6 8.5 7.65 

Japan – Philippine Plate 7.7 7.6 7.7 7.55 

Northern South America 8.5 7.3 8.5 7.3 

Southern South America 8.6 7.2 8.6 7.25 

Taiwan 7.1 7.7 7.1 7.7 

New Zealand 8.3 7.6 --- --- 
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The parameterization and functional model development for each of the three GMMs 
is presented in the associated PEER reports for each model [Kuehn et al. 2020; Parker et al. 
2020; and Si et al. 2020]. Table 2.3 summarizes the model parameters used in each of the three 
models. 

 

Table 2.3 Functional model parameters used for the three NGA-Sub GMMs. 

Parameter KBCG PSHAB SMK 

Moment magnitude M M M 

Closest distance to rupture 
plane (km) 

Rrup Rrup Rrup 

Depth to top of rupture (km) Ztor --- --- 

Hypocentral depth (km) --- 
Zhyp

1 

(only Slab) 
D 

Moho depth (km) --- --- Moho depth 

Average shear-wave velocity in 
top 30 m (m/sec) 

VS30 VS30 VS30 

Depth to 2.5 km/sec boundary 
(km) 

Z2.5 

(only for Cascadia 
and Japan Basins) 

Z2.5 

(only for Cascadia 
and Japan Basins) 

Z2.5 

(only for Japan 
Basins) 

Depth to 1.0 km/sec boundary 
(km) 

Z1.0 

(only for Taiwan and 
New Zealand Basins) 

--- --- 

Interface/slab classification 0 = interface/1 = slab 0 = interface/1 = slab 0 = interface/1 = slab 

Magnitude-scaling break point (see Table 2.2) (see Table 2.2) 8.3 
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3 Median Value Comparisons 

This section presents the comparison of the median value estimates from the three NGA-Sub 
GMMs. Comparisons will be made for the two global models (KBCG and PSHAB) compared 
to other previous subduction GMMs and the individual regionalized models from the two new 
models, noting that the SMK model is only defined for Japan. Comparisons will be presented 
for attenuation curves, magnitude-scaling, depth to top of rupture, and basin amplifications. 
For all comparisons except the basin amplifications, these comparisons will be separated based 
on interface and slab events. Note that the basin-amplification effects are independent of the 
type of subduction earthquake. For both the attenuation curves and spectra, comparison plots 
will be presented for two VS30 values of 760 m/sec and 400 m/sec. The first value is 
representative of the common reference condition corresponding to NEHRP B/C boundary site 
conditions. The second and lower value is more consistent with soft-rock site conditions. 

For the global comparisons, the following published models are presented: 

 Atkinson and Boore [2003; 2008] (AB08) 

 Atkinson and Macias [2009] (AM09)  

 Zhao et al. [2006] (Zea06)  

 Zhao et al. [2016a, b] (Zea16) 

 BCHydro [Abrahamson et al. 2016] (BCH)  

 BCHydro Update for USGS [Abrahamson et al. 2018] (BCHU) 

The AM09 model was developed for Cascadia interface events only and is defined for 
a VS30 of 760 m/sec. Based on these limitations, the AM09 model is only compared for interface 
events with VS30 of 760 m/sec. For the AB08 model, the site conditions are defined based on 
NEHRP categories [Building Seismic Safety Council 2009] and for the VS30 of 760 m/sec, the 
average of NHERP B and C site conditions for which ground motions are computed. For the 
lower VS30 value of 400 m/sec, the AB08 ground motions are presented for NHERP C site 
conditions. Both the Zea06 and Zea16 are also defined based on a binned site classification. 
For the VS30 value of 760 m/sec, the average of the ground motions from the hard soil and rock-
site conditions is computed; for the VS30 value of 400 m/sec, the hard-soil site conditions is 
selected for the comparisons. Both the BCH and BCHU models are defined as a continuous 
function of VS30 values. 

The AB08 model was developed as a global model with two additional regionalized 
versions, specifically for Cascadia and Japan. Since these previously published models 
presented in this report are compared with global versions of the new models, the comparison 
with AB08 is based on the global version of that model. Although the AM09 model was 
developed specifically for Cascadia events, it is compared to the global version of the two new 
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NGA-Sub models. The Zea06 and Zea16 are both based on predominately Japanese data; 
however, because the application of these models has typically been applied globally, the 
comparisons will be presented with the global models. 

The BCH global model is presented in the comparisons. For the attenuation curve plots, 
only the forearc ground motions are computed even though for the larger distances up to 1000 
km one would expect that the sites would be located in the backarc region. Finally, the BCHU 
model was developed specifically for application by the USGS for Cascadia earthquakes rather 
than a global application. Similar to the inclusion of the AM09 model with the global models, 
the BCHU model is also included in the global-model comparisons. For both the BCH and 
BCHU models, the upper and lower versions of these models to account for epistemic 
uncertainty are also included in the comparison figures. 

As noted earlier, the comparisons presented in this report (i.e., both in the report and as 
well in the associated electronic files) do not fully span the wide range of applicable 
comparisons. However, through the observations and understanding of these new NGA-Sub 
GMMs and with any additional comparison studies, it is anticipated that the evaluation and 
application of these new models can be technically informed. 

3.1 INTERFACE EVENTS 

For the interface event comparisons, the selected input parameters are listed in Table 3.1. 
Results are calculated for magnitudes 7, 8, and 9 and for distances of 10–1000 km for the 
attenuation curves and two specific distances of 75 and 200 km for the response spectra. Two 
VS30 values of 760 and 400 m/sec are selected along with the previously described site 
classifications for the older GMMs. A separate section will be presented for the basin-
amplification results from the models and all other comparisons are for non-basin sites. 

Table 3.1 Input parameters for interface global GMM comparisons. 

Parameter KBCG PSHAB SMK 

Moment magnitude 7, 8, and 9 7, 8, and 9 7, 8, and 9 

Closest distance torupture plane (km) 

10.0–1000.01 

75.02 

200.02 

10.0–1000.01 

75.02 

200.02 

10.0–1000.01 

75.02 

200.02 

Depth to top of rupture (km) 10.0 --- --- 

Hypocentral depth (km) --- --- 20.0 

Moho depth (km) --- --- 30.0 

Average shear-wave velocity in top 30 m 
(m/sec) 

760.0 

400.0 

760.0 

400.0 

760.0 

400.0 

Depth to 2.5 km/sec boundary (km) --- --- --- 

Depth to 1.0 km/sec boundary (km) --- --- --- 

Interface/slab classification 0 = interface 0 = Interface 0 = Interface 

Magnitude-scaling break point 7.9 (Global) 7.9 (Global) 8.3 

1 Distance range for attenuation curve plots. 
2 Distance values for spectra plots. 
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3.1.1 Interface Attenuation Curves 

Attenuation curves are compared for both the global versions and regional versions of the 
models. For the global model, the comparisons are presented with the previous suite of 
subduction GMMs. For the regional models, the comparison is presented between the global 
version and regional version of only the NGA-Sub GMMs. Attenuation curves are computed 
for spectral periods of 0.01 (i.e., to represent an approximate PGA), 0.2, 1, 3, and 5 sec. 
Representative attenuation curve plots for the M8 case for PGA (T = 0.01 sec), 0.2, 1.0, and 
3.0 sec spectral periods are plotted in Figure 3.1 to Figure 3.32. The full suite of attenuation 
curves (i.e., both digital data and plots) are contained in the associated electronic files; see 
Appendix A. 

In general, there is good agreement between the new NGA-Sub GMMs and the previous 
models for distances in the 100–200 km range. At shorter and longer distances, however, the 
dispersion of the models increases. These observations are not unexpected given the different 
datasets used in each GMM development as well the range of focus and applicability of each 
model. For example, calculating ground motions for distances out to 1000 km is beyond the 
applicable range of previous models (e.g., AB08). At these large distances, it would be 
expected that the sites would fall into the back-arc category and have lower ground motions 
for the shorter period ground motions and higher ground motions for the longer spectral period 
ground motions (e.g., BCH). 

The regional comparisons for seven regions are plotted in Figure 3.5 through Figure 
3.32. For the Japan region, the KBCG and PSHAB models have a Pacific Plate and Philippine 
Plate model based on the different magnitude-scaling break points associated with these two 
tectonic features (i.e., see Table 2.2). In addition, the SMK model is presented in these 
comparisons for the Japan region. Overall, variations between the global model and the 
individual regional models are noted based on the differences in the regional features of each 
model (e.g., constant, magnitude-scaling break point, site response, and anelastic attenuation). 

  



 

10 

 

 

Figure 3.1 Comparison of global M8 (interface) for PGA (T = 0.01 sec) (top) and 
0.2 sec (bottom) attenuation curves for VS30 = 760 m/sec. 
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Figure 3.2 Comparison of global M8 (interface) for 1.0 (top) and 3.0 sec (bottom) 
attenuation curves for VS30 = 760 m/sec. 
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Figure 3.3 Comparison of global M8 (interface) for PGA (T = 0.01 sec) (top) and 
0.2 sec (bottom) attenuation curves for VS30 = 400 m/sec. 
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Figure 3.4 Comparison of global M8 (interface) for 1.0 (top) and 3.0 sec (bottom) 
attenuation curves for VS30 = 400 m/sec. 
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Figure 3.5 Comparison of Alaska regional M8 (interface) for PGA (T = 0.01 sec) 
(top) and 0.2 sec (bottom) attenuation curves for VS30 = 760 m/sec. 
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Figure 3.6 Comparison of Alaska regional M8 (interface) for 1.0 (top) and 3.0 sec 
(bottom) attenuation curves for VS30 = 760 m/sec. 
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Figure 3.7 Comparison of Alaska regional M8 (interface) for PGA (T = 0.01 sec) 
(top) and 0.2 sec (bottom) attenuation curves for VS30 = 400 m/sec. 
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Figure 3.8 Comparison of Alaska regional M8 (interface) for 1.0 (top) and 3.0 sec 
(bottom) attenuation curves for VS30 = 400 m/sec. 
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Figure 3.9 Comparison of Cascadia regional M8 (interface) for PGA (T = 0.01 sec) 
(top) and 0.2 sec (bottom) attenuation curves for VS30 = 760 m/sec. 
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Figure 3.10 Comparison of Cascadia regional M8 (interface) for 1.0 (top) and 3.0 
sec (bottom) attenuation curves for VS30 = 760 m/sec. 
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Figure 3.11 Comparison of Cascadia regional M8 (interface) for PGA (T = 0.01 sec) 
(top) and 0.2 sec (bottom) attenuation curves for VS30 = 400 m/sec. 
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Figure 3.12 Comparison of Cascadia regional M8 (interface) for 1.0 (top) and 3.0 
sec (bottom) attenuation curves for VS30 = 400 m/sec. 
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Figure 3.13 Comparison of Central America and Mexico regional M8 (interface) for 
PGA (T = 0.01 sec) (top) and 0.2 sec (bottom) attenuation curves for 
VS30 = 760 m/sec. 
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Figure 3.14 Comparison of Central America and Mexico regional M8 (interface) for 
1.0 (top) and 3.0 sec (bottom) attenuation curves for VS30 = 760 m/sec. 
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Figure 3.15 Comparison of Central America and Mexico regional M8 (interface) for 
PGA (T = 0.01 sec) (top) and 0.2 sec (bottom) attenuation curves for 
VS30 = 400 m/sec. 
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Figure 3.16 Comparison of Central America and Mexico regional M8 (interface) for 
1.0 (top) and 3.0 sec (bottom) attenuation curves for VS30 = 400 m/sec. 
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Figure 3.17 Comparison of Japan regional M8 for (interface) PGA (T = 0.01 sec) 
(top) and 0.2 sec (bottom) attenuation curves for VS30 = 760 m/sec. 
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Figure 3.18 Comparison of Japan regional M8 (interface) for 1.0 (top) and 3.0 sec 
(bottom) attenuation curves for VS30 = 760 m/sec. 
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Figure 3.19 Comparison of Japan regional M8 (interface) for PGA (T = 0.01 sec) 
(top) and 0.2 sec (bottom) attenuation curves for VS30 = 400 m/sec. 



