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ABSTRACT

Probabilistic Seismic Demand Models (PSDMs) are an important component of the PEER (Pacific
Earthquake Engineering Research Center) probabilistic performance-based seismic design framework. A
PSDM defines a relationship between a seismic hazard Intensity Measure (IM), such as spectral
displacement at the fundamental period of the bridge, and a structure-specific Engineering Demand
Parameter (EDP), such as maximum column curvature.  It provides a probability of exceeding an EDP
value, given a value of associated IM.   PSDMs are computed using a probabilistic seismic demand analysis
procedure.

This paper presents PSDMs developed for multi-span highway overpass bridges typical for California.
These overpass bridges have two, three or four spans, circular columns with integral pile shafts, and
continuous box girder superstructures.  Finite element models of different configurations for each span type
were developed in OpenSees.  Parameters of these base models were then varied to cover a range of typical
bridge designs. Each parametric bridge model was subjected to 80 ground motions recorded in California,
and non-linear time-history response computed.

A statistical analysis of the computed responses was used to develop a suite of bridge PSDMs.  In this
paper PSDMs that demonstrate commonality with optimal PSDMs derived for single-bent bridges are
presented.  The influence of multiple bridge spans on their seismic behavior, such as the effect of higher
mode response, is also investigated.  PSDMs help to illustrate the effect of variation of span length and
span number on bridge performance and give designers a tool to optimize the layout of the bridge for the
expected level of seismic performance.

Keywords:  performance-based design, seismic hazard intensity measures, structural demand measures, probabilistic
seismic demand model, multi-span bridges.

INTRODUCTION
The advances in performance-based earthquake engineering using such probabilistic

frameworks as that developed by the Pacific Earthquake Engineering Research Center (PEER)
have motivated more careful scrutiny of each framework component.  System performance
objectives are de-aggregated into several interim models involving measures of capacity, demand,
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and hazard.  Structural performance in the demand model can be evaluated in terms of
Engineering Demand Parameters (EDPs), as affected by ground motion hazard evaluated in terms
of  Intensity Measures (IMs).

These intermediate variables should be chosen such that probability conditioning is not
carried over from one model to the next.  Additionally, the uncertainties over the full range of
model variables needs to be systematically addressed and propagated, making the selection of
each interim model critical to the process.  Much research in the structural and geotechnical areas
has gone into the selection of the optimal IM-EDP pairs for given classes of structures,
specifically California highway bridges in this case.

Findings from earlier work on this relationship for single-bent highway bridges is extended to
PSDMs developed for multi-span bridges in this paper.  Of particular interest is whether optimal
PSDMs remain optimal for all bridge bent configurations considered because as bridge designs
become more complex, it is less likely they can be expected to respond in single degree of
freedom fashion.  PSDMs give designers a tool to enable optimization of bridge layout for the
expected level of seismic performance specific to their site.   Not only can they be used to assess
design parameter variation on response, but also to demonstrate whether higher mode response
contributes significantly as irregularity of the bridge is increased.

MULTIPLE-SPAN BRIDGE MODELS
In this study, typical new California highway overpass bridges are selected as the class of

structures for demand analysis.  Configurations in this study are limited to 1-, 2-, and 3-bent,
single column per bent, reinforced concrete bridges, with spans that are not necessarily equal.
This selection of spans is intended to cover a large range of frames used in stand-alone analyses.
These are typical of overpass bridges in longitudinal arrangement separated by expansion joints,
where individual frames are expected to perform independently.

Common to all bridges are single-column bents anchored below grade by Type I integral pile
foundations.  Superstructures utilized are simple reinforced concrete box girders without pre- or
post-tensioning.  To allow for modeling of abutments or expansion joints at either end of the
frames, the extreme span ends are given seat-type configurations.  All designs follow
specifications in the Bridge Design Specification and Seismic Design Criteria (Caltrans 1999).

