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Strong motion data obtained over the last decade from sites with instrumented structures and
free-field accelerographs has provided an unprecedented opportunity to evaluate empirically the
effects of soil-structure interaction (SSI) on the seismic response of structures.  Strong motion
data were gathered for 58 sites encompassing a wide range of structural systems, geotechnical
conditions, and ground shaking levels.  System identification analyses were employed with these
records to quantify the effects of inertial interaction on modal parameters of structures.  Simple
indices of free-field and foundation-level ground motions were also compared.  From these
results, the conditions under which significant SSI effects occur were identified, and simplified
analytical techniques for predicting these effects were calibrated.

For each site, system identification analyses were used to evaluate first-mode periods and
damping ratios for a flexible-base case which incorporates SSI effects, and a fixed-base case in
which only the structural flexibility is represented.  Inertial interaction effects were evaluated
from variations between fixed- and flexible-base parameters (i.e. the lengthening of first-mode
fixed-base period due to foundation translation and rocking, and the damping attributable to
foundation-soil interaction).  These inertial interaction effects were found to be significant at
some sites (e.g. period lengthening ratios of 4, and 30% foundation damping), and negligible at
others (no period lengthening and zero foundation damping).

Analytical formulations similar to procedures in contemporary building codes were used to
predict inertial interaction effects at the sites for comparison with the “empirical” results.  A
collective examination of the empirical and predicted results revealed a pronounced influence of
structure-to-soil stiffness ratio on inertial interaction, as well as secondary influences from
structure aspect ratio and foundation embedment ratio, type, shape, and non-rigidity.  The
analytical predictions were generally found to be reasonably accurate, with some limitations for
deeply embedded and long-period structures.
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NON-TECHNICAL PROJECT SUMMARY

Recent improvements in seismological source modeling and the analysis of travel path and site
response effects have led to significant advances in both code-based and more advanced
procedures for evaluating seismic demand for structural design.  A missing link, however, has
been an improved and empirically verified treatment of soil-structure interaction (SSI) effects on
both strong motions transmitted to structures and structural response to these motions.  This
research employed system identification analysis with earthquake strong motion recordings to
quantify the effects of soil-structure interaction on seismic structural response, and used these
observations to calibrate simplified analysis procedures for predicting these effects.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Assessments of seismic loading for structures must appropriately characterize a number

of factors including the earthquake source, travel path effects, local site effects, and Soil-

Structure Interaction (SSI) effects (Fig. 1.1).  For the purpose of engineering design, source

effects generally refer to the earthquake magnitude, rupture mechanism, and location

relative to the site, while travel path effects refer to the attenuation of seismic waves as they

travel from the source through bedrock towards the site.  Site effects refer to the frequency-

dependent amplification or attenuation experienced by seismic waves propagating towards

the surface through soil.  The end result of these first three effects is a “free-field” seismic

ground motion at the ground surface, where “free-field” refers to the lack of any influence

from structural vibrations on the motion.  Finally, SSI effects account for the flexibility of

the foundation support beneath the structure and potential variations between foundation

and free-field motions.  In effect, SSI determines the actual loading experienced by the

structure-foundation-soil system resulting from the free-field seismic ground motions.

Recent major advances have been made in the treatment of site effects in the National

Earthquake Hazards Reduction Program (NEHRP) seismic design code (BSSC, 1997) and

the Uniform Building Code (ICBO, 1997).  These advances have emerged largely as a result

of clearly documented examples of significant site effects in major earthquakes such as the

1985 Mexico City and 1989 Loma Prieta earthquakes (Seed et al., 1988 and 1990), and
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subsequent studies which have calibrated simplified analytical formulations against this

“field” data (e.g. Borcherdt, 1994 and Seed et al., 1992).

The state-of-practice for engineering characterization of SSI effects for routine

structures has not undergone recent similar advancement, though the state-of-the-art in SSI

analyses has evolved steadily over the last three decades.  As described in detail in Chapter

2, available SSI analysis procedures include direct approaches in which the soil and

structure are modeled together and analyzed in a single step, and substructure approaches

where the analysis is broken down into several relatively simple steps.  Simplified

substructure-based SSI provisions are included in the NEHRP (BSSC, 1997) and Applied

Technology Council (ATC, 1978) codes, but these provisions have not been calibrated

against field performance data as has been done for site effects.  Due to the common

perception that to ignore SSI effects is conservative (a situation likely fueled by the lack of

well-documented field performance data), the SSI provisions in the NEHRP and ATC codes

are voluntary and are often neglected in practice.

The objectives of this study are to make use of strong motion data from recent

earthquakes to evaluate the effects of SSI on structural response for a range of site and

structural conditions, and then to use these results to calibrate simplified analytical

formulations similar to those in the NEHRP and ATC codes.  This project is timely in that a

wealth of strong motion data has become available in recent years from sites which are

sufficiently instrumented to enable empirical assessments of SSI effects (these sites have an

instrumented structure and, in most cases, a free-field accelerograph).  The locations of

some of the most significant earthquakes contributing to this data set are indicated in Fig.

1.2, along with the locations of sites incorporated into this study.  As other major advances
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in U.S. seismic design practice are made in the wake of these earthquakes, it is important

that SSI effects also be clearly understood by the profession and suitably incorporated into

routine practice.  This study is intended to contribute towards achieving this goal.

1.2 Organization of the Report

This study involved the collection and analysis of data from 58 sites so that insights

into SSI effects could be obtained for a wide range of conditions.  A companion report

(Stewart, 1997) presents the data collected for the individual sites and the site-specific

analytical results.  This report presents background information relevant to the study, the

compiled results for the sites, and recommendations for engineering design characterization

of SSI effects.