 

29 

 

 

Figure 3.20 Comparison of Japan regional M8 (interface) for 1.0 (top) and 3.0 sec 
(bottom) attenuation curves for VS30 = 400 m/sec. 
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Figure 3.21 Comparison of South America regional M8 (interface) for PGA (T = 
0.01 sec) (top) and 0.2 sec (bottom) attenuation curves for VS30 = 760 
m/sec. 
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Figure 3.22 Comparison of South America regional M8 (interface) for 1.0 (top) and 
3.0 sec (bottom) attenuation curves for VS30 = 760 m/sec. 
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Figure 3.23 Comparison of South America regional M8 (interface) for PGA (T = 
0.01 sec) (top) and 0.2 sec (bottom) attenuation curves for VS30 = 400 
m/sec. 
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Figure 3.24 Comparison of South America regional M8 (interface) for 1.0 (top) and 
3.0 sec (bottom) attenuation curves for VS30 = 400 m/sec. 
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Figure 3.25 Comparison of Taiwan regional M8 (interface) for PGA (T = 0.01 sec) 
(top) and 0.2 sec (bottom) attenuation curves for VS30 = 760 m/sec. 
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Figure 3.26 Comparison of Taiwan regional M8 (interface) for 1.0 (top) and 3.0 sec 
(bottom) attenuation curves for VS30 = 760 m/sec. 
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Figure 3.27 Comparison of Taiwan regional M8 (interface) for PGA (T = 0.01 sec) 
(top) and 0.2 sec (bottom) attenuation curves for VS30 = 400 m/sec. 
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Figure 3.28 Comparison of Taiwan regional M8 (interface) for 1.0 (top) and 3.0 sec 
(bottom) attenuation curves for VS30 = 400 m/sec. 
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Figure 3.29 Comparison of New Zealand regional M8 (interface) for PGA (T = 0.01 
sec) (top) and 0.2 sec (bottom) attenuation curves for VS30 = 760 m/sec. 
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Figure 3.30 Comparison of New Zealand regional M8 (interface) for 1.0 (top) and 
3.0 sec (bottom) attenuation curves for VS30 = 760 m/sec. 
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Figure 3.31 Comparison of New Zealand regional M8 (interface) for PGA (T = 0.01 
sec) (top) and 0.2 sec (bottom) attenuation curves for VS30 = 400 m/sec. 
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Figure 3.32 Comparison of New Zealand regional M8 (interface) for 1.0 (top) and 
3.0 sec (bottom) attenuation curves for VS30 = 400 m/sec. 
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3.1.2 Interface Spectra 

Interface event spectra are computed for magnitudes 7, 8, and 9 at two distances of 75 and 200 
km; see Table 3.1. Ground motions are computed for the full spectral period range of 0.01 to 
10 sec for the two selected VS30 values of 760 and 400 m/sec. For the global case, the computed 
spectra from the NGA-Sub GMMs are compared with the previously developed GMMs. For 
each of the individual regional cases, the comparison is presented between the NGA-Sub GMM 
global model and the specific regional models. Representative spectra plots for the M8 case 
for both distances of 75 and 200 km are plotted in Figure 3.33 to Figure 3.48. The full suite of 
spectra plots (i.e., both digital data and plots) are contained in the associated electronic files; 
see Appendix A. 

In general, similar results are observed with the spectra comparisons as is noted for the 
attenuation curves. For the two NGA-Sub GMM global models, there are similar ground-
motion spectra for the selected cases especially when compared to the previous GMMs, which 
show a larger distribution of ground-motion values. In comparing the regional models with the 
global models, the results for Alaska, South America, and Taiwan show the largest change 
from the global models. 
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Figure 3.33 Comparison of global M8 (interface) for distances of 75 km (top) and 
200 km (bottom) spectra for VS30 = 760 m/sec. 
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Figure 3.34 Comparison of global M8 (interface) for distances of 75 km (top) and 
200 km (bottom) spectra for VS30 = 400 m/sec. 
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Figure 3.35 Comparison of Alaska regional M8 (interface) for distances of 75 km 
(top) and 200 km (bottom) spectra for VS30 = 760 m/sec. 
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Figure 3.36 Comparison of Alaska regional M8 (interface) for distances of 75 km 
(top) and 200 km (bottom) spectra for VS30 = 400 m/sec. 
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Figure 3.37 Comparison of Cascadia regional M8 (interface) for distances of 75 km 
(top) and 200 km (bottom) spectra for VS30 = 760 m/sec. 
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Figure 3.38 Comparison of Cascadia regional M8 (interface) for distances of 75 km 
(top) and 200 km (bottom) spectra for VS30 = 400 m/sec. 
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Figure 3.39 Comparison of Central America and Mexico regional M8 (interface) for 
distances of 75 km (top) and 200 km (bottom) spectra for VS30 = 760 
m/sec. 
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Figure 3.40 Comparison of Central America and Mexico regional M8 (interface) for 
distances of 75 km (top) and 200 km (bottom) spectra for VS30 = 400 
m/sec. 
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Figure 3.41 Comparison of Japan regional M8 (interface) for distances of 75 km 
(top) and 200 km (bottom) spectra for VS30 = 760 m/sec. 
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Figure 3.42 Comparison of Japan regional M8 (interface) for distances of 75 km 
(top) and 200 km (bottom) spectra for VS30 = 400 m/sec. 
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Figure 3.43 Comparison of South America regional M8 (interface) for distances of 
75 km (top) and 200 km (bottom) spectra for VS30 = 760 m/sec. 
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Figure 3.44 Comparison of South America regional M8 (interface) for distances of 
75 km (top) and 200 km (bottom) spectra for VS30 = 400 m/sec. 
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Figure 3.45 Comparison of Taiwan regional M8 (interface) for distances of 75 km 
(top) and 200 km (bottom) spectra for VS30 = 760 m/sec. 
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Figure 3.46 Comparison of Taiwan regional M8 (interface) for distances of 75 km 
(top) and 200 km (bottom) spectra for VS30 = 400 m/sec. 
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Figure 3.47 Comparison of New Zealand regional M8 (interface) for distances of 75 
km (top) and 200 km (bottom) spectra for VS30 = 760 m/sec. 
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Figure 3.48 Comparison of New Zealand regional M8 (interface) for distances of 75 
km (top) and 200 km (bottom) spectra for VS30 = 400 m/sec. 
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3.1.3 Interface Magnitude Scaling 

A common feature in all three of the NGA-Sub GMMs is the change in magnitude scaling at 
the magnitude-scaling break points listed in Table 2.2. This magnitude-scaling change is also 
a feature of previous GMMs—including the BCH and BCHU models—and is also modeled in 
crustal GMMs (e.g., see Gregor et al. [2014]). Although the magnitude-scaling break point is 
based on a single magnitude value, the impact on the calculated ground motions depends on 
spectral period. Both the KBCG and PSHAB model assign a global magnitude-scaling break 
point of 7.9 although the functional formulation within each model is different. 

Comparisons of the median ground motions from an interface earthquake at a distance 
of 75 km for a VS30 value of 760 m/sec are plotted in Figure 3.49 to Figure 3.53 for PGA (T = 
0.01 sec) and spectral periods of 0.2, 1.0, 3.0, and 5.0 sec. The results from the KBCG and 
PSHAB model are for the global version of their models. The SMK results are also included in 
these comparison figures along with the results from the suite of previously developed GMMs. 

In general, there is relative agreement between the results from the three NGA-Sub 
GMMs and the other published models with a few noted exceptions. Both the AM09 and AB09 
models fall outside of the range of the other models for the smaller magnitude and shorter 
spectral periods (i.e., 1.0 sec and less). It should be noted that these smaller magnitude values 
are outside of the range of applicability for these models based on their respective datasets used 
in their development. For the longer spectral periods (e.g., 3.0 and 5.0 sec), the AB08 is more 
consistent with the other GMMs even at the lower magnitude range. The AM09 model has a 
more similar shape in the magnitude scaling for these longer spectral periods, but it is also 
offset from the other models, which can be related to other parts of the model. 

For the large magnitude values exceeding the magnitude-scaling break point, the AB08 
and SMK models predict complete saturation (i.e., constant ground motion values for 
increasing magnitudes). For the SMK model, this is true for the short spectral periods (i.e., 1.0 
sec and less) but for the longer spectral period, the SMK model predicts an increase in the 
ground motions as a function of these larger magnitude values. 
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Figure 3.49 Comparison of PGA magnitude scaling for interface events at a 
distance of 75 km for VS30 = 760 m/sec. 

 

Figure 3.50 Comparison of T = 0.2 sec spectral acceleration magnitude scaling for 
interface events at a distance of 75 km for VS30 = 760 m/sec. 
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Figure 3.51 Comparison of T = 1.0 sec spectral acceleration magnitude scaling for 
interface events at a distance of 75 km for VS30 = 760 m/sec. 

 

Figure 3.52 Comparison of T = 3.0 sec spectral acceleration magnitude scaling for 
interface events at a distance of 75 km for VS30 = 760 m/sec. 
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Figure 3.53 Comparison of T = 5.0 sec spectral acceleration magnitude scaling for 
interface events at a distance of 75 km for VS30 = 760 m/sec. 

3.1.4 Interface Depth Dependence 

For interface events only the KBCG model includes a depth to the top of rupture (Ztor) term. 
Note that both the KBCG and PSHAB model as well as previous models include a Ztor term for 
slab events. This aspect of the KBCG model shows a strong period dependence, with the shorter 
spectral periods showing a larger increase in ground motions with increasing Ztor values. A 
comparison with the KBCG global model and the other models is provided in Figure 3.54 
through Figure 3.58 for PGA (T = 0.01 sec), 0.2, 1.0, 3.0, and 5.0 sec. These results are for a 
M8 interface earthquake at a distance of 75 km, with a VS30 value of 760 m/sec. For the low 
and intermediate spectral period cases of PGA (T = 0.01 sec) and 0.2 sec, the Ztor scaling 
associated with the KBCG model is strong, leading to relatively low ground-motion estimates 
for the shallowest Ztor values starting at 5 km and high ground-motion values for the deeper Ztor 
values up to 40 km when compared to the other models, which are not dependent on Ztor. At 
the longer spectral periods, the Ztor dependency is reduced, and the estimated ground motions 
from the KBCG model are within the range of ground motions estimated from the other models. 
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Figure 3.54 Comparison of PGA (T = 0.01 sec) Ztor scaling for a M8 interface event 
at a distance of 75 km for VS30 = 760 m/sec. 

 

Figure 3.55 Comparison of T = 0.2 sec Ztor scaling for a M8 interface event at a 
distance of 75 km for VS30 = 760 m/sec. 
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Figure 3.56 Comparison of T = 1.0 sec Ztor scaling for a M8 interface event at a 
distance of 75 km for VS30 = 760 m/sec. 

 

Figure 3.57 Comparison of T = 3.0 sec Ztor scaling for a M8 interface event at a 
distance of 75 km for VS30 = 760 m/sec. 
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Figure 3.58 Comparison of T = 5.0 sec Ztor scaling for a M8 interface event at a 
distance of 75 km for VS30 = 760 m/sec. 

 

3.2 SLAB EVENTS 

For the slab event comparisons, the selected input parameters are listed in Table 3.2. Results 
are calculated for magnitudes 6, 7, and 8 and for distances of 50–1000 km for the attenuation 
curves and distances of 75 and 200 km for the spectra. Distances smaller than 50 km are not 
considered geometrically acceptable, with the depth of the slab source being a minimum of 50 
km. Two VS30 values of 760 and 400 m/sec are selected along with the previously described 
site classifications for the other older GMMs. A separate section will be presented for the basin-
amplification results from the models and all other comparisons are for non-basin sites. 
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Table 3.2 Input parameters for slab global GMM comparisons. 

Parameter KBCG PSHAB SMK 

Moment magnitude 6, 7, and 8 6, 7, and 8 6, 7, and 8 

Closest distance to rupture 
plane (km) 

50.0–1000.01 

75.02 

200.02 

50.0–1000.01 

75.02 

200.02 

50.0–1000.01 

75.02 

200.02 

Depth to top of rupture (km) 50.0 --- --- 

Hypocentral depth (km) --- 

50.0 (M6.0) 

60.0 (M7.0) 

70.0 (M8.0) 

50.0 (M6.0) 

60.0 (M7.0) 

70.0 (M8.0) 

Moho depth (km) --- --- 30.0 

Average shear-wave velocity in 
top 30 m (m/sec) 

760.0 

400.0 

760.0 

400.0 

760.0 

400.0 

Depth to 2.5 km/sec boundary 
(km) 

--- --- --- 

Depth to 1.0 km/sec boundary 
(km) 

--- 
 

--- 

 

--- 

Interface/slab classification 1 = slab 1 = slab 1 = slab 

Magnitude-scaling break point 7.6 (global) 7.6 (global) 8.3 

1 Distance range for attenuation curve plots. 
2 Distance values for spectra plots. 

 

3.2.1 Slab Attenuation Curves 

Attenuation curves are compared for both the global versions and regional versions of the 
models. For the global model, the comparisons are presented with the previous suite of 
subduction GMMs. For the regional models, the comparison is presented between the global 
version and regional version of only the NGA-Sub GMMs. Attenuation curves are computed 
for PGA (T = 0.01 sec) and spectral periods of 0.2, 1.0, 3.0, and 5.0 sec. Representative 
attenuation curve plots for the M7 case for PGA (T = 0.01 sec), 0.2, 1.0, and 3.0 sec spectral 
periods are plotted in Figure 3.59 to Figure 3.90. The full suite of attenuation curves (i.e., both 
digital data and plots) are contained in the associated electronic files; see Appendix A. 