For each configuration, bridge design can be varied through a series of design parameters.
These include such quantities as skew, span length (L), span to column height ratio (L/H), steel
and concrete nominal strength properties (fy, f'c), amount of longitudinal and transverse column
reinforcement (ρs,long, ρs,trans), ratio of column diameter to superstructure depth (Dc/Ds), soil
properties along the pile shafts (Ksoil), additional bridge dead weight (Wt), and various abutment
models.  The single-bent base bridge configuration includes two 18.2 m (60 ft) spans, a single-
column bent 7.6 m above grade (30 ft), with a 1.6 m (5.25 ft) diameter circular column, 2%
longitudinal reinforcement, and 0.7% transverse reinforcement.  The 2-bent base configuration
includes 27.4-36.6-27.4 m (90-120-90 ft) spans, 7.6m (30 ft) above grade columns of diameter
1.7 m (5.6 ft), 2% longitudinal, and 0.8% transverse reinforcement.  The 3-bent continues the
same configuration as the 2-bent, adding another 36.6 m (120 ft) interior span.  All base bridges
are on a USGS class B (NEHRP C) soil site.

PROBABILISTIC SEISMIC DEMAND ANALYSIS

The Probabilistic Seismic Demand Model (PSDM) is the end product of Probabilistic Seismic
Demand Analysis (PSDA), detailed elsewhere (Luco 2001).  As utilized, PSDA involves five



steps.  First, a set of ground motions, representative of regional seismic hazard, is selected or
synthesized.  Intensity Measures (IM) descriptive of their content are computed.  Second, the
class of structures is defined as above.  Associated with multiple span bridges are a suite of
Engineering Demand Parameters (EDP) which can be used to assess structural performance under
the considered motions.  Third, a nonlinear finite element model is generated to model the
bridges, with specific allowances for varying the design through design parameters.  Fourth,
dynamic analyses are performed until all motions and bridge model combinations have been
exhausted.  Finally, a demand model is formulated between resulting ground motion IMs and
structural EDPs.

PSDA Ground Motions

This study explicitly involves the ground motion bin approach for formulating PSDMs.  The
bin approach (Shome 1999) is used to subdivide ground motions into arbitrary bins based on
moment magnitude (Mw), closest distance (R), and local soil type.  The bins in this study are
delineated at a magnitude of 6.5 and a distance of 30 km.  Four bins with 20 ground motions
(Mackie 2001) each were obtained from the PEER Strong Motion Database
(peer.berkeley.edu/smcat), and are characteristic of non-near-field motions (R >15 km) recorded
in California.  All ground motion records were scaled by a factor of two and sampling frequency
reduced to 50 Hz.

The IMs associated with the above motions are limited to the spectral quantities, Arias
Intensity, and peak ground velocity (PGV) only.  First mode spectral displacement (SdT1),
acceleration (SaT1), and velocity (SvT1) are used interchangeably, as the dispersions in the PSDMs
are independent of the choice of spectral quantity.

PSDA Model

Bridge columns and pile shafts are modeled using three-dimensional flexibility-based beam-
column elements with fiber cross-sections in the PEER OpenSees (www.opensees.org) platform.
This element is limited to axial-flexural interaction, therefore columns develop plastic hinges in
flexure rather than experiencing shear failure.  P-∆ effects were included for the column, but no
other methods of softening were incorporated into the model.  The circular column cross-sections
have perimeter longitudinal reinforcing bars and spiral confinement.  Steel models include an
elastic-plastic oscillator with Bauschinger effect, hysteretic damping, and 1.5% strain hardening
for the steel.  Confined and unconfined reinforced concrete use the Kent-Scott-Park constitutive
relations.

Soil-pile interaction was modeled using bilinear p-y springs at varying depths over the length
of the pile shafts.  The p-y spring properties were determined using soil parameters corresponding
to assumed soil properties.  The bridge deck was designed as a typical Caltrans reinforced
concrete box girder section for a three-lane roadway.  During the nonlinear analyses, the deck was
assumed to remain elastic, therefore input into the model using elastic elements and cracked
stiffness'.  Abutments are modeled as simple elastic-plastic spring-gap elements, with allowance
for longitudinal, transverse, and vertical stiffness and mass.  In order to maximize the column
demand, the stiffness' are set to zero, creating a roller condition at the abutments.