In Chapter 2 the key physical processes associated with SSI are described (i.e. inertial

and kinematic interaction), and simplified analytical formulations to predict SSI effects are

presented.  The emphasis is on substructuring methods for SSI analysis in which the

evaluation of free-field ground motions, foundation input motions, and inertial interaction

effects are performed separately.   The analyses performed in this study for inertial

interaction effects are generally consistent with the methodologies outlined in the NEHRP

and ATC codes.  In these analyses, inertial interaction effects are quantified in terms of (1)

the lengthening of “fixed” base first-mode period due to the flexibility of the foundation-soil

system and (2) a foundation damping factor which expresses the damping attributable to

foundation-soil interaction.  The fixed-base case includes only the flexibility of the

structure (i.e. no SSI), while the flexible-base case includes the flexibility of the
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foundation-soil system (in translation and rocking) as well as the structural flexibility.

The principal source of uncertainty in these analyses, and the main focus of the discussion,

is on the evaluation of impedance functions describing the stiffness and damping

characteristics of foundation-soil interaction.  Analyses of kinematic effects are discussed

separately for surface foundations where the primary consideration is base-slab averaging

effects, and embedded foundations where the reduction of ground motion amplitude with

depth must also be considered.  These effects are quantified by transfer function amplitudes

which express the frequency-dependent ratio of base-slab to free-field motions.

The focus of Chapter 3 is on system identification techniques used to evaluate modal

parameters of instrumented structures.  Single-output/single-input methods for

nonparametric and parametric analyses of multi degree-of-freedom systems are presented,

and the evaluation of fixed- and flexible-base modal parameters from results for different

output/input pairs are discussed.  Both fixed- and flexible-base modal parameters can be

directly evaluated when free-field motions, foundation and roof translations, and

structural base rocking are measured.  For cases where free-field or base rocking motions

are missing, procedures were developed to estimate fixed-base parameters (for missing

base rocking) or flexible-base parameters (for missing free-field motions).  The results of

these analyses for individual sites are presented in the companion report (Stewart, 1997).

In Chapter 4, the criteria used for site selection are discussed, and the range of

geotechnical, structural, and earthquake shaking conditions represented in the database are

presented.  There are two classes of site instrumentation:  (1) ‘A’ sites having both a free-

field accelerograph and an instrumented structure (45 sites), and (2) ‘B’ sites having a

structure instrumented to record base rocking and base and roof translations, but no free
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field recordings (13 sites).  Criteria for determining when free-field accelerographs at ‘A’

sites are too close or too far from structures are discussed.

Chapter 5 presents a compilation of the inertial interaction effects (i.e. period

lengthening and foundation damping factors) determined from site-specific studies, and

compares these “empirical” effects to “predictions” from the analytical formulations

described in Chapter 2.  The compiled empirical and predicted results are examined to

illustrate the strong influence of structure-to-soil stiffness ratio, as well as secondary

influences from structure aspect ratio and foundation embedment ratio, type, shape, and

non-rigidity.

Chapter 6 presents a summary of the significant SSI effects observed from these

studies and recommendations for simplified modeling techniques appropriate for

earthquake-resistant design.  Suggestions for future research and ways to improve

instrumentation configurations for buildings are also provided.
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CHAPTER 2

SIMPLIFIED ANALYTICAL PROCEDURES FOR
PREDICTING SOIL-STRUCTURE INTERACTION EFFECTS

2.1 Introduction and Problem Definition

2.1.1 Components of the Soil-Structure Interaction Problem

The deformations of a structure during earthquake shaking are affected by

interactions between three linked systems:  the structure, the foundation, and the geologic

media underlying and surrounding the foundation.  A seismic Soil-Structure Interaction

(SSI) analysis evaluates the collective response of these systems to a specified free-field

ground motion.

Two physical phenomena comprise the mechanisms of interaction between the

structure, foundation, and soil:

• Inertial Interaction:  Inertia developed in the structure due to its own vibrations gives

rise to base shear and moment, which in turn cause displacements of the foundation

relative to the free-field.

• Kinematic Interaction:  The presence of stiff foundation elements on or in soil will

cause foundation motions to deviate from free-field motions.   Three mechanisms can

potentially contribute to such deviations:  (a) Base-Slab Averaging; free-field motions

associated with inclined and/or incoherent wave fields are “averaged” within the

footprint area of the base-slab due to the kinematic constraint of essentially rigid-body

motion of the slab, (b) Embedment effects;  the reduction of seismic ground motion
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with depth for embedded foundations, and (c) Wave Scattering; scattering of seismic

waves off of corners and asperities of the foundation.

The effects of these phenomena are often described by a complex-valued transfer function

relating free-field and foundation motions, and a complex-valued impedance function

which quantifies the stiffness and damping characteristics of foundation-soil interaction.

The damping represented by the imaginary part of the impedance function is a

consequence of hysteretic damping in the soil and foundation, and radiation of seismic

energy away from the foundation through the soil.

Both the transfer and impedance functions are dependent on the finite stiffness and

damping characteristics of the soil medium.  For the fictional condition of an infinitely

stiff soil, the amplitude of the transfer function for translational motion is unity and the

phase is zero (i.e. the foundation and free-field motions are identical), and the impedance

function has infinite real parts and zero imaginary parts.  It is of some practical

significance that this unrealistic assumption of rigid soil is made when SSI effects are

ignored (which is common practice in structural design).

2.1.2 Methodologies for Soil-Structure Interaction Analysis

The general methods by which SSI analyses are performed can be categorized as

direct and substructure approaches.  In a direct approach, the soil and structure are

included within the same model and analyzed in a single step.  The soil is often

discretized with solid finite elements and the structure with finite beam elements.

