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ABSTRACT

The continuing development of performance-based earthquake engineering will

soon enable accurate probabilistic quantitative evaluation of structural

performance in a given seismic hazard environment.  The Pacific Earthquake

Engineering Research Center (PEER) is developing a probability-based framework

comprising several models, particularly, a seismic demand model.  The objective of

this paper is to develop probabilistic demand models for typical highway

overpass bridges.  Demand models relate ground motion Intensity Measures, such

as spectral acceleration, to bridge Demand Parameters, such as displacement

ductility.  These models will then be used to assess their sensitivity to variations

in bridge design parameters, such as column height and diameter. The variation of

parameters is achieved using a parametric finite element model, representing an

entire array of bridge designs.  Probabilistic seismic demand models were

formulated by statistical analysis of the data produced during analyses of all

bridge portfolio-ground motion bin combinations.  Relations for each design

parameter, and resulting trends, can be developed, giving bridge designers the

power to quantitatively evaluate their design choices on structural performance.

Introduction

In the evolving field of Performance-based earthquake engineering, designers and owners

are motivated to engineer structures to fulfill predetermined performance levels or objectives. 

Previously, performance-based design frameworks have addressed only the probabilistic

evaluation of seismic hazards (FEMA-273 (FEMA 1996) and Vision 2000 (SEAOC 1995)).  The

resulting graduated arrays of performance levels are based on deterministic estimates of structural

performance.  The recent SAC Steel Project (FEMA 2000) provided a probabilistic extension to

the performance side, enabling simultaneous consideration of uncertainties in both the demand

and capacity.

To achieve a consistent probability-based framework that is substantially more general

than that of the SAC project, the Pacific Earthquake Engineering Research Center (PEER) is
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developing a probabilistic framework for performance-based design and evaluation.  Performance

objectives are defined in terms of annual probabilities of socio-economic Decision Variables (DV
> z) being exceeded.  While useful to owners and designers, to address the problem rigorously, the

outcome is de-aggregated into several interim models involving measures of damage (DM > y),

structural performance (EDP > x), and seismic hazard (IM > w).  Thus, the mean annual

frequency of a DV exceeding limit value z is (Cornell 2000):

ν λDV DV DM DM EDP EDP IM IM

wxy

z G z y dG y x dG x w d w( ) ( | ) | ( | ) || ( | ) || ( ) || | |= ∫∫∫
(1)

Utility of Eq. 1 is based on the mutual independence of the interim models.  Relationships

between the intermediate variables (DM, EDP, IM) should be chosen such that probability

conditioning is not carried over from one model to the next.  Additionally, the uncertainties

generated at each stage need to be systematically addressed and propagated, making the selection

of each interim model critical to the process.  Previous research was aimed at determining optimal

IM-EDP pairs in the demand model GEDP|IM(x|w) (Mackie 2002).  Utilizing these optimal pairs,

design parameter sensitivity is investigated in this paper.

Probabilistic Seismic Demand Model

The Probabilistic Seismic Demand Model (PSDM hereafter) is the outcome from a

Probabilistic Seismic Demand Analysis (PSDA) (Luco 2001).  PSDA typically involves five

steps.  First, a set of ground motions, representative of regional seismic hazard, is selected or

synthesized.  Intensity Measures (IM) descriptive of their content are computed.  Second, the

class of structures to be investigated is defined.  Associated with this class are a suite of

Engineering Demand Parameters (EDP) which can be extracted from analysis to assess structural

performance under the considered motions.  Third, a nonlinear finite element analysis model is

generated to model the class of structures selected, with specific allowances for varying the

design through design parameters.  Fourth, dynamic analyses are performed until all motions and

bridge model combinations have been exhausted.  Finally, a demand model is formulated between

resulting ground motion IMs and structural EDPs.   

PSDA Ground Motions

The PSDA method used to formulate the PSDMs explicitly involves the ground motion

bin approach.  The bin approach (Shome 1999) is used to subdivide ground motions into

arbitrary bins based on moment magnitude (Mw), closest distance (R), and local soil type.  The

use of magnitude and distance allows parallels between standard attenuation relationships and

existing PSHA.  An advantage of using bins is the ability to assess the effect of generalized

earthquake characteristics on structural demands.