The bridge EDPs were chosen from the PEER database of experimental results for concrete
bridge components (Hose 2000).  The database details specific discrete limit states for each of the
EDPs considered.  By mirroring the component database, it is possible to directly evaluate
damage in a bridge, given the analysis demands.  The EDPs include global (drift), intermediate



(moment), and local quantities (stresses).  EDPs in this study are limited to the column drift ratio
(∆), maximum column moment (Mmax) and maximum displacement (umax).

PSDA Analysis

For each bridge design parameter variation, nonlinear models were generated and analyzed in
OpenSees.  Each analysis involves a static pushover analysis to determined yield values, a modal
analysis to determine natural frequencies, and also a dynamic time-history analysis to determine
demand.  While single bent bridges use standard static pushover techniques for both longitudinal
and transverse directions, the introduction of multiple bents requires a modification of the
procedure in the transverse direction.  Similar to the modal pushover procedure for buildings
(Chopra 2001), the distribution of lateral forces is determined from the shape of the fundamental
transverse mode, weighted by tributary mass.  Displacements at column tips are then monitored
along with shear forces induced in the columns, like base shear in buildings.

Modal analysis of each bridge configuration yields natural frequency and mode shape
information.  For the assumed roller boundary condition at the abutments, the fundamental mode
for all three bent types is in the transverse direction.  This mode involves a simple transverse
translation of the deck (Fig. 1).  The second mode involves a longitudinal translation of the
superstructure, coupled with small rotations of the columns and supports (Fig. 2).  When
abutment models are added, transverse stiffness becomes dominant due to the gap in the
longitudinal direction before abutment impact.  Hence the fundamental mode of the bridge
becomes longitudinal, and the second mode transverse.

      

FIG. 1.  Three bent bridge, 1st mode (transverse) FIG. 2.  Two bent bridge, 2nd mode (longitudinal)

With the availability of a fully three-dimensional model and transverse mode information, a
new regularity-like index (RI*) was developed to indicate the expected introduction of higher
mode response.  While the index proposed by Isakovic and Fischinger (Isakovic 2001) depends
on the analysis method, RI* is a function of the model only.
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Nonlinear time-history analyses were performed on all bridge configurations, using
earthquakes in all bins.  The resulting distribution of bridge demand values allows assessment of
aleatory variability attributed to the randomness in the ground motion source parameters.

PROBABILISTIC SEISMIC DEMAND MODELS
The final step in PSDA is to combine all the analyses into PSDMs, which relate ground

motion specific IMs to bridge-specific EDPs.  It was determined (Mackie 2002a) that the optimal
PSDMs for single bent bridges were Sa-∆ and Sa-Mmax.  Optimal is defined as practical,
sufficient, effective, and efficient.  This analysis is extended to multiple-bent bridges below.
Specifically, the PSDMs are evaluated in terms of efficiency and sufficiency.

It is assumed the EDPs follow a log-normal distribution (Shome 1999).  Efficiency describes
the scatter about the linear fit in log-log space.  The measure used to evaluate efficiency is
dispersion (σ), defined as the standard deviation of the logarithm of the demand model residuals.
Sufficiency is required to determine whether the total probability theorem can be used to de-
aggregate demand and hazard in coupled formulations such as that used by PEER (Cornell 2000).
This cannot be done if there are any residual dependencies on Mw and R.

In each of the following models, the data is plotted on a log-log scale, with the EDP on the
abscissa and the IM (dependent variable) on the ordinate.  The dispersion values for each
regression analysis are listed in each corresponding figure window.  Each demand model is
constructed in the longitudinal and the transverse direction independently.

Comparison to Single Bent

To assess the applicability of the optimal PSDMs from single-bent bridge analyses, the data
for all bent types are presented on the same plot.  Fig. 3 shows the PSDM formed between SaT1

and ∆.  Of interest is the decrease in dispersion between using SaT1 over SaT2, even though the
fundamental mode of the 2- and 3-bent bridges is in the transverse direction.  Note, however, that
this does not mean there is a relationship between transverse spectral quantities and longitudinal
deformations. Instead, this suggests the spectral quantity producing optimal dispersions may not
be a simple function of bridge modes, but a combination of them.  This approach is investigated
in part using the single-bent bridge elsewhere (Mackie 2002b).  The PSDM between SaT1 and
maximum column moment (Mmax) is shown in Fig. 4.
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FIG. 3.  Multiple bent PSDM, SaT1-∆∆∆∆ longitudinal FIG. 4.  Multiple bent PSDM, SaT1-Mmax longitudinal



In order to better understand the trends indicated in a stiffness or mass varying PSDM, it is
helpful to use a non-period dependent IM.  The PSDM formed using Arias Intensity and ∆ is
shown in Fig. 5.  While the dispersions increase, this PSDM allows the use of lines of constant
intensity to observe an increase in demand as the number of bents is decreased.