Based on the comparisons presented in these figures, both the KBCG and PSHAB 
global models are relatively similar and consistent with the other previous models for distances 
less than about 200 km. The one exception to this is observed for the BCHU model, which is 
offset and lower than the suite of GMMs for the shorter spectral period cases. At the longer 
spectral periods, this model is more consistent with the other GMMs. It should again be noted 
that the BCHU model is an update to the BCH model with specific application for Cascadia; 
hence, the comparison with other global models such as the KBCG and PSHAB models is not 
direct. It is also observed that for the Cascadia regional model, the KBCG model estimates 
ground motions that are lower than the global model for these low spectral periods and are 
more consistent with the BCHU model. The PSHAB Cascadia regional model has the opposite 
effect in estimating slightly larger ground motions for shorter distances. Given the stronger 
regional attenuation for the Cascadia region, the ground motions are lower than the global 
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estimates at longer distances. The global and Cascadia region-specific comparisons for the 
KBCG and PSHAB models are provided in Figure 3.67 through Figure 3.70. 

Another observation for these slab attenuation curves is the more rapid attenuation for 
the AB08, BCH, BCHU, and SMK models for distances greater than about 200–300 km. This 
observed increase in the attenuation rate impacts the intermediate to shorter spectral periods 
(i.e., 1.0 sec and less) for the AB08 model, the longer spectral periods (i.e., 1.0 sec and longer) 
for the BCH model, and across all spectral periods for the BCHU and SMK models. The faster 
attenuation rate for the SMK model is shown in Figure 3.75 through Figure 3.78, which 
compares the SMK model, the global, and two Japan region-specific estimates to the KBCG 
and PSHAB models. Given the recommended applicability of the SMK model (see Table 2.1) 
of distances less than 300 km and the selection of the database for only these shorter distances 
used in its development, the attenuation curves shown in the comparison figures are based on 
the extrapolation of the model and may not be well constrained for these larger distances, 
especially when compared to the other models that did include more distant data in their 
development. 
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Figure 3.59 Comparison of global M7 (slab) for PGA (T = 0.01 sec) (top) and 0.2 
sec (bottom) attenuation curves for VS30 = 760 m/sec. 
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Figure 3.60 Comparison of global M7 (slab) for 1.0 (top) and 3.0 sec (bottom) 
attenuation curves for VS30 = 760 m/sec. 
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Figure 3.61 Comparison of global M7 (slab) for PGA (T = 0.01 sec) (top) and 0.2 
sec (bottom) attenuation curves for VS30 = 400 m/sec. 
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Figure 3.62 Comparison of global M7 (slab) for 1.0 (top) and 3.0 sec (bottom) 
attenuation curves for VS30 = 400 m/sec. 
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Figure 3.63 Comparison of Alaska regional M7 (slab) for PGA (T = 0.01 sec) (top) 
and 0.2 sec (bottom) attenuation curves for VS30 = 760 m/sec. 
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Figure 3.64 Comparison of Alaska regional M7 (slab) for 1.0 (top) and 3.0 sec 
(bottom) attenuation curves for VS30 = 760 m/sec. 
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Figure 3.65 Comparison of Alaska regional M7 (slab) for PGA (T = 0.01 sec) (top) 
and 0.2 sec (bottom) attenuation curves for VS30 = 400 m/sec. 
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Figure 3.66 Comparison of Alaska regional M7 (slab) for 1.0 (top) and 3.0 sec 
(bottom) attenuation curves for VS30 = 400 m/sec. 
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Figure 3.67 Comparison of Cascadia regional M7 (slab) for PGA (T = 0.01 sec) 
(top) and 0.2 sec (bottom) attenuation curves for VS30 = 760 m/sec. 
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Figure 3.68 Comparison of Cascadia regional M7 (slab) for 1.0 (top) and 3.0 sec 
(bottom) attenuation curves for VS30 = 760 m/sec. 



 

78 

 

 

Figure 3.69 Comparison of Cascadia regional M7 (slab) for PGA (T = 0.01 sec) 
(top) and 0.2 sec (bottom) attenuation curves for VS30 = 400 m/sec. 
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Figure 3.70 Comparison of Cascadia regional M7 (slab) for 1.0 (top) and 3.0 sec 
(bottom) attenuation curves for VS30 = 400 m/sec. 
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Figure 3.71 Comparison of Central America and Mexico regional M7 (slab) for PGA 
(T = 0.01 sec) (top) and 0.2 sec (bottom) attenuation curves for VS30 = 
760 m/sec. 
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Figure 3.72 Comparison of Central America and Mexico regional M7 (slab) for 1.0 
(top) and 3.0 sec (bottom) attenuation curves for VS30 = 760 m/sec. 
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Figure 3.73 Comparison of Central America and Mexico regional M7 (slab) for PGA 
(T = 0.01 sec) (top) and 0.2 sec (bottom) attenuation curves for VS30 = 
400 m/sec. 
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Figure 3.74 Comparison of Central America and Mexico regional M7 (slab) for 1.0 
(top) and 3.0 sec (bottom) attenuation curves for VS30 = 400 m/sec. 
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Figure 3.75 Comparison of Japan regional M7 (slab) for PGA (T = 0.01 sec) (top) 
and 0.2 sec (bottom) attenuation curves for VS30 = 760 m/sec. 
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Figure 3.76 Comparison of Japan regional M7 (slab) for 1.0 (top) and 3.0 sec 
(bottom) attenuation curves for VS30 = 760 m/sec. 



 

86 

 

 

Figure 3.77 Comparison of Japan regional M7 (slab) for PGA (T = 0.01 sec) (top) 
and 0.2 sec (bottom) attenuation curves for VS30 = 400 m/sec. 
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Figure 3.78 Comparison of Japan regional M7 (slab) for 1.0 (top) and 3.0 sec 
(bottom) attenuation curves for VS30 = 400 m/sec. 
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Figure 3.79 Comparison of South America regional M7 (slab) for PGA (T = 0.01 
sec) (top) and 0.2 sec (bottom) attenuation curves for VS30 = 760 m/sec. 
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Figure 3.80 Comparison of South America regional M7 (slab) for 1.0 (top) and 3.0 
sec (bottom) attenuation curves for VS30 = 760 m/sec. 
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Figure 3.81 Comparison of South America regional M7 (slab) for PGA (T = 0.01 
sec) (top) and 0.2 sec (bottom) attenuation curves for VS30 = 400 m/sec. 
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Figure 3.82 Comparison of South America regional M7 (slab) for 1.0 (top) and 3.0 
sec (bottom) attenuation curves for VS30 = 400 m/sec. 
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Figure 3.83 Comparison of Taiwan regional M7 (slab) for PGA (T = 0.01 sec) (top) 
and 0.2 sec (bottom) attenuation curves for VS30 = 760 m/sec. 
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Figure 3.84 Comparison of Taiwan regional M7 (slab) for 1.0 (top) and 3.0 sec 
(bottom) attenuation curves for VS30 = 760 m/sec. 
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Figure 3.85 Comparison of Taiwan regional M7 (slab) for PGA (T = 0.01 sec) (top) 
and 0.2 sec (bottom) attenuation curves for VS30 = 400 m/sec. 
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Figure 3.86 Comparison of Taiwan regional M7 (slab) for 1.0 (top) and 3.0 sec 
(bottom) attenuation curves for VS30 = 400 m/sec. 
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Figure 3.87 Comparison of New Zealand regional M7 (slab) for PGA (T = 0.01 sec) 
(top) and 0.2 sec (bottom) attenuation curves for VS30 = 760 m/sec. 
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Figure 3.88 Comparison of New Zealand regional M7 for 1.0 (top) and 3.0 sec 
(bottom) attenuation curves for VS30 = 760 m/sec. 
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Figure 3.89 Comparison of New Zealand regional M7 (slab) for PGA (T = 0.01 sec) 
(top) and 0.2 sec (bottom) attenuation curves for VS30 = 400 m/sec. 
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Figure 3.90 Comparison of New Zealand regional M7 (slab) for 1.0 (top) and 3.0 
sec (bottom) attenuation curves for VS30 = 400 m/sec. 
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3.2.2 Slab Spectra 

Slab event response spectra are computed for magnitudes 6, 7, and 8 at two distances of 75 and 
200 km; see Table 3.2. Ground motions are computed for the full spectral period range of 0.01 
to 10 sec for the two selected VS30 values of 760 and 400 m/sec. For the global case, the 
computed spectra from the NGA-Sub GMMs are compared with the previously developed 
GMMs. For each of the individual regional cases, the comparison is presented between the 
NGA-Sub GMM global model and the specific regional models. Representative spectra plots 
for the M7 case for both distances of 75 and 200 km are plotted in Figure 3.91 to Figure 3.106. 
The full suite of spectra plots (i.e., both digital data and plots) are contained in the associated 
electronic files; see Appendix A. 

Overall, the comparison between the KBCG and PSHAB global models indicate similar 
ground motions from the two models. For comparison with the other previous GMMs, the 
BCHU and AB08 models tend to estimate lower ground motions than the other models, 
including the KBCG and PSHAB global models in the intermediate and lower spectral period 
range. The agreement between all models improves in the longer spectral period range. 

As noted in the attenuation plots, the regional comparisons for Cascadia (see Figure 
3.95 and Figure 3.96) indicate a reduction in the KBCG model. This reduction for the KBCG 
is observed for spectral periods of less than about 1.0 sec. For longer spectral periods, the 
Cascadia regional model is consistent with the KBCG global model. For the PSHAB model, 
the spectra are slightly higher at the shorter 75 km distance case and similar for the 200 km 
distance case between the global model and Cascadia model for the M7 events plotted in the 
comparisons. For the smaller M6 provided in the electronic files, the Cascadia spectra is larger 
than the global model at both distances, with the opposite effect for the M8 case (i.e., 
approximately equal or smaller Cascadia ground motions than the global estimates). 

For the Japan region comparisons (see Figure 3.99 and Figure 3.100), the SMK model 
is only slightly lower or approximately equal to the other GMMs; however, as observed in the 
comparison of the attenuation curves, the SMK model would be expected to estimate lower 
ground motions for distances greater than the 200 km shown in the spectra comparisons. 
Additional regional differences are noted in the various comparisons between the global and 
regional versions of the KBCG and PSHAB models. 
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Figure 3.91 Comparison of global M7 (slab) for distances of 75 km (top) and 200 
km (bottom) spectra for VS30 = 760 m/sec. 
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Figure 3.92 Comparison of global M7 (slab) for distances of 75 km (top) and 200 
km (bottom) spectra for VS30 = 400 m/sec. 
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Figure 3.93 Comparison of Alaska regional M7 (slab) for distances of 75 km (top) 
and 200 km (bottom) spectra for VS30 = 760 m/sec. 
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Figure 3.94 Comparison of Alaska regional M7 (slab) for distances of 75 km (top) 
and 200 km (bottom) spectra for VS30 = 400 m/sec. 
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Figure 3.95 Comparison of Cascadia regional M7 (slab) for distances of 75 km 
(top) and 200 km (bottom) spectra for VS30 = 760 m/sec. 
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Figure 3.96 Comparison of Cascadia regional M7 (slab) for distances of 75 km 
(top) and 200 km (bottom) spectra for VS30 = 400 m/sec. 
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Figure 3.97 Comparison of Central America and Mexico regional M7 (slab) for 
distances of 75 km (top) and 200 km (bottom) spectra for VS30 = 760 
m/sec. 
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Figure 3.98 Comparison of Central America and Mexico regional M7 (slab) for 
distances of 75 km (top) and 200 km (bottom) spectra for VS30 = 400 
m/sec. 
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Figure 3.99 Comparison of Japan regional M7 (slab) for distances of 75 km (top) 
and 200 km (bottom) spectra for VS30 = 760 m/sec. 
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Figure 3.100 Comparison of Japan regional M7 (slab) for distances of 75 km (top) 
and 200 km (bottom) spectra for VS30 = 400 m/sec. 
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Figure 3.101 Comparison of South America regional M7 (slab) for distances of 75 
km (top) and 200 km (bottom) spectra for VS30 = 760 m/sec. 
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Figure 3.102 Comparison of South America regional M7 (slab) for distances of 75 
km (top) and 200 km (bottom) spectra for VS30 = 400 m/sec. 
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Figure 3.103 Comparison of Taiwan regional M7 (slab) for distances of 75 km (top) 
and 200 km (bottom) spectra for VS30 = 760 m/sec. 
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Figure 3.104 Comparison of Taiwan regional M7 (slab) for distances of 75 km (top) 
and 200 km (bottom) spectra for VS30 = 400 m/sec. 
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Figure 3.105 Comparison of New Zealand regional M7 (slab) for distances of 75 km 
(top) and 200 km (bottom) spectra for VS30 = 760 m/sec. 



 

116 

 

 

Figure 3.106 Comparison of New Zealand regional M7 (slab) for distances of 75 km 
(top) and 200 km (bottom) spectra for VS30 = 400 m/sec. 
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3.2.3 Slab Magnitude Scaling 

Similar to the interface versions of the GMMs, all three of the NGA-Sub GMMs have a 
magnitude breakpoint where there is a change in the slab magnitude scaling; see Table 2.2. 
Although the magnitude-scaling breakpoint is based on a single magnitude value, the impact 
on the calculated ground motions is spectral period dependent. Both the KBCG and PSHAB 
models assign a global slab magnitude-scaling breakpoint of 7.6 although the functional 
formulation within each model is different. 

