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INTRODUCTION

Modeling the contribution of bridge abutments to overall bridge seismic response has been the

focus of a significant research effort in the past decade. Many recent studies have shown how that

abutment response significantly influences the response of short-and medium-length bridges. Some of

these studies are based on sensitivity analyses using deterministic bridge models with varying

abutment characteristics and capacities, and a relatively small number of earthquake ground motions.

In this paper, a comparison of Probabilistic Seismic Demand Models (PSDMs) obtained using

Probabilistic Seismic Demand Analysis (PSDA) is used to conduct a sensitivity study on how bridge

abutment models affect seismic demand for short- and medium-length bridges. The advantages of this

method are in a large number of earthquake ground motions used in the sensitivity analysis, and in a

probabilistic interpretation and comparison of bridge demand. Abutment capacity is not considered at

this point because of a shortage of reliable abutment capacity data. PSDMs are a part of a

performance-based seismic design framework developed by the Pacific Earthquake Engineering

Research (PEER) Center. This design framework is based on the principle of de-aggregation of

uncertainties that define probabilistic performance-based seismic design. Given a class of structures,

such as typical highway overpass bridges, PSDMs define the relation between seismic hazard and

structural demand. They are typically used to compute the probability of exceeding an Engineering

Demand Parameter (EDP), such as drift, given the value of a seismic hazard Intensity Measure (IM),

such as Arias intensity. Comparison of PSDMs for bridges with systematically varied abutment

models gives a probabilistic characterization of the effect of abutments and their importance in the

overall seismic demand for a bridge.

PROBABILISTIC SEISMIC DEMAND MODEL

The PSDM is the outcome from a Probabilistic Seismic Demand Analysis (PSDA) [1]. The

procedure used to formulate the PSDMs of interest involves five steps.  First, a set of ground motions

is selected and categorized according to Intensity Measures (IMs) descriptive of their content and

intensity.  Secondly, the class of structures to be investigated is defined, along with a suite of

Engineering Demand Parameters (EDPs) that can be measured during analysis to assess structural

performance.  Thirdly, a finite element analysis model is generated to model the class of structures

selected, with specific allowances for varying the abutments through parameters.  Fourthly, nonlinear

dynamic analyses are performed until all motions and abutment model combinations have been

exhausted.  Finally, a demand model is formulated between resulting IMs and structural EDPs.  The

PSDA process, IM and EDP definitions, and application to various PSDMs are detailed elsewhere [2].
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In this study, the IMs were limited to Peak Ground Velocity (PGV), Cumulative Absolute

Displacement (CAD), and Arias Intensity only.  The bridge EDPs used are strictly displacement

based, including global drift ratio (∆) and column section displacement ductility (µ∆).  Nonlinear

models were generated for each bridge configuration and analyzed using the PEER OpenSees

(www.opensees.org) platform.  The EDPs are assumed to follow a log-normal distribution [3].  As a

result, each of the following PSDMs is plotted in log-log space, with the EDP on the abscissa and the

IM on the ordinate.  Coefficients of a linear, or piecewise-linear regression then yield linear

equations.  The dispersion values for each regression analysis are listed in each corresponding figure. 

Each demand model is constructed in the longitudinal and the transverse direction independently.

Class of Structures and Analytical Model

Typical new California highway overpass bridges are selected as the class of structures.   The

bridges presented in this paper are designed according to Caltrans specifications [4] for reinforced

concrete bridges. Configurations in this study are limited to two-equal-span overpasses with seat-type

abutments on either end.  Common to all bridges is a single column bent continuing below grade into

a Type I integral pile foundation.

The base bridge configuration includes two 60 ft spans, a single-column bent 30 ft above

grade, with a 5.25 ft diameter circular column, 2% longitudinal perimeter bar reinforcement, and

0.7% transverse spiral reinforcement.  The base bridge is on a NEHRP C soil site.  Bridge columns

and pile shafts are modeled using three-dimensional flexibility-based beam-column elements.  This

element is limited to axial-flexural interaction, hence no shear failure is modeled.  P-∆ effects were

included for the column, but no other methods of softening were incorporated into the model. Soil-

structure interaction was modeled using bilinear p-y springs placed at varying depths along the length

of the pile shafts.  The bridge deck was designed as a typical reinforced concrete box girder section

for a three-lane roadway.  The deck was assumed to remain elastic, therefore input into the model

using elastic elements with cracked stiffness properties. Each abutment model comprises a five-

element array of gap-spring elements in the transverse direction, two gap-spring elements in the

longitudinal direction, and five gap-spring elements in the vertical direction. Different bridge

instantiations were generated by varying parameters as described below.

Abutment Models

Bounds for abutment stiffness and mass variation are based on existing abutment methods. 

First group of methods is based on the Caltrans procedure for determining longitudinal and transverse

stiffness’ and strengths of an abutment [4,5]. Longitudinal direction values are formulated by

combining passive backwall pressure, shear strength of the wall itself, and strength and stiffness of

the pile groups supporting the abutment. These stiffness and strength values have been validated in

large-scale abutment tests [6]. Transverse direction values are computed assuming a seat-type

abutment with resistance from the wing walls, shear keys, and pile group. Obtained transverse

stiffness and strength values are smaller than those obtained using Caltrans procedure. An idealized

trilinear backbone force-displacement response curve was used to model the abutments, with varied

stiffness and strength values shown in Table 1. These values were used as input parameters for the

gap-spring elements in the OpenSees bridge model, described above.