The bins in this study are delineated at a magnitude of 6.5 and a distance of 30 km.  Four

bins with 20 ground motions each were obtained from the PEER Strong Motion Database

(peer.berkeley.edu/smcat), and are characteristic of non-near-field motions (R > 15 km) recorded

in California.  The specific records selected are the same as those used by Krawinkler (Medina

2001) in companion building research in PEER.  All three components of the ground motion



records were scaled by a factor of two (amplitude scaling only).

PSDA Class of Structures and Design Parameters

Typical new California highway overpass bridges are selected as the class of structures. 

A class is characterized by geometry, components, and methods of design.  Ideally, each of these

parameters can be investigated in a parameter sensitivity study from the resulting PSDMs.  The

bridges presented in this paper are designed according to Caltrans Bridge Design Specification and

Seismic Design Criteria (Caltrans 1999) for reinforced concrete bridges.  Consistent with the

displacement-based design approach outlined by Caltrans, the assumption is made regarding

bridges, such that columns develop plastic hinges in flexure rather than experience shear failure. 

Configurations in this study are limited to two-equal-span overpasses with seat-type abutments

on either end.  Common to all bridges is a single column bent continuing below grade into a Type

I integral pile foundation.

Seven design parameters were initially selected to describe variations of bridge design with

respect to a base bridge configuration.  They are listed in Table 1, along with limits on the

parameter variations used in this study.  The base bridge configuration includes two 18.2 m (60

ft) spans, a single-column bent 7.6 m above grade (30 ft), with a 1.6 m (5.25 ft) diameter circular

column, 2% longitudinal reinforcement, and 0.7% transverse reinforcement.  As the bridge

parameters are varied (Table 1), their values relative to each other are intended to cover the

complete spectrum of possible bridge designs even if particular bridge instantiations are

uncommon in design practice.  The base bridge is on a USGS class B (NEHRP C) soil site.  Only

one parameter was varied from the base configuration at a time.

Table 1. Parameter variation ranges for a two-span overpass bridge.

Description Parameter Range
Span length L 18-55 m (60-180 ft)

Span-to-column height ratio L/H 1.2-3.5

Column-to-superstructure dimension ratio Dc/Ds 0.67-1.33

Longitudinal reinforcement ratio ρs,long 1-4%

Transverse reinforcement ratio ρs,trans 0.4-1.1%

Pile soil stiffness Ksoil USGS A, B, C, D

Additional bridge dead load Wt 10-150% self-weight

PSDA Model

The PEER OpenSees (www.opensees.org) platform was selected as the nonlinear finite

element engine for modeling.  Bridge columns and pile shafts are modeled using three-dimensional

flexibility-based beam-column elements with fiber cross-sections.  This element is limited to

axial-flexural interaction, hence the assumption made earlier regarding shear failure.  P-∆ effects

were included for the column, but no other methods of softening were incorporated into the

model.  The circular column cross-sections have perimeter longitudinal reinforcing bars and spiral

confinement.



Soil-structure interaction was modeled using bilinear p-y springs placed at varying depths

along the length of the pile shafts.  The p-y spring properties were determined using soil

parameters corresponding to assumed properties of USGS soil groups (API 1993).  The bridge

deck was designed as a typical Caltrans reinforced concrete box girder section for a three-lane

roadway.  During the nonlinear analyses, the deck was assumed to remain elastic, therefore input

into the model using elastic elements and cracked stiffness .  For this particular study, abutments

were not included in the model.  Instead, the bridge ends were supported on rollers.

PSDA Intensity Measures and Demand Parameters

In this study, the IMs were limited to the spectral quantities and Arias Intensity only. 