Comparisons of the median ground motions from a slab earthquake at a distance of 75 
km for a VS30 value of 760 m/sec are plotted in Figure 3.107 through Figure 3.111 for PGA (T 
= 0.01 sec) and spectral periods of 0.2, 1.0, 3.0, and 5.0 sec. The results from the KBCG and 
PSHAB models are for the global version of their models. The SMK results are also included 
in these comparison figures, along with the results from the suite of previously developed 
GMMs. 

With a few noted exceptions, there is relative agreement between the results from the 
three NGA-Sub GMMs and the other published models. The models have a wider distribution 
for the smaller and largest magnitude values, which would be expected based on the limited 
distribution of data contained and used in the individual model development for these 
magnitude ranges. The BCHU model shows a lower magnitude-scaling dependency than the 
other models across all spectral periods, which leads to lower estimated ground motions for the 
larger magnitude cases. The AB08 model is modeled with complete saturation for slab events 
for earthquake with M8 and larger, which is similar to the complete saturation for the interface 
events for this GMM. The SMK model, however, does not completely saturate for the largest 
magnitude slab events unlike for the interface events. The SMK model does show a change in 
the magnitude scaling that is consistent with the other GMMs. 
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Figure 3.107 Comparison of PGA magnitude scaling for slab events at a distance of 
75 km for VS30 = 760 m/sec. 

 

Figure 3.108 Comparison of T = 0.2 sec spectral acceleration magnitude scaling for 
slab events at a distance of 75 km for VS30 = 760 m/sec. 
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Figure 3.109 Comparison of T = 1.0 sec spectral acceleration magnitude scaling for 
slab events at a distance of 75 km for VS30 = 760 m/sec. 

 

Figure 3.110 Comparison of T = 3.0 sec spectral acceleration magnitude scaling for 
slab events at a distance of 75 km for VS30 = 760 m/sec. 
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Figure 3.111 Comparison of T = 5.0 sec spectral acceleration magnitude scaling for 
slab events at a distance of 75 km for VS30 = 760 m/sec. 

 

3.2.4 Slab Depth Dependence 

The depth dependence of slab ground motions has been previously observed to be a strong 
feature of deeper slab earthquakes [Abrahamson et al. 2016]. This is captured in the three NGA-
Sub GMMs and as well in the previous GMMs evaluated in these comparisons. The comparison 
of the estimated ground motions from the global KBCG and PSHAB models, and the SMK 
model and other GMMs are provided in Figure 3.112 through Figure 3.116. These ground-
motion curves are plotted as a function of Ztor for slab earthquakes at a distance of 75 km and 
with a VS30 value of 760 m/sec. For these comparisons, the Ztor for the KBCG model and the 
hypocentral depth for the PSHAB model were assumed to be equal. For the three NGA-Sub 
GMMs, this depth dependence is spectral period dependent with a stronger impact at the shorter 
to intermediate spectral periods compared to the longer spectral periods. For the KBCG and 
PSHAB models, saturation is observed for the depths greater than about 65 km for spectral 
periods of 1.0 sec and less. For the longer spectral periods, this depth dependency is observed 
to be approximately constant over the range of depth values. 
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Figure 3.112 Comparison of PGA (T = 0.01 sec) Ztor scaling for a M7 slab event at a 
distance of 75 km for VS30 = 760 m/sec. 

 

Figure 3.113 Comparison of T = 0.2 sec Ztor scaling for a M7 slab event at a distance 
of 75 km for VS30 = 760 m/sec. 
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Figure 3.114 Comparison of T = 1.0 sec Ztor scaling for a M7 slab event at a distance 
of 75 km for VS30 = 760 m/sec. 

 

Figure 3.115 Comparison of T = 3.0 sec Ztor scaling for a M7 slab event at a distance 
of 75 km for VS30 = 760 m/sec. 
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Figure 3.116 Comparison of T = 5.0 sec Ztor scaling for a M7 slab event at a distance 
of 75 km for VS30 = 760 m/sec. 

 

3.3 BASIN AMPLIFICATION 

In addition to the site response model contained in each of the NGA-Sub GMMs, an additional 
term is included for the deeper structure associated with sedimentary basins. All three models 
include this feature for Japan and both the KBCG and PSAHB models for sites located in 
Cascadia. The KBCG model also includes a term for basins in New Zealand and Taiwan. These 
basin-amplification functions are independent of the earthquake type and would apply to both 
interface and slab events for a given region. 

For sites in Japan, the basin amplification is dependent on the Z2.5 depth. For the SMK 
model, this basin amplification is a linear function of Z2.5, whereas for the KBCG and PSHAB 
models, the functional form is centered based on the difference between the site-specific Z2.5 
value and the median predicted Z2.5 value given the VS30 value and the empirical relationship 
developed from the database. These specific Z2.5 and VS30 empirical relationships for the 
different regions and GMMs are presented in the separate PEER report for each model. The 
same centering approach is applied for sites in the Pacific Northwest for both the KBCG and 
PSHAB models. Note that since the SMK model is only developed from Japanese data, it is 
not applicable for sites in the Pacific Northwest. The empirical relationships from the two 
NGA-Sub models for Japan and Cascadia are plotted in Figure 3.117. The two models are very 
similar for Japan but show a large difference for Cascadia, especially in the higher VS30 range. 
These differing results are attributable to the large dispersion in the empirical data from sites 
in the Pacific Northwest region. 
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Figure 3.117 Empirical relationships between VS30 and Z2.5 for Japan and Cascadia 
from the KBCG and PSHAB models. 

 

For the Cascadia region, both the KBCG and PSHAB further differentiate the basin 
response as being located within the Seattle basin, within other basins in the region (e.g., 
Tacoma), or for the PSHAB model, being located outside of a basin but in Cascadia with the 
amplification based on the Z2.5 relationship. The centering relationships plotted in Figure 3.117 
are the same for all of these additional cases, but the specific basin-amplification response is 
varied depending on the specific basin location. For a VS30 value of 600 m/sec, the median Z2.5 
values are 0.20 km and 1.28 km from the KBCG and PSHAB models, respectively. 

As an example, a series of comparisons plots are provided in Figure 3.118 through 
Figure 3.121 for a M8 interface earthquake at a distance of 100 km with a VS30 value of 600 
m/sec. These plots are for the spectral ratio of the acceleration response spectra from the 
defined Z2.5 value divided by the ground motions from the median Z2.5 value. Thus, a ratio of 
unity would be computed for a defined Z2.5 of 0.20 km for the KBCG model and 1.28 km for 
the PSHAB model. 

The results for the KBCG model are presented for both Seattle basin sites (dashed blue 
lines) and non-Seattle basin sites (solid blue lines). This model has an additional constraint in 
that any basin-amplification factors for non-Seattle basin sites cannot exceed the factors from 
the Seattle basin sites, which are independent of the Z2.5 term. For this reason, the non-Seattle 
basin-amplification ratios are equal to the Seattle amplification ratios for those longer spectral 
periods for Z2.5 greater than 1 km. 

The results or the PSHAB model show similar basin-amplification factors for the 
deeper Z2.5 values. For the shallowest Z2.5 value, the PSHAB shows minimal basin 
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amplification for all three potential sites. Also note that for the range of Z2.5 values presented 
in the comparison figures, the basin amplification for sites outside of a basin (solid red line) is 
near unity, especially in the longer spectral period range. Another observation from both 
models is the predicted de-amplification of ground motions for basin sites in the spectral period 
range around 0.1 sec, especially for the larger Z2.5 values. 

Given the potential importance of expected increase in the ground motions response for 
longer spectral periods in the greater Seattle area, a recent basin-amplification adjustment 
function has been adopted by the City of Seattle [SDCI 2018]. This adopted amplification 
function is based on M9 simulation results [Wirth et al. 2018] for a Cascadia interface 
earthquake. The amplification function plotted in Figure 3.121 was developed based on the 
spectral ratio from sites in and around the Seattle area located within the Seattle basin. The 
simulations are based on a VS30 of 600 m/sec, and the computed ratios are for a Z2.5 value of 6 
km for the Seattle basin. Overall, the comparison between the SDCI-recommended 
amplification function [2018] and the two results from NGA-Sub model is favorable, with the 
noted observation that the SDCI [2018] factors envelope the NGA-Sub model factors. 

 

 

Figure 3.118 Basin amplification factors for Cascadia from a M8 interface event at a 
distance of 100 km and with VS30 = 600 m/sec and Z2.5 value of 1 km. 
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Figure 3.119 Basin amplification factors for Cascadia from a M8 interface event at a 
distance of 100 km and with VS30 = 600 m/sec and Z2.5 value of 3 km. 

 

Figure 3.120 Basin amplification factors for Cascadia from a M8 interface event at a 
distance of 100 km and with VS30 = 600 m/sec and Z2.5 value of 5 km. 
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Figure 3.121 Basin amplification factors for Cascadia from a M8 interface event at a 
distance of 100 km and with VS30 = 600 m/sec and Z2.5 value of 6 km. 

For Japan, comparisons are presented for all three NGA-Sub models given a M8 
interface event at a distance of 100 km with an assigned VS30 value of 400 m/sec. The median 
Z2.5 values are 0.259 km and 0.272 km from the KBCG and PSHAB models, respectively. For 
the SMK model, a reference Z2.5 value of 0.28 km was selected for the spectral ratio. Spectral 
ratio values are plotted in Figure 3.122 through Figure 3.125. For the lowest Z2.5 value, the 
models predict a de-amplification in the ground motions for intermediate to long spectral 
periods. As the Z2.5 value increases, however, the models predict amplification from this basin 
modeling function for the intermediate to longer spectral periods. 
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Figure 3.122 Basin-amplification factors for Japan from a M8 interface event at a 
distance of 100 km with VS30 = 400 m/sec and Z2.5 value of 0.1 km. 

 

Figure 3.123 Basin-amplification factors for Japan from a M8 interface event at a 
distance of 100 km with VS30 = 400 m/sec and Z2.5 value of 0.2 km. 
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Figure 3.124 Basin-amplification factors for Japan from a M8 interface event at a 
distance of 100 km with VS30 = 400 m/sec and Z2.5 value of 0.4 km. 

 

Figure 3.125 Basin-amplification factors for Japan from a M8 interface event at a 
distance of 100 km with VS30 = 400 m/sec and Z2.5 value of 0.5 km. 
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For the KBCG mode, the basin-amplification model for Taiwan and New Zealand is 
defined in terms of the Z1.0 value. The empirical median estimates given a VS30 value are shown 
in Figure 3.126 for the two regions of New Zealand and Taiwan. For a VS30 value of 400 m/sec, 
the median Z1.0 values are 0.072 km and 0.097 km for New Zealand and Taiwan, respectively. 
Based on these Z1.0 values, the comparison of spectral ratio values for a M8 interface 
earthquake at a distance of 100 km with a VS30 value of 400 m/sec are presented in Figure 3.127 
to Figure 3.129 for New Zealand and Figure 3.130 to Figure 3.132 for Taiwan. For New 
Zealand, the model predicts de-amplification for spectral periods less than 0.8 sec and 
amplification for the longer spectral periods. For Taiwan, the KBCG model predicts 
amplification across all spectral periods with an increase in the longer spectral period range. 

 

 

Figure 3.126 Empirical relationships between VS30 and Z1.0 for Taiwan and New 
Zealand from the KBCG model. 
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Figure 3.127 Basin-amplification factors for New Zealand from a M8 interface event 
at a distance of 100 km and with VS30 = 400 m/sec and Z1.0 value of 0.3 
km. 

 

Figure 3.128 Basin-amplification factors for New Zealand from a M8 interface event 
at a distance of 100 km and with VS30 = 400 m/sec and Z1.0 value of 0.5 
km. 
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Figure 3.129 Basin-amplification factors for New Zealand from a M8 interface event 
at a distance of 100 km and with VS30 = 400 m/sec and Z1.0 value of 0.7 
km. 

 

Figure 3.130 Basin amplification factors for Taiwan from a M8 interface event at a 
distance of 100 km and with VS30 = 400 m/sec and Z1.0 value of 0.3 km. 
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Figure 3.131 Basin-amplification factors for Taiwan from a M8 interface event at a 
distance of 100 km and with VS30 = 400 m/sec and Z1.0 value of 0.5 km. 