Because assumptions of superposition are not required, true nonlinear analyses are

possible (e.g. Borja et al., 1992 and Weidlinger Assoc., 1978).  However, results from
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nonlinear analyses can be quite sensitive to poorly-defined parameters in the soil

constitutive model, and the analyses remain quite expensive from a computational

standpoint.  Hence, direct SSI analyses are more commonly performed using equivalent-

linear methods to approximate the effects of soil nonlinearity (e.g. FLUSH,  Lysmer et al.,

1975).

In a substructure approach, the SSI problem is broken down into three distinct parts

which are combined to formulate the complete solution.  The superposition inherent to

this approach requires an assumption of linear soil and structure behavior.  Referring to

Fig. 2.1, the three steps in the analysis are as follows:

1. Evaluation of a Foundation Input Motion (FIM), which is the motion that would occur

on the base-slab if the structure and foundation had no mass.  The FIM is dependent

on the stiffness and geometry of the foundation and soil.  Since inertial effects are

neglected, the FIM represents the effects of kinematic interaction only.

2. Determination of the impedance function.  The impedance function describes the

stiffness and damping characteristics of foundation-soil interaction.  It should account

for the soil stratigraphy and foundation stiffness and geometry, and is computed using

equivalent-linear soil properties appropriate for the in situ dynamic shear strains.

3. Dynamic analysis of the structure supported on a compliant base represented by the

impedance function and subjected to a base excitation consisting of the FIM.

The principal advantage of the substructure approach is its flexibility.  Because each step

is independent of the others, the analyst can focus resources on the most significant

aspects of the problem.
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The simplified analytical formulations which are calibrated in this study against

“empirical” data are based on the substructure approach.  Analyses of inertial interaction

effects predict the variations of first-mode period and damping ratio between the actual

“flexible-base” case (which incorporates the flexibility of both the foundation-soil system

and the structure) and a fictional “fixed-base” case (which incorporates only the

flexibility of the structure).  The flexible-base modal parameters can be used with a free-

field response spectrum to evaluate design base shear forces for the structure.  Hence,

these analyses correspond to Steps 2 and 3 of the substructure approach.  The analyses for

kinematic interaction (Step 1 of the substructure approach) predict frequency-dependent

transfer function amplitudes relating foundation and free-field motions.

SSI provisions in the Applied Technology Council (ATC, 1978) and the National

Earthquake Hazards Reduction Program (NEHRP) (BSSC, 1997) seismic design codes

are similar to portions of the inertial interaction analysis procedures described in this

chapter.  Kinematic interaction effects are neglected in the code provisions, meaning that

free-field motions and FIMs are assumed to be identical.

The literature on SSI analytical techniques is extensive, and it is not the purpose of

this chapter to review it comprehensively.  Rather, the emphasis is on providing

background for the analysis procedures used to predict SSI effects at the sites considered

in this study.  Inertial and kinematic interaction analyses are discussed in Sections 2.2 and

2.3, respectively.



14

2.2 Inertial Interaction

2.2.1 System Considered

A system commonly employed in simplified analyses of inertial interaction is shown

in Fig. 2.2.  The system consists of a single degree-of-freedom structure with height h,

mass m, stiffness k, and viscous damping coefficient c.  The base of the structure is

allowed to translate relative to the free-field an amount uf and rotate an amount θ.  The

impedance function is represented by lateral and rotational springs with complex

stiffnesses ku  and kθ , respectively.  The imaginary components of the foundation

stiffness terms represent the effects of damping.
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The simple system in Fig. 2.2 can be viewed as a direct model of a single-story

building or, more generally, as an approximate model of a multi-mode, multi-story

structure which is dominated by first-mode response.   In the latter case, h is interpreted
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as the distance from the base to the centroid of the inertial forces associated with the first

vibration mode.

2.2.2 Impedance Function

In general, the impedance function is the most poorly defined component of the

model in Fig. 2.2.  As described previously, the impedance function represents the

dynamic stiffness and damping characteristics of foundation-soil interaction.

Mathematically, an impedance function is a matrix which relates the forces (e.g. base

shear and moment) at the base of the structure to the displacements and rotations of the

foundation relative to the free-field.  The terms in the impedance function are complex-

valued and frequency dependent.  When values of impedance parameters at a single

frequency must be used (as is the case for the model in Fig. 2.2), values at the

predominant frequency of the soil-structure system are selected.

(a) Basic case

In the most general case, six degrees of freedom would be necessary for each support

point on the foundation.  In practice, however, the foundation is often assumed to be

rigid, which reduces the total degrees of freedom to six.  When considering the lateral

response of a structure on a rigid foundation in a particular direction, as is the case for the

model in Fig. 2.2, only two impedance terms are generally necessary (Eq. 2.1).  In Eq.

2.1, off-diagonal terms are neglected as they are usually small.  It should be noted that

vertical excitation and torsion are neglected in the simple impedance function in Eq. 2.1. 
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A number of analytical procedures are available for the computation of impedance

functions, many of which are summarized in Luco (1980b) and Roesset (1980).  Perhaps

the most widely used solution is that for a rigid circular foundation on the surface of a

visco-elastic halfspace (Veletsos and Wei, 1971 and Veletsos and Verbic, 1973).  This

solution accounts for the three-dimensional nature of the problem and the frequency

dependence of the stiffness and damping parameters.

In the solution for a rigid disk on a halfspace, terms in the impedance function are

expressed in the form

k k a i c aj j j= +( , ) ( , )0 0υ ω υ (2.2)

where j denotes either deformation mode u or θ, ω is angular frequency (radians/sec.), a0

is a dimensionless frequency defined by a0 = ωr/VS, r = foundation radius, VS = soil shear

wave velocity, and υ = soil Poisson ratio.  Foundation radii are computed separately for

translational and rotational deformation modes to match the area (Af) and moment of

inertia (If) of the actual foundation, as follows,

r
A

r
If f

1 2 4
4

= =
⋅

π π
(2.3)

There are corresponding different values of (a0)1 and (a0)2 as well.