Transverse Irregularity

All of the above PSDMs can be extended to the transverse direction as well.  This is
especially critical when considering bridges with irregular transverse response.  Fig. 6 shows the
SaT1-∆ PSDM for the case of 1-, 2-, and 3-bents all with a RI* of 100% (regular).  The trends and
dispersions are similar to that in the longitudinal direction.  Furthering the assessment of which
period to use in the spectral computation, T1 improves dispersion values over the use of T2.
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FIG. 5.  Multiple bent PSDM, Arias-∆∆∆∆ longitudinal FIG. 6.  Multiple bent PSDM, SaT1-∆∆∆∆ transverse
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Given a wide variation in the span length and column stiffness' in each bent, it was still not
possible to generate a fundamental transverse mode with highly irregular behavior.  The modified
regularity index falls in the ranges of 55-100% for all configurations investigated.  As it is
possible to generate PSDMs with arbitrary IM-EDP pairs, it is constructive to investigate whether

demand



higher mode participation in highly irregular bridges considerably influences the efficiency of
PSDMs using spectral quantities for the IM.  A sample irregular bridge with transverse mode
indicated is shown in Fig. 7.  From a range of bridge configurations, the relationship between RI*
and dispersion for SaT1-∆ was developed.  From Fig. 8 it is apparent that SaT1 captures
longitudinal and transverse response, regardless of RI*.

Parameter Sensitivity

Designers can use PSDMs to assess the affect of changing certain design parameters on the
response of the bridge.  This is accomplished by varying bridge design parameters, in this case
(Fig. 9) the 3-bent bridge is chosen and the middle span lengths (L2) are being varied.  From the
line of constant intensity shown, increasing L2 increases the bridge demand as expected.  The
EDP is shifted to maximum longitudinal displacement (umax) rather than ∆ as varying L2 also
affects the column heights (L/H ratios remain constant).  Note that maximum displacement and
drift generate PSDMs with the same dispersion, therefore can be used interchangeably.  Finally,
this PSDM can be investigated to ensure there is no residual dependence on Mw and R, as
assumed.  R dependence is depicted in Fig. 10.  As desired, the slope of the lines is approximately
horizontal, indicating lack of R dependence.  The same trend is true of Mw but not shown here.
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CONCLUSION

PSDMs are a powerful tool, both as interim models in an overall probabilistic framework, and
as individual tools for assessing effects of design changes on performance.  When applied to
multiple span highway bridges, the criteria required for de-aggregation are maintained in the
resulting PSDMs, thus allowing seamless integration into the PEER framework.  More
importantly, the same IM-EDP pairs derived as optimal for single-bent bridges are also optimal
for multiple-bent.  The wide use of spectral acceleration in current practice makes it a useful
property for bridges.

As tools for designers, the PSDMs for multiple span bridges are especially useful as they are
not subject to deterioration of effectiveness or sufficiency due to bridge irregularity.  Optimality
of IM-EDP pairs is maintained across a broad range of irregular configurations.  This
standardization allows designers to evaluate bridge response without an initial requirement that a
bridge design qualify as an "ordinary standard bridge" (Caltrans 1999).
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APPENDIX I. NOTATION

The following symbols were used in this paper.
L = span length
Mmax = maximum column moment
Mw = moment magnitude
R = closest distance
RI* = modified regularity index
SaT1 = 1st mode spectral acceleration
T1 = 1st mode bridge period
T2 = 2nd mode bridge period
∆ = drift ratio

φ( )x  = mode shape normalized to  a
maximum value of 1.0
φi = value of φ( )xi