 

Figure 3.132 Basin-amplification factors for Taiwan from a M8 interface event at a 
distance of 100 km and with VS30 = 400 m/sec and Z1.0 value of 0.7 km. 
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3.4 EPISTEMIC UNCERTAINTY 

Both the KBCG and PSHAB models provide estimates of the associated epistemic uncertainty 
in the median ground motion. The SMK model does not currently provide such estimates. The 
expanded discussion and details on the epistemic models for the KBCG and PSHAB models 
are contained in their respective reports [Kuehn et al. 2020; Parker et al. 2020]. For the KBCG 
model, the epistemic uncertainty can be estimated from the sample of 800 posterior 
distributions of the model coefficients. These 800 sample cases are provided at each spectral 
period; however, the sampling is not correlated across each spectral period. For a given spectral 
period, the ground motions from the 800 sample coefficients can be computed, ranked, and the 
epistemic uncertainty calculated. In repeating this process for all spectral periods, epistemic 
uncertainty for a given scenario event can be computed. For the PSHAB model, a functional 
model is provided that can be applied to the median ground-motion estimates. For both models, 
the epistemic uncertainties are based on region and earthquake type (i.e., interface or slab), and 
are spectral period dependent. 

As an example, the epistemic uncertainty for interface events in Cascadia from the two 
models is plotted in Figure 3.133. Both models show a larger uncertainty in the short-period 
range relative to the longer spectral periods, with the PSHAB model having higher overall 
epistemic uncertainty. Applying these epistemic models to a M9 Cascadia (no basin) interface 
earthquake at a distance of 75 km with a Ztor value of 10 km and a VS30 value of 760 m/sec, the 
resulting median, epistemic 16th and 84th percentile response spectra are plotted in Figure 3.134. 

In addition to this regional epistemic uncertainty models associated with the KBCG and 
PSHAB models, it is expected that an evaluation of the model-to-model uncertainty will be 
performed upon completion of the other NGA-Sub GMMs. This will allow for the potential 
development of an applicable epistemic model that could be implemented for seismic hazard 
studies that is similar to how the Al Atik and Youngs [2014] model is typically implemented 
for the NGA-West2 GMMs. 
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Figure 3.133 Epistemic uncertainty from the KBCG (blue line) and PSHAB (red line) 
models for interface events in Cascadia. 

 

Figure 3.134 Comparison of median and epistemic 16th and 84th percentile spectra 
for a M9 Cascadia (no basin) interface event at a distance of 75 km 
(Ztor = 10 km) for VS30 = 760 m/sec. 
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4 Aleatory Uncertainty 

The aleatory uncertainty is based on the between-event () and within-event uncertainty () 
following the structure of Al Atik et al. [2010]. Similar to the development of the median 
GMM, each modeler team investigated, evaluated, and developed an aleatory uncertainty 
model based on the between-event and within-event variations. For the KBCG and SMK 
models, these variations are independent of prediction parameters such as distance, magnitude, 
and or site conditions. For the PSHAB model, the within-event model is defined as a function 
of distance and VS30 site conditions. Note that a single-station model is also developed for the 
PSHAB model but is not currently developed for the other two NGA-Sub models. The 
between-event variation is independent of these variables for the PSHAB model, which is 
consistent with the other two models. All three models are equal for both interface and slab 
events and are the same for the global and regionalized models. 

A comparison of the within-event variability models from the three NGA-Sub GMMs 
and the BCH and BCHU models is presented in Figure 4.1. For the PSHAB model, the 
bounding distance and VS30 values outside of which the values are constant are plotted 
individually. For distance and VS30 values between these bounding values, the within-event 
variation would be interpolated consistent with Parker et al. [2020]. For spectral periods of 2 
sec and longer, the variation based on distance and VS30 values is constant, and the four 
bounding results are equal. For shorter spectral periods, the low VS30 values (i.e., less than 200 
m/sec) at distances less than 200 km yields the lowest within-event variation with values 
around 0.5. For distances less than 200 km but larger VS30 values, the within-event variation is 
similar to the results from the other models in addition to both the BCH and BCHU models. 
Finally, for the two cases for the larger distances of 500 km and larger, the results are the 
highest for the PSHAB model and exceed the results from the other models. 

The between-event comparisons are presented in Figure 4.2 for the same set of models. 
Overall, there is good agreement between the KBCG and PSHAB models, and a large variation 
with the SMK model. As was noted earlier, the SMK model is based solely on data from Japan, 
whereas the other two models are based a more global dataset. Also note that BCHU model is 
also based on this larger global dataset, whereas the BCH model was based on a smaller global 
dataset. 

Given these two components of the uncertainty, the total aleatory uncertainty is 
compared in Figure 4.3 for the same suite of models. For the PSHAB model, the combinations 
of the bounding cases are again plotted in the comparison. Focusing on the cases for distances 
less than 200 km and VS30 values in the range of 400–500 m/sec, the aleatory uncertainty noted 
in the KBCG and PSHAB models is observed to be similar. These results are also generally 
similar to the BCHU model results, which are all higher than the BCH model results. The 
results from the SMK model are higher. Note that the final results for BCH and BCHU models 
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presented in the comparison plots are smoothed model values, which will lead to a smoother 
spectrum compared to the other NGA-Sub models when the uncertainty model is applied. 

 

Figure 4.1 Comparison of within-event uncertainty () from the three new NGA-
Sub GMMs and the BCH and BCHU models. 

 

Figure 4.2 Comparison of between-event uncertainty () from the three new NGA-
Sub GMMs and the BCH and BCHU models. 
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Figure 4.3 Comparison of aleatory uncertainty from the three new NGA-Sub 
GMMs and the BCH and BCHU models. 
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5 Example PSHA Calculation 

Given the development of the NGA-Sub GMMs, their implementation can be expected to have 
an impact on the resulting ground motions within a standard PSHA analysis. To illustrate the 
potential impacts given the incorporation of these new models, PSHA calculations are 
performed for two sites in Washington state, in the Pacific Northwest region of the U.S. The 
first site is for a general location in the city of Seattle; the second site is located in the town of 
Centralia. The chosen site latitude and longitude values for these two cities are listed in Table 
5.1. The location of these two sites is also plotted in Figure 5.1. The PSHA results presented 
in this section for these two sites are only meant to illustrate the potential impact from the use 
of these new models. It is expected that as part of the implementation of these new NGA-Sub 
GMMs for either sites in the Pacific Northwest or other global sites, sensitivity studies should 
be conducted to provide technical support for the use of these new models and any associated 
logic-tree weights. 

Results are computed following a standard PSHA methodology [EERI 1989] using the 
seismic-source model from the 2014 USGS national seismic hazard maps for the region 
[Petersen et al. 2014]. This source model consists of crustal faults (e.g., the Seattle fault and 
other regional faults), and both large interface events and deeper slab events associated with 
the Cascadia subduction zone. For the Seattle site, the contribution to the total seismic hazard 
is based on a combination of the local Seattle crustal fault and both the interface and slab events. 
The Centralia site is located closer to the coast; therefore, the influence from the crustal faults 
is diminished, and the relative contribution from the interface events is larger than from the 
deeper slab events. 

For the ground-motion characterization (GMC) model, four separate cases are 
performed: one base case and three separate subduction GMMs. For all crustal seismic sources, 
the suite of five NGA-West2 models are used with the weighting scheme used in the USGS 
[2014] National Seismic Hazard Maps. These weights are listed along with the five models in 
Table 5.2. No additional epistemic model (e.g., Al Atik and Youngs [2014]) is applied to these 
crustal GMMs in the PSHA calculations. The four subduction GMMs that are used in this 
example analyses are the BCH, BCHU, KBCG, and PSHAB models. Since the SMK model is 
developed solely for application in Japan, it was not considered in these example calculations. 

Table 5.1 Locations of sites used in the PSHA analyses. 

City Latitude Longitude 

Seattle 47.60 -122.35 

Centralia 46.72 -122.95 
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Table 5.2 GMC model weights for base case. 

GMM Model Source Type Weight 

Abrahamson et al. [2014] Crustal 0.22 

Boore et al. [2014] Crustal 0.22 

Campbell and Bozorgnia [2014] Crustal 0.22 

Chiou and Youngs [2014] Crustal 0.22 

Idriss [2014] Crustal 0.12 

Abrahamson et al. [2016] (BCH) Subduction 1.0 

 

 

Figure 5.1 Map showing the location of the two site (Seattle and Centralia) used 
in the PSHA calculation along with the crustal faults (red and yellow 
lines) and subducting Cascadia subduction zone plate depth 
contours. 

For the base case example using the BCH model, only the central branch of the model 
is used rather than the full suite of upper and lower branches. For the slab events, however, 
both the global and Cascadia branches of the logic tree with their respective weights of 0.7 and 
0.3 are implemented. All calculations are performed for VS30 value of 760 m/sec. For the KBCG 
and PSHAB models, it is assumed that the sites are not located in a basin. Note that the Seattle 
site is clearly located in the Seattle basin; however, given that the previous BCHU and BCH 
models do not include an adjustment for basin locations, the PSHA calculations are based on 
the site not being located within the Seattle basin. The crustal model default values for Z1.0 and 
Z2.5 given the VS30 value of 760 m/sec are applied for the NGA-West2 models. Note that if the 
example calculations were to be computed for sites located within a basin, the default Z2.5 
values given a VS30 value of 760 m/sec would be different for both the KBCG and PSHAB 
models, and the crustal models and would need to be accounted for within a PSHA calculation. 

*Centralia 
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For each site, hazard curves are computed for PGA (T = 0.01 sec) and spectral periods 
of 0.2, 1.0, 3.0, and 5.0 sec. Comparisons of these hazard curves–separated by source type and 
GMMs–are presented in this report. A minimum magnitude of 5 and a sigma truncation value 
of 6 is implemented for the PSHA calculations. Uniform hazard spectrum (UHS) ground-
motion values are computed for the different GMC cases for return period hazard levels of 500, 
1000, 2475, 5000, and 10,000 years. Finally, comparisons of the deaggregation results for the 
500- and 2475-year-return-period levels are presented for the two sites. 

To further isolate the impact of the new GMMs, an additional set of PSHA calculations 
is performed using the median ground-motion estimates from the BCHU, KBCG, and PSHAB 
models with the aleatory sigma model from the BCH model. Since the sigma models are 
identical, this combination of the median and sigma models allows for the direct comparison 
of the impact on the ground motions from the differences in the median estimates. The results 
from these example PSHA calculations are presented below. 

5.1 SEATTLE SITE EXAMPLE PSHA 

The representative Seattle site is located close to the Seattle fault; see Figure 5.1. For the base 
case (i.e., BCH subduction GMM), the resulting mean annual frequency of exceedance 
(MAFE) hazard curves are plotted in Figure 5.2 through Figure 5.6. In each of these plots, the 
contribution from the seismic sources are separated by the Seattle fault (dotted line), combined 
other crustal faults (long dashed green line), combined background gridded seismicity (short 
dashed line), slab sources (solid blue line), and interface source (solid green line). These plots 
show that the Seattle fault, slab, and interface events all contribute significantly to the total 
hazard, and the specific variation of their contribution is based on the hazard level of interest 
and the spectral period of consideration. For the longer return period hazard levels and longer 
spectral periods, the contribution from the Seattle fault increases. 

Given these base case hazard curves, the same PSHA calculation is performed by 
swapping out the BCH subduction GMM with the BCHU, KBCG, and PSHAB subduction 
GMMs. The same NGA-West2 crustal models are used for these additional example 
calculations. Comparisons are presented in Figure 5.10 through Figure 5.21 for the total hazard 
curve, interface, and slab hazard curves plotted as a function of the different subduction GMMs. 
These figures provide insight on the impact between the different subduction GMMs. The 
largest impact is observed in the differences between the models in the estimation of ground 
motions for slab events. Specifically for the PGA and spectral period cases of 0.2 and 1.0 sec, 
the larger ground motion estimates from the PSHAB model relative to the other models is 
noted, which is the cause of the differences (i.e., larger) results for the total hazard. For the 
longer spectral periods, the differences in the slab ground motions is reduced as well as the 
contribution from the slab sources to the total hazard such that the differences in the resulting 
ground motions is reduced given the different subduction GMMs. 
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Figure 5.2 Total hazard curve (solid red line) and hazard curves differentiated by 
seismic source for the Seattle site for PGA (T = 0.01 sec). 

 

Figure 5.3 Total hazard curve (solid red line) and hazard curves differentiated by 
seismic source for the Seattle site for spectral period of 0.2 sec. 
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Figure 5.4 Total hazard curve (solid red line) and hazard curves differentiated by 
seismic source for the Seattle site for spectral period of 1.0 sec. 

 

Figure 5.5 Total hazard curve (solid red line) and hazard curves differentiated by 
seismic source for the Seattle site for spectral period of 3.0 sec. 
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Figure 5.6 Total hazard curve (solid red line) and hazard curves differentiated by 
seismic source for the Seattle site for spectral period of 5.0 sec. 

 

Figure 5.7 Comparison of the total hazard curve using BCH (solid orange line), 
BCHU (dotted line), KBCG (long dashed blue line), and PSHAB (short 
dashed red line) for the Seattle site for PGA (T = 0.01 sec). 
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Figure 5.8 Comparison of the interface hazard curve using BCH (solid orange 
line), BCHU (dotted line), KBCG (long dashed blue line), and PSHAB 
(short dashed red line) for the Seattle site for PGA (T = 0.01 sec). 