First mode spectral displacement (SdT1), SaT1, and SvT1 are used interchangeably, as the

dispersions in the PSDMs are independent of the choice of spectral quantity.  While calibrated

for buildings that exhibit definite in-plane mode shapes, it was determined that the IM proposed

by Luco (Eq. 2) also generates effective fits for the bridge model utilized (Luco 2001).  This IM

contains terms to account for both elastic response and inelastic response by extending to a

longer period.  The extended period factor (2T1) is effective in capturing linear fits in the higher

intensity range as it can be related to µ∆ .

Sa Sa T
Sa T

Sa TLuco = ( )
( )
( )1

1

1

2
(2)

The bridge EDPs were chosen from the PEER database of experimental results for

concrete bridge components (Hose 2000).  The database details specific discrete limit states for

each of the EDPs considered.  By mirroring the component database, it is possible to directly

evaluate damage in a bridge, given the analysis demands.  The measures range from global, such as

drift ratio, to intermediate, such as cross-section moment, to local, such as stresses.  Two global

EDPs, used in current bridge design practice, are the column drift ratio (∆) and displacement

ductility (µ∆).  These are two kinematically dependent measures that can be used interchangeably

in the PSDMs.  The other EDPs that yield optimal PSDMs are maximum column moment

(Mmax), and intermediate EDP, and steel material stress (σsteel), a local EDP.

PSDA Analysis

Nonlinear models were generated for each bridge configuration and analyzed using

OpenSees.  Modal analysis of different parameterized bridge models yields the periods of the

first two elastic vibration modes (Table 2).  The first mode shape is dominated by longitudinal

deck motion accompanied by small deck rotations near the abutments.  The second mode shape is

dominated by simple transverse motion of the deck.  Nonlinear time-history analyses were

performed on all bridge configurations, using earthquakes in all bins.  The final step in PSDA is to

combine all the analyses into PSDMs, which relate ground motion specific IMs to class-specific

EDPs.  Given the wide array of IMs and EDPs for every analysis, the optimal models were

chosen.  Optimal is defined as practical, sufficient, effective, and efficient, as verified for the

optimal models used below (Mackie 2002).



Table 2. Bridge first and second mode periods for sample bridge configurations.

Configuration T1,longitudinal T2,transverse Configuration T1,longitudinal T2,transverse

Base bridge 0.64 0.55 ρs,long = 0.01 0.66 0.58

L = 27 m (1080 ) 1.18 1.00 ρs,long = 0.03 0.62 0.53

L = 37 m (1440 ) 1.87 1.58 ρs,long = 0.04 0.61 0.51

L = 55 m (2160 ) 3.92 3.28 Ksoil = A 0.62 0.53

L/H = 3.5 0.48 0.41 Ksoil = C 0.67 0.59

L/H = 1.8 0.82 0.72 Ksoil = D 0.79 0.70

L/H = 1.2 1.21 1.08 Wt = 0.25 0.68 0.59

Dc/Ds = 0.67 0.72 0.64 Wt = 0.5 0.74 0.64

Dc/Ds = 1.0 0.49 0.39 Wt = 0.75 0.80 0.69

Dc/Ds = 1.3 0.39 0.30 Wt = 1.50 0.96 0.83

Effectiveness and efficiency of a demand model is defined here for investigation of

parameter sensitivity.  Effectiveness describes the data fit.  It is assumed the EDPs follow a log-

normal distribution (Shome 1999).  An equation describing the demand model can be written (Eq.

3), to which a linear regression in log-log space can be applied to determine the coefficients. 

Demand models lending themselves to this form allow closed form integration of Eq. 1 and

casting of the entire framework in an LRFD type format. This was accomplished for steel

moment frames in the SAC project (FEMA 2000).  Efficiency describes the scatter about the fit. 

The measure used to evaluate efficiency is the dispersion, defined as the standard deviation of the

logarithm of the demand model residuals.  A more efficient demand model requires a smaller

number of nonlinear time-history analyses to achieve a desired level of confidence.