A second group of methods involves deriving the response of the soil embankments in the

transverse direction.  Assuming a symmetric embankment with defined cross-section geometry, soil

shear moduli and unit weight, Wilson and Tan determine the stiffness per unit length of the

embankment [7].  The total stiffness is then derived from an estimated wing wall length. This length



is purposely underestimated to make the transverse stiffness conservatively low. Wilson and Tan

assume that abutment longitudinal stiffness is the same as transverse and calculate the vertical

stiffness using the same cross-section approach. Using a similar procedure, Zhang and Makris

generalize to any embankment geometry and calculate transverse and vertical stiffness and damping

values for dynamic abutment response calculations [8]. Only the stiffness value is used herein. As in

Wilson, longitudinal and transverse stiffness’ are assumed the same.

TABLE 1. ABUTMENT STIFFNESS AND MASS PARTICIPATION VALUES

Proposed by
Longitudinal

Kal (k/in)

Transverse

Kat (k/in)

Vertical

Kav (k/in)
Participating
mass (k s2/in)

Caltrans [4, 5] 2215 627 NA 7.4

Maroney [6] 1080, 168 487 NA 5.7 [9]

Wilson & Tan [7] 587 587 1643 7.4

Zhang & Makris [8] 1006 1006 2817 12.6

The other fundamental factor governing abutment response is the inertial force it generates

during an earthquake. This force is included in the analysis using a concentrated mass at the

abutments.  Coupled with the stiffness quantities defined above, the abutment becomes a single degree

of freedom oscillator attached to each end of the bridge. Determining the mass participating in

abutment response is highly uncertain and is usually approximated by a critical length of the

embankment. Different researchers have proposed participating lengths that best match recorded

data [8, 9] as shown in Table 1. As suggested Wissawapaisal and Aschheim [10], this critical length

may vary with earthquake intensity. Hysteretic damping is not included in any of the abutment

models, but 2% Rayleigh system damping is.

ABUTMENT MODEL SENSITIVITY

Sensitivity studies were performed by varying, in turn, longitudinal stiffness, transverse

stiffness, and participating mass of both abutments. Stiffness values range from 0 (no abutment case,

only rollers) to 1000 k/in. Mass values range from 0 to 8 ks
2
/in. To differentiate between the effect

of increasing abutment stiffness and mass, longitudinal stiffness’ are varied for the cases of no mass

and a median mass.  The resulting PSDMs shown below are not necessarily the optimal PSDMs for

the given IM-EDP combinations. Optimal models utilize first mode spectral acceleration for the IM.

Period independent IMs have been used in order to isolate the affect of abutment stiffness change on

the response.

Longitudinal Stiffness

Longitudinal response in the presence of varying stiffness is difficult to evaluate in the case

of bridges with seat-type abutments.  Abutment stiffness is only activated once sufficient column

deformations have caused the gap to close.  Several studies were therefore performed.  To evaluate

stiffness only, response with the case of 0 abutment mass was performed first.  For cases of large gaps

(6"), response is identical in all except the high intensity region.  In this study there is insufficient

data in this range to assess sensitivity.  Therefore, the gap was reduced to 2" to better assess stiffness



sensitivity.  Fig. 2 shows the response at varying stiffness levels.  After gap closure, stiffer abutments

reduce response.  Even the lower stiffness bound provides improved response over the no abutment

case.  Finally, a median value of mass was added to the abutments and the 6" gap study repeated.  The

added inertia at the abutments is sufficient to cause significant gap closure.  However, the mass

appears to dominate the response as there is no appreciable difference between stiffness levels.  At

very high intensities, the 1000 k/in stiffness median response begins to decrease.
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Figure 1. Kat sensitivity, PGV-∆ PSDM.
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Figure 2. Kal (2") sensitivity, Arias-∆ PSDM.

Transverse Stiffness

The effects of increasing abutment

stiffness are more readily investigated in the

transverse direction as there is no gap before

mobilizing the total abutment stiffness.  The

increase in transverse stiffness in the presence

of embankment inertia has little effect on the

response (Fig. 1).  As expected, stiffer

abutments reduce median response at all

intensity levels.  Excluding abutments from

the model yields similar results as a low

stiffness abutment in the presence of inertial

forces, especially for smaller intensities. 

Making this assumption, however, is highly

non-conservative in the high intensity region.
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Figure 3. Mass sensitivity, CAD-µ∆ PSDM.

Participating Mass

As indicated by the stiffness sensitivities in the presence of mass, the participating mass is

more critical to bridge response.  Fig. 3 shows the increasing contribution of participating mass to the

total response at higher intensities.  This verifies the observations in Aschheim [10], as reduced mass

in required to maintain a response level as intensity is increased.  Similarly, at constant intensities,

the response increases with more participating mass.



CONCLUSION

As demonstrated, PSDMs can be used as a tool to assess the sensitivity of highway bridge

overpass response to abutment parameters.  Specifically, the participating length of the

embankment, and hence the mass associated with the abutment, is the most critical parameter. 

Neglecting to include mass in the analysis under-predicts the response, even if large longitudinal or

transverse stiffness’ are applied.  In the absence of inertia forces also, global response is insensitive t o

the selection of longitudinal stiffness.  Therefore, any of the methods discussed are sufficient for

approximating the longitudinal stiffness.  Transverse stiffness values have a larger affect in the

absence of inertia, however, given the predominance of mass, transverse stiffness sensitivity is also

reduced to the point where calculated values are sufficient.  Further studies are needed to investigate

the dependence of the participating embankment length on bridge length, intensity and other factors.

As a simplified model, it is possible to conservatively analyze a given bridge with only rollers

at the abutments.  This assumption is valid only at lower intensities due to the trade-off introducing

stiffness and mass to the abutment incurs.  However, introduction of more complex abutment models

do not necessarily improve the accuracy of the solution when improperly calibrated. 
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