 

Figure 5.9 Comparison of the slab hazard curve using BCH (solid orange line), 
BCHU (dotted line), KBCG (long dashed blue line), and PSHAB (short 
dashed red line) for the Seattle site for PGA (T = 0.01 sec). 
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Figure 5.10 Comparison of the total hazard curve using BCH (solid orange line), 
BCHU (dotted line), KBCG (long dashed blue line), and PSHAB (short 
dashed red line) for the Seattle site for spectral period of T = 0.2 sec. 

 

Figure 5.11 Comparison of the interface hazard curve using BCH (solid orange 
line), BCHU (dotted line), KBCG (long dashed blue line), and PSHAB 
(short dashed red line) for the Seattle site for spectral period of T = 0.2 
sec. 
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Figure 5.12 Comparison of the slab hazard curve using BCH (solid orange line), 
BCHU (dotted line), KBCG (long dashed blue line), and PSHAB (short 
dashed red line) for the Seattle site for spectral period of T = 0.2 sec. 

 

Figure 5.13 Comparison of the total hazard curve using BCH (solid orange line), 
BCHU (dotted line), KBCG (long dashed blue line), and PSHAB (short 
dashed red line) for the Seattle site for spectral period of T = 1.0 sec. 
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Figure 5.14 Comparison of the interface hazard curve using BCH (solid orange 
line), BCHU (dotted line), KBCG (long dashed blue line), and PSHAB 
(short dashed red line) for the Seattle site for spectral period of T = 1.0 
sec. 

 

Figure 5.15 Comparison of the slab hazard curve using BCH (solid orange line), 
BCHU (dotted line), KBCG (long dashed blue line), and PSHAB (short 
dashed red line) for the Seattle site for spectral period of T = 1.0 sec. 
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Figure 5.16 Comparison of the total hazard curve using BCH (solid orange line), 
BCHU (dotted line), KBCG (long dashed blue line), and PSHAB (short 
dashed red line) for the Seattle site for spectral period of T = 3.0 sec. 

 

Figure 5.17 Comparison of the interface hazard curve using BCH (solid orange 
line), BCHU (dotted line), KBCG (long dashed blue line), and PSHAB 
(short dashed red line) for the Seattle site for spectral period of T = 3.0 
sec. 
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Figure 5.18 Comparison of the slab hazard curve using BCH (solid orange line), 
BCHU (dotted line), KBCG (long dashed blue line), and PSHAB (short 
dashed red line) for the Seattle site for spectral period of T = 3.0 sec. 

 

Figure 5.19 Comparison of the total hazard curve using BCH (solid orange line), 
BCHU (dotted line), KBCG (long dashed blue line), and PSHAB (short 
dashed red line) for the Seattle site for spectral period of T = 5.0 sec. 
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Figure 5.20 Comparison of the interface hazard curve using BCH (solid orange 
line), BCHU (dotted line), KBCG (long dashed blue line), and PSHAB 
(short dashed red line) for the Seattle site for spectral period of T = 5.0 
sec. 

 

Figure 5.21 Comparison of the slab hazard curve using BCH (solid orange line), 
BCHU (dotted line), KBCG (long dashed blue line), and PSHAB (short 
dashed red line) for the Seattle site for spectral period of T = 5.0 sec. 
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The UHS ground motions for the suite of five return-period hazard levels consistent 
with the hazard curves plotted in the previous figures are listed in Table 5.3 through Table 5.6. 
The ground-motion results are plotted graphically in Figure 5.22 through Figure 5.26. As noted 
earlier, the largest difference in the ground motions is observed for the spectral period of 0.2 
sec, with the results from the PSHAB model being higher by about 87% at the 10,000-year 
hazard level. Over all spectral periods and return period levels, the results from the PSHAB 
model are approximately 25% larger than the results from the BCH model. For the KBCG 
model, the average results are about 5% lower than the BCH model results. 

Table 5.3 Ground motions for the mean total hazard at the Seattle site 
using the BCH subduction GMM for the subduction seismic 
sources. 

Period (sec) 
500-year PSA 

(g) 
1000-year 
PSA (g) 

2475-year 
PSA (g) 

5000-year 
PSA (g) 

10,000-year 
PSA (g) 

PGA (0.010) 0.342 0.464 0.650 0.822 1.014 

0.200 0.783 1.061 1.508 1.911 2.354 

1.000 0.191 0.270 0.397 0.525 0.667 

3.000 0.046 0.066 0.103 0.134 0.175 

5.000 0.023 0.035 0.054 0.072 0.094 

Table 5.4 Ground motions for the mean total hazard at the Seattle site 
using the BCHU subduction GMM for the subduction seismic 
sources. 

Period (sec) 
500-year PSA 

(g) 
1000-year 
PSA (g) 

2475-year 
PSA (g) 

5000-year 
PSA (g) 

10,000-year 
PSA (g) 

PGA (0.010) 0.303 0.415 0.600 0.775 0.968 

0.200 0.737 1.018 1.470 1.889 2.355 

1.000 0.174 0.252 0.381 0.512 0.656 

3.000 0.044 0.065 0.103 0.136 0.179 

5.000 0.022 0.034 0.053 0.071 0.093 

Table 5.5 Ground motions for the mean total hazard at the Seattle site 
using the KBCG subduction GMM for the subduction seismic 
sources. 

Period (sec) 
500-year PSA 

(g) 
1000-year 
PSA (g) 

2475-year 
PSA (g) 

5000-year 
PSA (g) 

10,000-year 
PSA (g) 

PGA (0.010) 0.302 0.408 0.583 0.748 0.923 

0.200 0.710 0.986 1.421 1.829 2.282 

1.000 0.176 0.250 0.371 0.494 0.630 

3.000 0.046 0.066 0.103 0.135 0.176 

5.000 0.022 0.034 0.053 0.070 0.092 
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Table 5.6 Ground motions for the mean total hazard at the Seattle site 
using the PSHAB subduction GMM for the subduction seismic 
sources. 

Period (sec) 
500-year PSA 

(g) 
1000-year 
PSA (g) 

2475-year 
PSA (g) 

5000-year 
PSA (g) 

10,000-year 
PSA (g) 

PGA (0.010) 0.430 0.588 0.838 1.066 1.322 

0.200 1.313 1.840 2.678 3.469 4.405 

1.000 0.263 0.366 0.536 0.693 0.874 

3.000 0.047 0.066 0.101 0.131 0.171 

5.000 0.021 0.031 0.048 0.064 0.084 

 

  

Figure 5.22 Comparison of UHS ground motions for the Seattle site based on the 
four separate subduction GMMs for the subduction seismic sources at 
the 500-year-return-period hazard level. 
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Figure 5.23 Comparison of UHS ground motions for the Seattle site based on the 
four separate subduction GMMs for the subduction seismic sources at 
the 1000-year-return-period hazard level. 

  

Figure 5.24 Comparison of UHS ground motions for the Seattle site based on the 
four separate subduction GMMs for the subduction seismic sources at 
the 2475-year-return-period hazard level. 
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Figure 5.25 Comparison of UHS ground motions for the Seattle site based on the 
four separate subduction GMMs for the subduction seismic sources at 
the 5000-year-return-period hazard level. 

  

Figure 5.26 Comparison of UHS ground motions for the Seattle site based on the 
four separate subduction GMMs for the subduction seismic sources at 
the 10,000-year-return-period hazard level.  
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The binned deaggregation results are summarized in Figure 5.27 through Figure 5.36 
for the four subduction GMMs and for the return periods of 500 and 2475 years. These results 
show the contribution from the three controlling sources: (1) crustal faults for shorter distances 
and small to moderate magnitudes; (2) slab events with distances greater than 100 km and 
intermediate magnitudes; and (3) larger magnitude interface events at larger distances. Similar 
results and observations are noted for the other return-period levels. These plots are consistent 
with the previous hazard curve plots showing similar results for the BCH, BCHU, and KBCG 
models and an increase in contribution for slab events from the PSHAB model for PGA, 0.2, 
and 1.0 sec spectral periods. 

 

 

  

Figure 5.27 Binned deaggregation results for the Seattle site at the 500 year return 
period level for PGA (T = 0.01 sec) for the BCH (upper left), BCHU 
(upper right), KBCG (lower left) and PSHAB (lower right) models. 
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Figure 5.28 Binned deaggregation results for the Seattle site at the 500 year return 
period level for T = 0.2 sec for the BCH (upper left), BCHU (upper 
right), KBCG (lower left), and PSHAB (lower right) models. 

  

  

Figure 5.29 Binned deaggregation results for the Seattle site at the 500 year return 
period level for T = 1.0 sec for the BCH (upper left), BCHU (upper 
right), KBCG (lower left), and PSHAB (lower right) models. 
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Figure 5.30 Binned deaggregation results for the Seattle site at the 500 year return 
period level for T = 3.0 sec for the BCH (upper left), BCHU (upper 
right), KBCG (lower left), and PSHAB (lower right) models. 

  

  

Figure 5.31 Binned deaggregation results for the Seattle site at the 500 year return 
period level for T = 5.0 sec for the BCH (upper left), BCHU (upper 
right), KBCG (lower left), and PSHAB (lower right) models. 



 

161 

 

 

Figure 5.32 Binned deaggregation results for the Seattle site at the 2475-year-
return-period level for PGA (T = 0.01 sec) for the BCH (upper left), 
BCHU (upper right), KBCG (lower left), and PSHAB (lower right) 
models. 

 

 

Figure 5.33 Binned deaggregation results for the Seattle site at the 2475-year-
return-period level for T = 0.2 sec for the BCH (upper left), BCHU 
(upper right), KBCG (lower left), and PSHAB (lower right) models. 
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Figure 5.34 Binned deaggregation results for the Seattle site at the 2475-year-
return-period level for T = 1.0 sec for the BCH (upper left), BCHU 
(upper right), KBCG (lower left), and PSHAB (lower right) models. 

 

 

Figure 5.35 Binned deaggregation results for the Seattle site at the 2475-year-
return-period level for T = 3.0 sec for the BCH (upper left), BCHU 
(upper right), KBCG (lower left), and PSHAB (lower right) models. 
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Figure 5.36 Binned deaggregation results for the Seattle site at the 2475-year-
return-period level for T = 5.0 sec for the BCH (upper left), BCHU 
(upper right), KBCG (lower left), and PSHAB (lower right) models. 

An addition set of PSHA calculations is performed to isolate the impact of the 
median ground-motion differences between the four subduction 
GMMs. For these calculations, the aleatory sigma model from 
the BCH model is applied with the median ground-motion 
estimates from the other three GMMs. Given this approach, the 
observed differences are fully attributable to the differences in 
the median ground-motion estimates. The resulting UHS ground 
motions are listed in Table 5.7 through  

Table 5.9 for the three GMMs (note that the base case UHS ground-motion results based 
on the BCH model are listed in Table 5.3). Overall, the observed differences are less for the 
three models than those observed using both the median and aleatory sigma adjustments from 
the three subduction GMMs. The average reduction in ground motions for the BCHU and 
KBCG models is about 7%; however, the PSHAB model shows an observed average increase 
of about 16%, with the largest increase (i.e., approximately 55%) occurring for the T = 0.2 sec 
spectral periods. The ground-motion values are plotted in Figure 5.37 through Figure 5.41. 
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Table 5.7 Ground motions for the mean total hazard at the Seattle site 
using the BCHU subduction GMM with BCH aleatory sigma for 
the subduction seismic sources. 

Period (sec) 
500-year PSA 

(g) 
1000-year 
PSA (g) 

2475-year 
PSA (g) 

5000-year 
PSA (g) 

10,000-year 
PSA (g) 

PGA (0.010) 0.281 0.384 0.556 0.714 0.887 

0.200 0.689 0.951 1.362 1.749 2.183 

1.000 0.171 0.248 0.374 0.503 0.643 

3.000 0.043 0.064 0.102 0.133 0.174 

5.000 0.021 0.033 0.052 0.069 0.091 

 

Table 5.8 Ground motions for the mean total hazard at the Seattle site 
using the KBCG subduction GMM with BCH aleatory sigma for 
the subduction seismic sources. 

Period (sec) 
500-year PSA 

(g) 
1000-year 
PSA (g) 

2475-year 
PSA (g) 

5000-year 
PSA (g) 

10,000-year 
PSA (g) 

PGA (0.010) 0.295 0.398 0.569 0.728 0.899 

0.200 0.662 0.915 1.313 1.692 2.119 

1.000 0.172 0.244 0.362 0.482 0.616 

3.000 0.044 0.064 0.100 0.131 0.170 

5.000 0.022 0.034 0.053 0.070 0.092 

 

Table 5.9 Ground motions for the mean total hazard at the Seattle site 
using the PSHAB subduction GMM with BCH aleatory sigma for 
the subduction seismic sources. 