EDP a IM b= ( ) (3)

In each of the following models, the data is plotted on a log-log scale, with the EDP on the

abscissa and the IM on the ordinate.  This is the standard method for plotting any IM-EDP

relationship, however, the intensity is still regarded as the dependent variable.  A regression

analysis of the data yields linear equations (Eq. 4 ), where A and B are the coefficients of a linear,

or piecewise-linear regression in the log-log coordinate space.  The dispersion values for each

regression analysis are listed in each corresponding figure window.  In this particular study, a

bilinear least squares fit was made to reduce dispersion, as necessary.  Each demand model is

constructed in the longitudinal and the transverse direction independently.

log( ) log( )EDP A B IM= + (4)

Design Parameter Sensitivity

The sample PSDMs formulated in this section make use of spectral IMs and the EDPs

defined above.  The consequence of this choice of demand model is the period dependence of the

IM.  Since the initial elastic stiffness is used to compute the measure of SdT1, design parameters

that vary the stiffness of the bridge system will cause intensity shifts in the demand models for a

given earthquake.  Alternate IMs, which introduce more dispersion, are Arias Intensity and PGV.



 To alleviate the IM period dependence, these IMs can be used when comparing demand

measures.  The result is a single line of constant intensity parallel to the EDP axis.

Specifically, parameters used in this study are L/H, Dc/Ds, L, and Ksoil.  They are chosen

as they affect the period of the bridge, evident in the period differences within parameter groups

(Table 2).  The initial stiffness of the bridge is only minimally influenced by the amount of

reinforcement (longitudinal and transverse) in the reinforced concrete column section.  The only

parameter that alters the mass, and accordingly the spectral values, is the additional dead weight,

Wt.  In order to understand the effect of design parameters, constant intensity lines have been

added to the figures below.
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Figure 1. L sensitivity, SdT1-µ∆. Figure 2. L sensitivity, SaT1-Mmax.

Two optimal models for the span length parameter (L) sensitivity are shown in Figs. 1

and 2, respectively.  Also shown on the figures are sample design trends when evaluating

performance by varying the span length.  Reducing the bridge span directly reduces the µ∆

demand.  The same is true of ∆ as they are related by properties of the column.  The fits in Fig. 1

provide desirable relationships, as they are linear, leading to simplified design equations.  Fig. 2 is

typical of the reduced dispersion obtained by a bilinear least squares fit.  Also of note is the trend

toward reduced dispersion in more flexible structures, given L, µ∆, and Sd.  This trend is opposite

to many other models observed elsewhere (Mackie 2002).

The span- to column height-ratio (L/H) parameter models exhibit the same behavior as

span length models when considering Mmax and ∆.  The span is held constant while column

heights are varied to the specification of the parameter.  Shown in Fig. 3 is the model pairing ∆
with SaLuco using a linear fit.  Increasing stiffness results in reduced demand at a given intensity. 

Fig. 4 shows the trends in models that use local demand quantities, such as σsteel in this instance. 

This figure indicates that increased stiffness does not result in improved performance for all

intensity levels, and local EDP models exhibit high efficiency.  The slope of the fits corresponds

directly to the rate of change of performance (demand).  Steep slopes result in minimal demand

changes, while shallow slopes produce large demand reductions for small variations in design

parameter values.  This will be performed later in a separate publication with more data.
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Figure 3. L/H sensitivity, SaLuco-∆. Figure 4. L/H sensitivity, SdT1- σsteel.

Variation of column-to-superstructure dimension ratio (Dc/Ds) is based on varying the

column diameter as the superstructure depth and properties are held fixed throughout.  Therefore,

for higher stiffness columns (larger diameter), a larger performance gain is realized (Figs. 5 and 6).

 The design parameter (and thus period) dependent change in dispersions between a period-

dependent (Fig. 5) and period-independent (Fig. 6) IM can be assessed directly.  Piecewise linear

fits with negative slopes are merely a function of fewer data points in the high intensity range and

subsequent attempts by the bilinear fit algorithm to reduce dispersion.
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Figure 5. Dc/Ds sensitivity, SdT1-∆. Figure 6. Dc/Ds sensitivity, Arias I.-µ∆.