The real stiffness and damping of the translational and rotational springs and

dashpots are expressed, respectively, by
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k Ku u u= α (2.4a)

c
K r
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k Kθ θ θα= (2.4c)

c
K r
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θ θ

θβ= 2 (2.4d)

The quantities αu, βu, αθ, and βθ are dimensionless parameters expressing the frequency

dependence of the results, while Ku  and Kθ  represent the static stiffness of a disk on a

halfspace, defined by

K Gru =
−
8

2 1υ
(2.5a)

( )K Grθ υ
=

−
8

3 1 2
3 (2.5b)

where G = soil dynamic shear modulus.  Presented in Fig. 2.3 are the frequency-

dependent values of αu, βu, αθ, and βθ for υ = 0.4 based on closed form expressions in

Veletsos and Verbic (1973).  These results are similar to those obtained by Luco and

Westmann (1971) for the case of a circular foundation on the surface of an elastic

halfspace.

Values of soil shear stiffness G and hysteretic damping β used in the formulation of

impedance functions should be appropriate for the in situ shear strains.  For this study,

these parameters were established from deconvolution analyses performed with the one-

dimensional site response program SHAKE (Schnabel et al., 1972).  In these analyses,

nonlinear soil behavior is simulated by the equivalent-linear technique.  Details on soil

modeling and profile depths used in these analyses are provided in Stewart (1997).  When
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compared to recorded motions, results obtained from SHAKE deconvolution analyses

have generally been well verified at shallow depths (i.e. 50 to 100 feet, e.g. Chang et al.,

1985 and Geomatrix, 1991).  Although shear strains resulting from SSI are not modeled

by these deconvolution analyses, such strains are generally small relative to the strains

associated with the free-field ground response.

Validation studies for the above and similar impedance function formulations have

been conducted by Lin and Jennings (1984) and Crouse et al. (1990) for small surface

foundations.  In the Lin and Jennings study, a 10 x 10-foot specimen structure was

subjected to sinusoidal ground vibrations generated in an excitation structure located

about 50 feet away.  The foundation impedance at the resonant frequency of the specimen

structure was derived from the experimental results, and was consistent with theoretical

predictions by Veletsos and Wei (1971).  In the Crouse et al. (1990) study, two 4 x 4-foot

slabs (one founded essentially at the ground surface and the other having 1.5 to 2.0-foot

deep piers at the corners) were subjected to sinusoidal forced vibration testing across a

range of frequencies from 10 to 60 Hz with a shaker mounted on the slabs.  Impedance

functions evaluated from these test results were compared to theoretical functions for

layered media derived from integral equations (Apsel and Luco, 1987).  The experimental

and theoretical frequency-dependent impedances agreed reasonably well given the

uncertainty in near-surface VS data at the two sites, though the agreement was

considerably better for the slab without corner piers.  Theoretical results from Apsel and

Luco (1987) and Veletsos and Verbic (1973) are nearly identical for surface foundations,

hence these experimental results effectively validate both formulations.
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Despite the demonstrated utility of the impedance function formulation by Veletsos

and Verbic, commonly encountered conditions such as nonuniform soil profiles,

embedded, non-circular, or flexible foundations, and the presence of piles or piers are not

directly modeled by these procedures.  The effects of such conditions (except piles or

piers) on foundation impedance can be approximately simulated with adjustments to the

basic solution, as discussed in Parts (b) through (e) below.

(b) Nonuniform soil profiles

Nonuniform soil profiles can often be characterized by gradual increases in stiffness

with depth, or by a very stiff layer underlying relatively soft, surficial layers.  For profiles

having gradual increases in stiffness with depth, Roesset (1980) found that using soil

properties from a depth of about 0.5⋅r gave halfspace impedances which reasonably

simulated the impedance of the variable profile.  In this study, equivalent halfspace

velocities were computed as VS = r1/tr-0, where tr-0 is the travel time for vertically

propagating shear waves to travel from a depth r1 to the ground surface.  These equivalent

halfspace velocities are often similar to the actual VS at a depth of 0.5⋅r1.  Details on the

calculation of VS for individual sites are presented in Stewart (1997).

For the case of a finite soil layer overlying a much stiffer material, the key

considerations are an increase in the static stiffness and changes in the frequency

dependent variations of stiffness and damping.  The increased static stiffnesses can be

estimated as follows (Kausel, 1974),
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where (Ku)FL and (Kθ)FL are the static horizontal and rocking stiffnesses of the foundation

on finite soil layer, and dS is the depth of the layer.  The frequency dependent variations

of stiffness terms follow the general trends for a halfspace in Fig. 2.3, but have

oscillations associated with the natural frequency of the stratum at low levels of soil

damping.  For hysteretic damping exceeding about 7%, Roesset (1980) found that the

oscillations can be neglected.  With regard to damping, the key issue is a lack of radiation

damping at frequencies less than the fundamental frequency of the finite soil layer.

Halfspace damping ratios can be used for frequencies greater than the soil layer

frequency, and a transition to zero radiation damping at smaller frequencies can be

defined per Elsabee and Morray (1977).