Period (sec) 
500-year PSA 

(g) 
1000-year 
PSA (g) 

2475-year 
PSA (g) 

5000-year 
PSA (g) 

10,000-year 
PSA (g) 

PGA (0.010) 0.409 0.557 0.784 0.989 1.208 

0.200 1.203 1.655 2.346 3.011 3.701 

1.000 0.244 0.336 0.484 0.616 0.775 

3.000 0.045 0.064 0.097 0.127 0.165 

5.000 0.021 0.031 0.048 0.064 0.084 
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Figure 5.37 Comparison of UHS ground motions for the Seattle site based on the 
four separate subduction GMMs, with the BCH aleatory sigma model 
for the subduction seismic sources at the 500-year-return-period 
hazard level. 

  

Figure 5.38 Comparison of UHS ground motions for the Seattle site based on the 
four separate subduction GMMs, with the BCH aleatory sigma model 
for the subduction seismic sources at the 1000-year-return-period 
hazard level. 
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Figure 5.39 Comparison of UHS ground motions for the Seattle site based on the 
four separate subduction GMMs, with the BCH aleatory sigma model 
for the subduction seismic sources at the 2475-year-return-period 
hazard level. 

  

Figure 5.40 Comparison of UHS ground motions for the Seattle site based on the 
four separate subduction GMMs for the subduction seismic sources at 
the 5000-year-return-period hazard level. 
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Figure 5.41 Comparison of UHS ground motions for the Seattle site based on the 
four separate subduction GMMs, with the BCH aleatory sigma model 
for the subduction seismic sources at the 10,000-year-return-period 
hazard level. 

5.2 CENTRALIA SITE EXAMPLE PSHA 

The city of Centralia was selected for the second example PSHA calculation; see Figure 5.1. 
This location is more distant from any crustal fault than the Seattle site and is closer to the coast 
of Washington where the contribution from the Cascadia interface source can be expected to 
be larger than the contribution from the deeper slab events. This assumption is observed in the 
hazard curves for the base case (i.e., BCH subduction GMM) plotted in Figure 5.42 through 
Figure 5.46. In each of these plots, the contribution from the seismic sources are separated by 
the Seattle fault (dotted line), combined other crustal faults (long dashed green line), combined 
background gridded seismicity (short dashed line), slab sources (solid blue line), and interface 
source (solid green line). For return periods shorter than about 1000 years for PGA and T = 0.2 
sec, the slab source is the controlling seismic source. For longer return periods, the Cascadia 
interface source controls. At the longer spectral periods of 1.0, 3.0, and 5.0 sec, the total hazard 
is controlled by the Cascadia interface source. 
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Figure 5.42 Total hazard curve (solid red line) and hazard curves differentiated by 
seismic source for the Centralia site for PGA (T = 0.01 sec). 

 

Figure 5.43 Total hazard curve (solid red line) and hazard curves differentiated by 
seismic source for the Centralia site for spectral period of 0.2 sec. 
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Figure 5.44 Total hazard curve (solid red line) and hazard curves differentiated by 
seismic source for the Centralia site for spectral period of 1.0 sec. 

 

Figure 5.45 Total hazard curve (solid red line) and hazard curves differentiated by 
seismic source for the Centralia site for spectral period of 3.0 sec. 
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Figure 5.46 Total hazard curve (solid red line) and hazard curves differentiated by 
seismic source for the Centralia site for spectral period of 5.0 sec. 

The same approach that was used for the Seattle site is performed for the Centralia site, 
where the BCH subduction GMM is replaced with the BCHU, KBCG, and PSHAB subduction 
GMMs. The same NGA-West2 crustal models are used for these additional example 
calculations for the crustal sources. Comparisons are presented in Figure 5.47 through Figure 
5.61 for the total hazard curve, interface, and slab hazard curves plotted as a function of the 
different subduction GMMs. These figures provide the observations on the impact between the 
different subduction GMMs. Variations are observed for the interface, slab, and resulting total 
hazard curves depending on the individual GMMs. For the longer spectral periods, the change 
in the total hazard is smaller than the observed changes in the PGA and T = 0.2 sec cases. The 
change in the slope of the total hazard curve for the BCHU model shown in the plots is based 
on the relative change in the individual hazard for the interface (i.e., approximately equal or 
higher) and slab (i.e., lower values) sources rather than a change in the sigma model. Consistent 
with the results for the Seattle site, the PSHAB model has higher results for PGA and T = 0.2 
sec from slab events, and the KBCG model is lower for interface events. At the longer spectral 
periods, the agreement between the models is more favorable. 
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Figure 5.47 Comparison of the total hazard curve using BCH (solid orange line), 
BCHU (dotted line), KBCG (long dashed blue line), and PSHAB (short 
dashed red line) for the Centralia site for PGA (T = 0.01 sec). 

 

Figure 5.48 Comparison of the interface hazard curve using BCH (solid orange 
line), BCHU (dotted line), KBCG (long dashed blue line), and PSHAB 
(short dashed red line) for the Centralia site for PGA (T = 0.01 sec). 



 

172 

 

Figure 5.49 Comparison of the slab hazard curve using BCH (solid orange line), 
BCHU (dotted line), KBCG (long dashed blue line), and PSHAB (short 
dashed red line) for the Centralia site for PGA (T = 0.01 sec). 

 

Figure 5.50 Comparison of the total hazard curve using BCH (solid orange line), 
BCHU (dotted line), KBCG (long dashed blue line), and PSHAB (short 
dashed red line) for the Centralia site for spectral period of T = 0.2 sec. 
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Figure 5.51 Comparison of the interface hazard curve using BCH (solid orange 
line), BCHU (dotted line), KBCG (long dashed blue line), and PSHAB 
(short dashed red line) for the Centralia site for spectral period of T = 
0.2 sec. 

 

Figure 5.52 Comparison of the slab hazard curve using BCH (solid orange line), 
BCHU (dotted line), KBCG (long dashed blue line), and PSHAB (short 
dashed red line) for the Centralia site for spectral period of T = 0.2 sec. 
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Figure 5.53 Comparison of the total hazard curve using BCH (solid orange line), 
BCHU (dotted line), KBCG (long dashed blue line), and PSHAB (short 
dashed red line) for the Centralia site for spectral period of T = 1.0 sec. 

 
Figure 5.54 Comparison of the interface hazard curve using BCH (solid orange 

line), BCHU (dotted line), KBCG (long dashed blue line), and PSHAB 
(short dashed red line) for the Seattle site for spectral period of T = 1.0 
sec. 
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Figure 5.55 Comparison of the slab hazard curve using BCH (solid orange line), 
BCHU (dotted line), KBCG (long dashed blue line), and PSHAB (short 
dashed red line) for the Centralia site for spectral period of T = 1.0 sec. 

 

Figure 5.56 Comparison of the total hazard curve using BCH (solid orange line), 
BCHU (dotted line), KBCG (long dashed blue line), and PSHAB (short 
dashed red line) for the Centralia site for spectral period of T = 3.0 sec. 
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Figure 5.57 Comparison of the interface hazard curve using BCH (solid orange 
line), BCHU (dotted line), KBCG (long dashed blue line), and PSHAB 
(short dashed red line) for the Centralia site for spectral period of T = 
3.0 sec. 

 

Figure 5.58 Comparison of the slab hazard curve using BCH (solid orange line), 
BCHU (dotted line), KBCG (long dashed blue line), and PSHAB (short 
dashed red line) for the Centralia site for spectral period of T = 3.0 sec. 
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Figure 5.59 Comparison of the total hazard curve using BCH (solid orange line), 
BCHU (dotted line), KBCG (long dashed blue line), and PSHAB (short 
dashed red line) for the Centralia site for spectral period of T = 5.0 sec. 

 

Figure 5.60 Comparison of the interface hazard curve using BCH (solid orange 
line), BCHU (dotted line), KBCG (long dashed blue line), and PSHAB 
(short dashed red line) for the Centralia site for spectral period of T = 
5.0 sec. 
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Figure 5.61 Comparison of the slab hazard curve using BCH (solid orange line), 
BCHU (dotted line), KBCG (long dashed blue line), and PSHAB (short 
dashed red line) for the Centralia site for spectral period of T = 5.0 sec. 

The UHS ground motions for the suite of five return-period hazard levels are consistent 
with the hazard curves plotted in the previous figures are listed in Table 5.10 through Table 
5.13. The ground-motion results are shown graphically in Figure 5.62 through Figure 5.66. The 
largest difference in the ground motions is observed for the spectral period of 0.2 sec, with the 
results from the PSHAB model being higher by about 45% at the 10,000-year hazard level. 
These observed differences are less than the results for the Seattle site based on the overall 
contribution of the slab source being less at the Centralia site than at the Seattle site. Over all 
spectral periods and return period levels, the results from the PSHAB model are approximately 
10% larger than the results from the BCH model. For the KBCG model, the average results are 
about 12% lower than the BCH model results primarily due to the interface ground motion 
being lower than for the BCH model. For the BCHU model, the results on average are about 
3% lower than the results from the BCH model. 
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Table 5.10 Ground motions for the mean total hazard at the Centralia site 
using the BCH subduction GMM for the subduction seismic 
sources. 

Period (sec) 
500-year PSA 

(g) 
1000-year-

PSA (g) 
2475-year 
PSA (g) 

5000-year 
PSA (g) 

10,000-year 
PSA (g) 

PGA (0.010) 0.280 0.394 0.589 0.776 0.989 

0.200 0.624 0.887 1.310 1.717 2.179 

1.000 0.161 0.246 0.392 0.541 0.712 

3.000 0.039 0.061 0.102 0.138 0.185 

5.000 0.020 0.033 0.054 0.074 0.100 

Table 5.11 Ground motions for the mean total hazard at the Centralia site 
using the BCHU subduction GMM for the subduction seismic 
sources. 

Period (sec) 
500-year PSA 

(g) 
1000-year-

PSA (g) 
2475-year 
PSA (g) 

5000-year 
PSA (g) 

10,000-year 
PSA (g) 

PGA (0.010) 0.239 0.358 0.579 0.811 1.092 

0.200 0.602 0.911 1.482 2.073 2.797 

1.000 0.143 0.226 0.369 0.517 0.683 

3.000 0.036 0.057 0.096 0.130 0.173 

5.000 0.018 0.030 0.049 0.065 0.087 

Table 5.12 Ground motions for the mean total hazard at the Centralia site 
using the KBCG subduction GMM for the subduction seismic 
sources. 

Period (sec) 
500-year PSA 

(g) 
1000-year-

PSA (g) 
2475-year 
PSA (g) 

5000-year 
PSA (g) 

10,000-year 
PSA (g) 

PGA (0.010) 0.224 0.316 0.467 0.610 0.782 

0.200 0.528 0.758 1.138 1.521 1.966 

1.000 0.141 0.210 0.324 0.435 0.568 

3.000 0.038 0.059 0.098 0.132 0.176 

5.000 0.019 0.031 0.052 0.069 0.092 

Table 5.13 Ground motions for the mean total hazard at the Centralia site 
using the PSHAB subduction GMM for the subduction seismic 
sources. 

Period (sec) 
500-year PSA 

(g) 
1000-year-

PSA (g) 
2475-year 
PSA (g) 

5000-year 
PSA (g) 

10,000-year 
PSA (g) 

PGA (0.010) 0.333 0.474 0.704 0.925 1.175 

0.200 0.866 1.238 1.867 2.456 3.164 

1.000 0.214 0.313 0.480 0.641 0.835 

3.000 0.038 0.056 0.087 0.117 0.152 

5.000 0.017 0.025 0.040 0.054 0.069 
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Figure 5.62 Comparison of UHS ground motions for the Centralia site based on 
the four separate subduction GMMs for the subduction seismic 
sources at the 500-year-return-period hazard level. 

  

Figure 5.63 Comparison of UHS ground motions for the Centralia site based on 
the four separate subduction GMMs for the subduction seismic 
sources at the 1000-year-return-period hazard level. 
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Figure 5.64 Comparison of UHS ground motions for the Centralia site based on 
the four separate subduction GMMs for the subduction seismic 
sources at the 2475-year-return-period hazard level. 

  

Figure 5.65 Comparison of UHS ground motions for the Centralia site based on 
the four separate subduction GMMs for the subduction seismic 
sources at the 5000-year-return-period hazard level. 
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Figure 5.66 Comparison of UHS ground motions for the Centralia site based on 
the four separate subduction GMMs for the subduction seismic 
sources at the 10,000 year return period hazard level. 

The binned deaggregation results are summarized in Figure 5.67 through Figure 5.76 
for the four subduction GMMs and for the return periods of 500 and 2475 years. For the 
Centralia site, the distribution is more bi-modal than for the Seattle site, with a limited 
contribution from the crustal sources for the 500-year and short-period cases. For the other 
spectral periods and the 2475-year cases, the distribution is controlled by the slab and interface 
sources. Overall, the comparison across the four GMM cases is in agreement with similar 
controlling magnitude and distance bins. 