The steel reinforcement ratio (ρs) is one of the parameters not causing intensity shifts in

spectral plots.  Using the optimized linear IM, SaLuco, the reduction in demand can be

immediately correlated to the design strength (Fig. 7).  A linear increase in reinforcement does not

correspond to a linear decrease in demand, however.  The sensitivity of performance at lower

reinforcing ratios is more pronounced.  Similarly for forces, increasing the reinforcing amount has

a drastic affect on the amount of moment attracted to the column (Fig. 8).  Evident are two linear

regimes for each design parameter, as may be expected of an idealized bilinear moment-curvature

relation of the column cross-section. 
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Figure 7. ρs sensitivity, SaLuco-µ∆. Figure 8. ρs sensitivity, SdT1-Mmax.
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Figure 9. Wt sensitivity, SaT1-Mmax. Figure 10. Ksoil sensitivity, SaT1-Mmax.

As seen in Table 2, the small change in period attributed to bridge mass results in a

similarly small moment demand reduction.  However, when a large mass is considered (150%),

significant P-∆ effects cause an increase in moment demand, as shown in Fig. 9.  In the context of

the response spectrum, larger mass can be equated with a flexible structure, or longer period. 

Similar to Fig. 2 then, dispersions decrease with longer period design parameter models, however,

the period ranges covered by these parameters are significantly longer than any of the other

parameters considered.  This phenomena is independent of whether a force or displacement based

EDP is used, given the L or Wt design parameter.

Fig. 10 shows the relationships for variation of soil stiffness, Ksoil.  While there is a

reduction in demand when considering either a rock or soft soil site, the difference between a

USGS B or C site is small.  Again, the negative bilinear fit slopes are a result of large dispersion in

a few data points at high intensity levels.

Design Trends

Given the trends outlined in the models above, one model (Fig. 6) is selected in order to
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develop a set of design equations using design parameter Dc/Ds that can be used explicitly by

designers without coupling to Eq. 1.  In order to facilitate ease of use, a model with period

independence is selected.  This is done at the expense of efficiency, albeit eliminating T as a

design variable directly.  The use of SdT1 (Fig. 5) instead of Arias Intensity would have resulted in

a decrease in dispersion of approximately 33%, more for low T.

Using the regression data and Eq. 4, the design equation can be written as Eq. 5.

ln( ) . . . . . . ln( )EDP x x x x IM= − +( ) + − + +( )5 84 11 81 1 23 1 08 1 85 0 0212 2
(5)

with x=Dc/Ds, EDP=µ∆, and IM=Arias Intensity.  For a particular case of x=1.15, the design

equation reduces to Eq. 6.

ln( ) . . ln( )EDP IM= − +4 623 0 721 (6)

For example, in order to reduce µ∆ from 3 to 2 (33% reduction), given an earthquake event with

an Arias Intensity of 750 cm/s, the polynomial in Eq. 5 can be solved.  The resulting design

requires increasing the column diameter ratio from 0.65 to 0.90 (38% increase).  Whereas,

reducing µ∆ from 2.5 to 1.67 (33%) requires diameter increase from 0.78 to 0.99 (27%).

Conclusions

The PSDMs described in this paper can be used directly by designers as structural

demand hazard curves.  They allow assessment of the effects of structural design parameter

variations on structural performance.  Design decisions can be made on the trade-off between

quantifiable performance levels and the resulting changes in design and material requirements, as

shown by design Eq. 5 and 6. While these equations are predictive for all ranges, the modularity

of the approach allows subsequent resolution refinement of both parameter ranges as well as the

parameters themselves.

Additionally, cast as a component model in a performance-based earthquake engineering

framework, such as Eq. 1, PSDMs provide the probabilistic relationship between ground motion

IMs and structure-specific EDPs.   The IM side can be coupled with hazard models and the

EDPs to capacity models in order to compute probabilities of exceedance of such economic

variables as repair cost.  Armed with repair cost data, owners can establish their own

performance criteria using economic considerations.
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