(c) Foundation embedment

Foundation embedment effects were investigated by Elsabee and Morray (1977) for

the case of a circular foundation embedded to a depth e into a homogeneous soil layer of

depth dS (Fig. 2.4).  It was found that the static horizontal and rocking stiffness for such

foundations [(KU)FL/E and (Kθ)FL/E] is approximated as follows for r/dS <0.5 and e/r<1:
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Coupling impedance terms were found to be small relative to (Ku)FL/E and (Kθ)FL/E for

small embedment ratios (i.e. e/r < 0.5).  Elsabee and Morray suggested that the frequency

dependence of the foundation stiffness and damping terms could be approximated as per

Eqs. 2.4a-d (which strictly apply only for a rigid, circular surface foundation on a

halfspace).  These recommendations have been adopted into the NEHRP (BSSC, 1997)

code provisions, with the exception of the frequency dependence stiffness terms (α)

which are assumed to be unity.
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Approximate normalized impedance factors for a cylindrical foundation embedded in

a halfspace obtained from Eq. 2.7 are compared to a more rigorous analytical solution

derived from integral equations (Apsel and Luco, 1987) in Fig. 2.5.  The approximate

curves were computed as the product of dimensionless impedance factors αu, αθ, βu, and

βθ and the first modifier on the right hand side of Eq. 2.7.  Both solutions apply for a

uniform visco-elastic halfspace with β=1%, ν = 0.25, and perfect bonding between the

soil and foundation.  The comparisons are generally poor, with the exception of stiffness
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terms αu and αθ, which are reasonably well predicted for e/r ≤ 0.5, and in the case of αθ,

for a0 < 1.5 as well.  In the case of damping, the comparison in Fig. 2.5 is essentially one

of radiation damping effects due to the low β value in this example.  The approximation

grossly underpredicts radiation damping effects even at moderate embedments (e.g. e/r =

0.5) at all frequencies.  However, this underprediction of radiation damping may be

tolerable in some situations, because at the low frequencies typical of many structures

(a0<1), radiation damping effects are small relative to hysteretic soil damping, and

consequently estimates of total foundation damping may be reasonable.

Field vibration testing of a small (10 x 10 ft) embedded structure (Lin and Jennings,

1984) found that Elsabee and Morray’s predictions of the embedment effect on rocking

stiffness and damping were fairly accurate, especially for low embedment ratios (e/r =

0.44).  However, translational stiffness and damping were significantly underpredicted for

both embedment ratios tested (0.44 and 0.90).  Forced vibration testing of a nine-story

reinforced concrete building with a single-level basement (e/r = 13/45 ft = 0.29) by Wong

et al. (1988) revealed low frequency (a0 ≈ 0.2 to 0.4) impedance function ordinates for

rocking that were in excellent agreement with the Apsel and Luco theoretical predictions

(and, by inference, the approximate solution as well).  Horizontal stiffness was found to

be overpredicted by the Apsel and Luco theory by about 20 to 40%, while damping

comparisons were inconclusive.

In this study, embedment effects on foundation impedance were evaluated with two

separate analyses.  The first analysis is based on static foundation stiffnesses established

per Eq. 2.7 (with coupling terms assumed to be zero) and frequency dependent

modifications to stiffness and damping terms with the αu, αθ, βu, and βθ factors in Eq.
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2.4a-d.  The second analysis, formulated by Bielak (1975), more rigorously incorporates

soil/basement-wall interaction effects into the foundation impedance function, and hence

is similar to Apsel and Luco (1987).  This second formulation is discussed further in

Section 2.2.3.

(d) Foundation shape

Conventional practice has been that foundations of arbitrary shape are analyzed as

equivalent circular mats, provided that the foundation aspect ratio in plan (L/B) is less

than 4:1 (Roesset, 1980).  As noted in Eq. 2.3, an equivalent radius for translational

stiffness is derived by equating the area of the mats, while an equivalent radius for

rocking stiffness is derived by equating the moment of inertia of the mats.  These criteria

have been adopted into the NEHRP (BSSC, 1997) code.

Dobry and Gazetas (1986) reviewed the literature for impedance function solutions

for foundations of various shapes including circles and rectangles with aspect ratios of 1

to ∞.  Their results generally confirmed that the use of equivalent circular mats is an

acceptable practice for aspect ratios < 4:1, with the notable exception of dashpot

coefficients in the rocking mode.  As shown in Fig. 2.6, dimensionless radiation damping

coefficients crx and cry (for longitudinal and transverse rocking, respectively) are seen to

be underestimated by the equivalent disk assumption at low frequencies.  This is a

consequence of the tendency for rocking vibrations to be dissipated into the soil primarily

via the ends of the foundation.  Hence, as L/B increases, the two ends act increasingly as

independent wave sources with reduced destructive interference between waves

emanating from the foundation.  For the case of longitudinal rocking, damping can be
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underpredicted by more than 100% for aspect ratios of L/B ≈ 4.  For higher frequencies

(a0 > 3 - 4, not shown), the results for the various aspect ratios converge to crx, cry ∼ 1.

This occurs because these high frequency waves have short wavelengths, so destructive

interference between the waves decreases.

In this study, radiation dashpot coefficients for oblong, non-circular foundations were

corrected according to the results in Fig. 2.6.  This correction was made by multiplying

the radiation damping component of the disk dashpot coefficients from Part (a) by

(cr)L/B/(cr)L/B=1, where the cr values were determined at the a0 value corresponding to the

structure’s fundamental frequency.

(e) Foundation flexibility

The effects of foundation flexibility on impedance functions for surface disk

foundations have been investigated by Iguchi and Luco (1982) for the case of loading

applied through a rigid central core, Liou and Huang (1994) for the case of thin perimeter

walls, and Riggs and Waas (1985) for the case of rigid concentric walls (Fig. 2.7).  These

studies have generally focused on foundation flexibility effects on rocking impedance; the

horizontal impedance of non-rigid and rigid foundations are similar (Liou and Huang,

1994).