Following the same approach for the Seattle site, an additional set of PSHA calculations is 
performed to isolate the impact of the median ground-motion estimate differences between 
the four subduction GMMs for the Centralia site. For these calculations, the aleatory sigma 
model from the BCH model is applied with the median ground-motion estimates from the 
other three GMMs. Given this approach, the observed differences are fully attributable to the 
differences in the median ground-motion estimates. The resulting UHS ground motions are 
listed in Table 5.14 through  

Table 5.16 for the three GMMs (note that the base case UHS ground-motion results 
based on the BCH model are listed in Table 5.10). Overall, the observed differences are 
approximately similar (i.e., KBCG) or less (i.e., BCHU and PSHAB) for the three models than 
those observed using both the median and aleatory sigma adjustments from the three 
subduction GMMs. The average reduction in ground motions for the BCHU and KBCG models 
is about 9% and 16%, respectively. The PSHAB model shows an observed average increase of 
about 1%, with the largest increase—approximately 25%—occurring for the T = 0.2 sec 
spectral periods based on the slab model differences and the largest reduction of about 25% at 
T = 5.0 sec spectral period based on the interface model differences. The comparisons of the 
ground-motion values are plotted in Figure 5.77 through Figure 5.81. 
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Figure 5.67 Binned deaggregation results for the Centralia site at the 500-year-
return-period level for PGA (T = 0.01 sec) for the BCH (upper left), 
BCHU (upper right), KBCG (lower left), and PSHAB (lower right) 
models. 

  

   

Figure 5.68 Binned deaggregation results for the Centralia site at the 500 year 
return period level for T = 0.2 sec for the BCH (upper left), BCHU 
(upper right), KBCG (lower left), and PSHAB (lower right) models. 
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Figure 5.69 Binned deaggregation results for the Centralia site at the 500-year-
return-period level for T = 1.0 sec for the BCH (upper left), BCHU 
(upper right), KBCG (lower left), and PSHAB (lower right) models. 

  

  

Figure 5.70 Binned deaggregation results for the Centralia site at the 500-year-
return-period level for T = 3.0 sec for the BCH (upper left), BCHU 
(upper right), KBCG (lower left), and PSHAB (lower right) models. 
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Figure 5.71 Binned deaggregation results for the Centralia site at the 500-year-
return-period level for T = 5.0 sec for the BCH (upper left), BCHU 
(upper right), KBCG (lower left), and PSHAB (lower right) models. 

  

   

Figure 5.72 Binned deaggregation results for the Centralia site at the 2475-year-
return-period level for PGA (T = 0.01 sec) for the BCH (upper left), 
BCHU (upper right), KBCG (lower left), and PSHAB (lower right) 
models. 



 

186 

  

  

Figure 5.73 Binned deaggregation results for the Centralia site at the 2475-year-
return-period level for T = 0.2 sec for the BCH (upper left), BCHU 
(upper right), KBCG (lower left), and PSHAB (lower right) models. 

  

  

Figure 5.74 Binned deaggregation results for the Centralia site at the 2475-year-
return-period level for T = 1.0 sec for the BCH (upper left), BCHU 
(upper right), KBCG (lower left), and PSHAB (lower right) models. 
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Figure 5.75 Binned deaggregation results for the Centralia site at the 2475-year-
return-period level for T = 3.0 sec for the BCH (upper left), BCHU 
(upper right), KBCG (lower left), and PSHAB (lower right) models. 

  

  

Figure 5.76 Binned deaggregation results for the Centralia site at the 2475-year-
return-period level for T = 5.0 sec for the BCH (upper left), BCHU 
(upper right), KBCG (lower left), and PSHAB (lower right) models. 
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Table 5.14 Ground motions for the mean total hazard at the Centralia site 
using the BCHU subduction GMM with BCH aleatory sigma for 
the subduction seismic sources. 

Period (sec) 
500-year PSA 

(g) 
1000-year-

PSA (g) 
2475-year 
PSA (g) 

5000-year 
PSA (g) 

10,000-year 
PSA (g) 

PGA (0.010) 0.223 0.331 0.523 0.713 0.936 

0.200 0.567 0.851 1.358 1.874 2.469 

1.000 0.141 0.222 0.360 0.502 0.655 

3.000 0.036 0.057 0.094 0.126 0.165 

5.000 0.018 0.029 0.048 0.063 0.083 

 

Table 5.15 Ground motions for the mean total hazard at the Centralia site 
using the KBCG subduction GMM with BCH aleatory sigma for 
the subduction seismic sources. 

Period (sec) 
500-year PSA 

(g) 
1000-year-

PSA (g) 
2475-year 
PSA (g) 

5000-year 
PSA (g) 

10,000-year 
PSA (g) 

PGA (0.010) 0.219 0.308 0.450 0.586 0.748 

0.200 0.493 0.694 1.029 1.342 1.710 

1.000 0.138 0.205 0.315 0.418 0.544 

3.000 0.037 0.058 0.094 0.126 0.165 

5.000 0.019 0.031 0.052 0.069 0.092 

 

Table 5.16 Ground motions for the mean total hazard at the Centralia site 
using the PSHAB subduction GMM with BCH aleatory sigma for 
the subduction seismic sources. 

Period (sec) 
500-year PSA 

(g) 
1000-year-

PSA (g) 
2475-year 
PSA (g) 

5000-year 
PSA (g) 

10,000-year 
PSA (g) 

PGA (0.010) 0.318 0.445 0.651 0.847 1.068 

0.200 0.798 1.118 1.639 2.120 2.664 

1.000 0.200 0.287 0.426 0.563 0.722 

3.000 0.037 0.054 0.082 0.111 0.142 

5.000 0.017 0.025 0.040 0.054 0.069 
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Figure 5.77 Comparison of UHS ground motions for the Centralia site based on 
the four separate subduction GMMs, with the BCH aleatory sigma 
model for the subduction seismic sources at the 500-year-return-
period hazard level. 

  

Figure 5.78 Comparison of UHS ground motions for the Centralia site based on 
the four separate subduction GMMs, with the BCH aleatory sigma 
model for the subduction seismic sources at the 1000-year-return-
period hazard level. 
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Figure 5.79 Comparison of UHS ground motions for the Centralia site based on 
the four separate subduction GMMs, with the BCH aleatory sigma 
model for the subduction seismic sources at the 2475-year-return-
period hazard level. 

  

Figure 5.80 Comparison of UHS ground motions for the Centralia site based on 
the four separate subduction GMMs for the subduction seismic 
sources at the 5000-year-return-period hazard level. 
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Figure 5.81 Comparison of UHS ground motions for the Centralia site based on 
the four separate subduction GMMs, with the BCH aleatory sigma 
model for the subduction seismic sources at the 10,000-year-return-
period hazard level. 
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6 Summary 

Currently three new subduction GMMs have been developed as part of the NGA-Sub program. 
These new GMMs are based on the NGA-Sub dataset [Bozorgnia and Stewart 2020], which 
represents a significant increase in the amount of empirical subduction ground-motion data. 
Two of the models, KBCG and PSHAB, have global and regionalized versions based on the 
regional datasets contained in the larger NGA-Sub database. The third newly developed model, 
SMK, is based on data from Japan and as such is applicable for seismic hazard studies for sites 
in Japan. 

To assist with the understanding of these new models and their comparisons to 
previously published GMMs, this report shows various comparisons of the models. These 
comparisons are primarily in the form of attenuation curves and spectral response comparisons 
for a select set of scenario events. As noted in the report, these selected scenario events are not 
meant to capture the full range of the models or their expected implementation, but rather 
provide a small sample of representative scenario cases with a focus on the events controlling 
hazard in the Pacific Northwest region. Additional plots and the digital values for the 
attenuation curves and response spectra presented in this report are provided as part of the 
electronic supplement for this report; see Appendix A. 

In addition to these attenuation curves and spectra comparisons, separate comparisons 
are provided for specific features contained in these models. Specifically, comparisons are 
provided for magnitude scaling, source depth and basin response. 

In reviewing the various comparisons, observed differences are noted between the new 
GMMs and the previous published GMMs across different subduction source types (i.e., 
interface and slab events), magnitude, distance, site conditions, basin conditions, and spectral 
periods. Differences are also observed between the different aleatory models from the new and 
previous GMMs. Overall, the KBCG and PSHAB models estimate similar ground motions for 
the global cases (e.g., Figure 3.33 and Figure 3.34 for interface events and Figure 3.91 and 
Figure 3.92 for slab cases). For certain regionalized cases, such as Japan, the comparisons show 
a larger variation between the models along with the SMK model (see Figure 3.41 and Figure 
3.42 for interface and Figure 3.99 and Figure 3.100 for slab) than observed for the global cases. 

Two example sites are presented in the report for an example PSHA calculation. These 
sites—located in the state of Washington in the Pacific Northwest—highlight the potential 
impact of these new NGA-Sub GMMs. Given that the SMK model is developed for Japan, it 
was not included in these PSHA calculations. 

Based on these limited comparisons and noted observations, it is expected that the 
implementation of these newly developed NGA-Sub GMMs will be supported by the types of 
comparisons presented in this report. For specific applications, additional comparison may and 
should be performed allowing for technical justifications for the implementation of these new 
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models, including for the development of logic-tree weights. It is also expected in the future 
that additional NGA-Sub GMMs will be released, and these comparisons can be updated to 
include those new models in the future. 
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APPENDIX A Description of Electronic 
Supplement Excel files for 
Digital GMM Values and 
Additional Comparison Plots 

Several comparison plots are presented in the report for attenuation curves and spectra. These 
plots are separated based on interface and slab events and as well for global and regional 
versions of the models. For the interface cases, the comparisons are plotted for M8 events and 
for the slab cases only the M7 cases are plotted. As noted in the main report, the additional two 
magnitude values for both cases and all digital values are provided in the supplement electronic 
files associated with this report. This appendix presents the specific files and their format that 
contain these additional plots and digital values. 

The electronic files provided as an electronic supplement for this report are separated 
into two folders: Interface and Slab. Within these folders, a similar sub-folder structure and file 
nomenclature is presented. The file and folder structure is: 

Interface Cases – Attenuation Curves 

Interface\Attenuation\Interface-Atten-Global -Rev001.xlsx 

Interface\Attenuation\Interface-Atten-Alaska-Rev001.xlsx 

Interface\Attenuation\Interface-Atten-CA&M-Rev001.xlsx 

Interface\Attenuation\Interface-Atten-Cascadia-Rev001.xlsx 

Interface\Attenuation\Interface-Atten-Japan-Rev001.xlsx 

Interface\Attenuation\Interface-Atten-NewZealand-Rev001.xlsx 

Interface\Attenuation\Interface-Atten-SA-Rev001.xlsx 

Interface\Attenuation\Interface-Atten-Taiwan-Rev001.xlsx  

Interface Cases – Spectra 

Interface\Attenuation\Interface-Spectra-Global-Rev001.xlsx 

Interface\Attenuation\Interface-Spectra-Alaska-Rev001.xlsx 

Interface\Attenuation\Interface-Spectra-CA&M-Rev001.xlsx 

Interface\Attenuation\Interface-Spectra-Cascadia-Rev001.xlsx 

Interface\Attenuation\Interface-Spectra-Japan-Rev001.xlsx 



 

198 

Interface\Attenuation\Interface-Spectra-NewZealand-Rev000.xlsx 

Interface\Attenuation\Interface-Spectra-SA-Rev001.xlsx 

Interface\Attenuation\Interface-Spectra-Taiwan-Rev001.xlsx 

Slab Cases – Attenuation Curves 

Slab\Attenuation\Slab-Atten-Global-Rev001.xlsx 

Slab\Attenuation\Slab-Atten-Alaska-Rev001.xlsx 

Slab\Attenuation\Slab-Atten-CA&M-Rev001.xlsx 

Slab\Attenuation\Slab-Atten-Cascadia-Rev001.xlsx 

Slab\Attenuation\Slab-Atten-Japan-Rev001.xlsx 

Slab\Attenuation\Slab-Atten-NewZealand-Rev001.xlsx 

Slab\Attenuation\Slab-Atten-SA-Rev001.xlsx 

Slab\Attenuation\Slab-Atten-Taiwan-Rev001.xlsx 

Slab Cases – Spectra 

Slab\Attenuation\Slab-Spectra-Global-Rev001.xlsx 

Slab\Attenuation\Slab-Spectra-Alaska-Rev001.xlsx 

Slab\Attenuation\Slab-Spectra-CA&M-Rev001.xlsx 

Slab\Attenuation\Slab-Spectra-Cascadia-Rev001.xlsx 

Slab\Attenuation\Slab-Spectra-Japan-Rev001.xlsx 

Slab\Attenuation\Slab-Spectra-NewZealand-Rev001.xlsx 

Slab\Attenuation\Slab-Spectra-SA-Rev001.xlsx 

Slab\Attenuation\Slab-Spectra-Taiwan-Rev001.xlsx  

The regional versions of the comparisons are differentiated in the filename. Within each 
of these files there are several data pages, summary data pages (indicated with blue tabs), a plot 
summary sheet (green tab), and numerous comparison plots. The specific models and plots are 
indicated on the abbreviated tabs names for each data sheet and chart plot. 
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