A key parameter in the evaluation of foundation flexibility effects on rocking

impedance is the ratio of the soil-to-foundation rigidity,

η = Gr
D

3
(2.8)

in which G is the soil dynamic shear modulus and D is the foundation’s flexural rigidity,
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( )D
E tf f

f

=
−

3

212 1 υ
(2.9)

where Ef, tf, and νf are the Young’s modulus, thickness, and Poisson’s ratio of the

foundation, respectively.  For the case of rocking impedance, the significance of

foundation flexibility effects depends on the wall configuration on the disk.  As shown in

Fig. 2.8, these effects are most important for the rigid central core case, for which

significant reductions in stiffness and damping are possible.  The reductions are greatest

for narrow central cores and large values of relative soil/foundation rigidity (i.e. η = 10 to

1000).  For the case of thin perimeter walls, the foundation impedances are reasonably

close to rigid base values for a0 < 3.  For the concentric wall case considered by Riggs

and Waas (1985), it was similarly found that flexible foundations behave similarly to

rigid foundations at low frequencies.
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In this study, corrections for foundation flexibility effects were made to rocking

impedance terms for structures having central core shear walls using the curves in Fig.

2.8.  This correction was made by multiplying the disk rocking stiffness and dashpot

coefficients from Part (a) by (αθ)flex/(αθ)rigid and (βθ)flex/(βθ)rigid, respectively, where the αθ

and βθ values were determined at the a0 value corresponding to the structure frequency.

No corrections to rocking impedance terms were made for other wall configurations, nor

were corrections applied to horizontal impedance terms.

(f) Piles or piers

The influence of pile foundations on impedance functions cannot easily be accounted

for with simplified analyses.  Many analytical techniques are available for evaluating the

impedance of pile supported foundations (e.g. Novak, 1991 and Gohl, 1993), but a review

of such techniques is beyond the scope of this chapter.  The effects of piles/piers were not

explicitly accounted for in the development of impedance functions for the analyses in

this study.  Instead, the influence of foundation type on the final results was evaluated

empirically, as discussed in Chapter 5.

2.2.3 Results

Veletsos and Meek (1974) found that the maximum seismically induced

deformations of the oscillator in Fig. 2.2 could be predicted accurately by an equivalent

fixed-base single degree-of-freedom oscillator with period 
~
T  and damping ratio 

~ζ .

These are referred to as “flexible-base” parameters, as they represent the properties of an
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oscillator which is allowed to translate and rotate at its base (i.e. Fig. 2.2).  The flexible-

base period is evaluated from (Veletsos and Meek, 1974),

~
T
T

k

k

kh
ku

= + +1
2

θ
(2.10)

where 7 is the fixed-base period of the oscillator in Fig. 2.2 (i.e. the period that would

occur in the absence of base translation or rocking).  The flexible-base damping ratio has

contributions from the viscous damping in the structure as well as radiation and hysteretic

damping in the foundation.  Jennings and Bielak (1973) and Veletsos and Nair (1975)

expressed the flexible-base damping 
~ζ  as

( )
~ ~

~
ζ ζ ζ= +0 3

T T
(2.11)

where 
~ζ0  is referred to as the foundation damping factor and represents the damping

contributions from foundation-soil interaction (with hysteretic and radiation components).

A closed form expression for 
~ζ0  is presented in Veletsos and Nair (1975).

The relationships between the fixed- and flexible-base oscillator properties depend

on aspect ratio h/r2, soil Poisson Ratio υ, soil hysteretic damping ratio β, and the

following dimensionless parameters:

σ = V T hS (2.12)

γ
ρπ

= m

r h1
2

(2.13)

Parameters σ and γ represent the ratio of the soil-to-structure stiffness and structure-to-

soil mass, respectively.  For conventional building structures, σ > 2 and γ ≈ 0.1 to 0.2 [a
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representative value of γ = 0.15 is recommended by Veletsos and Meek (1974)].  Both

~
/T T  and 

~ζ0  are sensitive to σ, while the sensitivity to γ is modest for 
~

/T T  (± 10 to

15% error), and low for 
~ζ0  (Aviles and Perez-Rocha, 1996).

For the case of a rigid circular foundation on the surface of a visco-elastic halfspace

(impedance defined in Section 2.2.2), analytical results from Veletsos and Nair (1975) for

~
/T T  and 

~ζ0  vs. 1/σ are shown in Figs. 2.9 and 2.10, respectively.  The results show that

~
T  is always lengthened relative to 7, and that the period lengthening ratio (

~
/T T )

increases with 1/σ and h/r for h/r > 1.  This implies that the ratio of structure-to-soil

stiffness (1/σ) is a critical factor controlling the period lengthening, and that for a given

value of 1/σ, period lengthening increases for taller structures (i.e. higher h/r) with more

overturning moment.  The flexible base damping 
~ζ  can actually increase or decrease

relative to ζ depending on the period lengthening in the structure and the foundation

damping factor 
~ζ0 .  In Fig. 2.10, 

~ζ0  is seen to increase with 1/σ and decrease with h/r,

indicating that lateral movements of the foundation (which dominate at low h/r) dissipate

energy into soil more efficiently than foundation rocking (which dominates at high h/r).

The contributions to foundation damping from radiation and hysteretic damping are

compared in Fig. 2.10; the significance of hysteretic damping is seen to increase with

increasing h/r due to the decreased radiation damping effect.

For the case of a rigid circular foundation embedded into a visco-elastic soil,

analytical results for 
~

/T T  and 
~ζ0  vs. 1/σ are shown in Fig. 2.11 for the analytical

formulation presented above (i.e. the Veletsos and Nair (V & N) model) as well as two
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others [Bielak (1975) and Aviles and Perez-Rocha (A & P-R), 1996].  The V & N and

Bielak solutions are for a foundation embedded into a halfspace, while the A & P-R

solution is for a thick finite layer (dS/r = 10).  The SSI models solved in the Bielak and V

& N approaches are similar, except that dynamic soil/basement-wall interaction effects on

foundation impedance are incorporated into the Bielak formulation.  Similarly, the only

significant difference between the A & P-R and Bielak models is the finite soil layer used

by A & P-R.  For the plots in Fig. 2.11, embedment corrections for the V & N approach

were made according to Eq. 2.7.  For the case of zero embedment (e/r = 0), the three

formulations yield essentially identical results with the exception of relatively high

damping from the A & P-R model.  For the case of e/r = 1, increases in damping and

decreases in period lengthening are predicted by all three models.  The Bielak model

yields the highest damping predictions.  V & N and A & P-R indicate smaller damping

due to the lack of a dynamic basement wall-soil interaction model (V & N) and the finite

soil layer (A & P-R).  It should be noted that the embedment ratio e/r = 1 is approaching

the limit of validity for the expression in Eq. 2.7, and results from the three formulations

are more consistent for lower e/r.

In this study, the analysis by Veletsos and Nair (1975) was generally used with

appropriate modifications to the foundation impedance for nonuniform soil profiles,

foundation embedment (i.e. Eq. 2.7), foundation shape, and foundation flexibility effects.

To more accurately model the stiffness and damping of embedded foundations, analyses

were also performed using the Bielak (1975) approach with appropriate modifications for

nonuniform soil profiles and foundation shape and flexibility effects.  For subsequent
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reference, these analyses are termed the “modified Veletsos” and “modified Bielak”

formulations.

2.2.4 Calibration of Analysis Results with Field Performance Data

Research efforts have been undertaken to calibrate analytical techniques for SSI

using seismic field performance data from the Humboldt Bay Nuclear Power Plant

(Valera et al., 1977) and the Lotung 1/4-scale containment model (Bechtel Power

Corporation, 1991).  Several test structures have also been examined by Japanese

researchers (e.g. a 12.5 m tower, Ganev et al., 1994, and a 31 m scaled containment

structure, Hanada et al., 1988).  The objectives of these studies were generally to compare

recorded structural motions with predicted analytical motions.

The instrumented structure at the Humboldt site essentially consists of a deep caisson

(there is no significant above-ground structure), so the simplified analytical techniques

discussed above are not applicable.  Fixed- and flexible-base structural periods and

damping ratios were evaluated for the Lotung site, though these parameters were not

compared to analytical predictions of 
~

/T T  and 
~ζ0 .  However, relatively sophisticated

analyses of the soil-structure system using the SASSI (Lysmer et al., 1981) and CLASSI

(Luco, 1980b) programs were successful at reasonably accurately reproducing the overall

structural response, and hence by inference the flexible-base modal parameters.  The

analytical formulation in the CLASSI program is based on a substructure procedure

similar to that outlined in this section.  The accuracy of the CLASSI analyses relative to

the Lotung data reinforces the validity of these substructure procedures.  Similar

confirmation of simple SSI models was obtained in back-analyses of data from the
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Japanese test structures.  It should be noted that the Humboldt and Lotung sites were

included in this study as sites A3 and A46.  Data from the Japanese sites could not be

obtained for this study.

A number of studies have developed two- or three-dimensional frame models of

instrumented structures, verified the model’s accuracy using periods identified from

recorded data, and investigated SSI effects by varying the base fixity condition (e.g.

Wallace and Moehle, 1990 and Fenves and Serino, 1992).  The study by Wallace and

Moehle examined the response of a 22-story shear wall building in Chilé under forced

vibration testing, low-level (0.05g) earthquake shaking, and moderate-level (0.18g)

shaking.  From three-dimensional frame analyses, the period lengthening was found to be

15%, 22%, and 43% in the forced vibration and earthquake shaking conditions,

respectively.  For the moderate-level shaking condition, the ATC (1978) procedure

predicted 37% period lengthening, which is in good agreement with the 43% from frame

analyses.  Comparisons were not made for the lower-level shaking conditions.  Fenves

and Serino examined the response of a 14-story concrete-frame warehouse structure (site

A29 in this study) during the 1987 Whittier Earthquake.  Fixed-base periods were not

reported, but changes in base shear resulting from SSI effects were found to be reasonably

predicted by the ATC procedure (using smoothed free-field spectra).

Poland et al. (1994) analyzed the effects of SSI on base shear in four buildings using

two simple analytical techniques (FLUSH and ATC code provisions) and compared these

results to reductions in the base shear calculated using a single degree-of-freedom

structural model subjected to recorded free-field and foundation motions (so-called “time

history” analyses).  Poor agreement between the analytical and “time history” results was
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found.  However, it is not clear how to interpret these results as the modal parameters

used in the “time history” analyses are not reported.  SSI effects on structural response

can be more rationally assessed by comparing fixed- and flexible-base modal parameters.

It should be noted that the four buildings studied by Poland et al. are also examined in

this study (sites A6, A10, A12, and A29).

In addition to the above research efforts, a number of calibration studies for

impedance functions have been performed (see Section 2.2.2), and modal parameters of

several structures have been evaluated using various system identification techniques

with some inferences made about SSI effects (see Stewart, 1997 for references).

However, fixed- and flexible-base modal parameters were seldom directly compared in

these studies.

It appears that no previous studies have attempted to evaluate on a large scale the

fixed- and flexible-base modal parameters of structures subjected to significant levels of

seismic excitation for the purpose of calibrating simplified analytical procedures such as

those in the ATC and NEHRP codes.  This is the principle objective of this study.

2.3 Kinematic Interaction

As noted in Section 2.1, kinematic interaction generally results from base-slab

averaging, deconvolution/embedment effects, and wave scattering effects.  At present,

relatively little is known about the effects of wave scattering on base-slab motions, as its

effects are almost invariably combined with more significant base-slab averaging and

embedment effects, which are the focus of this section.
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2.3.1 Base-Slab Averaging

For vertically incident, coherent wave fields, the motion of a rigid surface foundation

is identical to the free-field motion.  Base-slab averaging effects result from wave fields

which have an angle of incidence relative to the vertical, αV, or which are incoherent in

time and space.  Incoherence of seismic waves results from different wave ray paths (i.e.

due to laterally traveling seismic waves in the underlying bedrock) and local

heterogeneities in the geologic media through which the seismic waves have traveled.

In the presence of incoherent or non-vertically incident wave fields, translational

base-slab motions are reduced relative to the free-field, and torsional rotation of the base-

slab is introduced.  Rocking of the base-slab can also occur in the presence of inclined SV

or P waves, but is negligible for SH waves.  The reduction of base-slab translation, and

the introduction of torsion and rocking, are all effects which tend to become more

significant with increasing frequency.  The frequency-dependence of these effects is

primarily associated with the increased effective size of the foundation relative to the

seismic wavelengths at higher frequencies.  In addition, incoherence effects are greater at

higher frequencies.

Veletsos and Prasad (1989) and Veletsos et al. (1997) evaluated the response of a

rigid, massless disk of radius r and a rectangle of dimension 2a by 2b on the surface of an

elastic halfspace to incoherent SH waves propagating either vertically or at an angle αV to

the vertical (Fig. 2.12).  The incident motions are assumed to be polarized in the x-

direction, and the effective horizontal propagation of inclined waves is in the y-direction.

A result of the analyses is transfer functions relating the horizontal and torsional motions
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of the foundation to the free-field motions, thus providing a quantification of base-slab

averaging effects.  Similar analytical formulations were developed by Luco and Wong

(1986) for rectangular foundations and Luco and Mita (1987) for circular foundations.

The Veletsos approach is presented here because of the relative simplicity of its

formulation.

A key step in the development of the transfer functions is the numerical modeling of

the spatial variation of the free-field ground motions.  The temporal variation of these

motions is specified by a space invariant power spectral density (psd) function, Sg(ω).

The spatial variation of the incoherent free-field motions is defined by a cross spectral

density function,

( )S e Sxy

i
V

g
S H( ) , ( )( )ω ω ω

ω

= −
− −






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Γ r r
r r

1 2

1 2
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where r1 and r2 are position vectors for two points, and (VS)H is the apparent horizontal

velocity of the wave front, (VS)H = VS/sinαV.  In Eq. 2.14, the exponential term represents

the wave passage effect (due to nonvertically incident waves), and the Γ term represents

the ground motion incoherence effect.  The coherence function used in the Veletsos

formulations is,

( )Γ r r
r r

1 2

1 2
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,ω

κω

e VS (2.15)

where κ is a dimensionless incoherence factor which reportedly can be quantified by κ/VS

∼ (2-3)×10-4 sec/m (Luco and Wong, 1986).

Coherence functions have been modeled using exponential functions similar to Eq.

2.15 by a number of researchers (Luco and Wong, 1986; Somerville et al., 1991; Novak,
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1987).  More refined coherence functions defined using five parameters in the regression

have been developed by Abrahamson (1988, 1992), who also performed the regression

using tanh-1(Γ) instead of Γ.  Abrahamson cautions that functional forms of coherence not

using tanh-1(Γ) may not be appropriate because Γ is not normally distributed but tanh-1(Γ)

is approximately normally distributed.  Nevertheless, the exponential coherence function

in Eq. 2.15 was retained for this study due to the relative simplicity of its algebraic form

and its ability to capture the decay in coherence with increasing separation and frequency

(though not in the mathematically ideal form).  The primary errors introduced by the use

of Eq. 2.15 are overpredictions of coherence at large distances (i.e. > 100 m) and low

frequencies (i.e. < 1 Hz) (Novak, 1987).

Using spatial averaging procedures with the cross spectral density function in Eq.

2.14 and the coherence function in Eq. 2.15, Veletsos and Prasad (1989) and Veletsos et

al. (1997) developed expressions for the psds of the horizontal (Sx) and torsional (Sφ)

motions of the base-slab in terms of Sg(ω) for circular and rectangular foundation

geometries, respectively.  In the presentation of results, the torsional motions were

represented by circumferential motions of the base-slab in the x-direction (i.e. Scir=r⋅Sφ

for circular foundations and b⋅Sφ for rectangular foundations).

The transfer function amplitudes associated with base slab averaging are presented in

Fig. 2.13 for circular and rectangular foundations subject to vertically incident incoherent

waves, and Fig. 2.14 for nonvertically incident coherent waves.  These transfer functions

are plotted against the dimensionless frequency parameter ~a0 , which is defined as

follows for circular and rectangular footings, respectively,
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where a0 = ωr/VS.  The definition of the ~a0  factor given in Eq. 2.16 for rectangular

foundations applies for identical wave incoherence factors κ in the x and y directions.

Figs. 2.13 and 2.14 indicate that the lateral transfer functions (S Sx g ) for circular

and various rectangular geometries are similar, regardless of the type of wave field.  The

near equivalence of the results for different aspect ratios (a/b) of rectangular foundations

suggests that the lateral transfer function primarily depends on the total area of the

foundation.  This result is a product of the model formulation in which spatial variations

of ground motion only result from random incoherence (which is assumed to be identical

in both horizontal directions) or nonvertically incident waves.  That is, the effects of

“traveling waves,” which might result in a temporal incoherence of incident waves across

a foundation, has not been considered.  Such effects would be sensitive to the plan angle

of propagation of the traveling waves relative to the foundation and the aspect ratio of the

foundation (but might only be significant for very large foundations).

The torsional transfer function results show a relatively high degree of sensitivity to

a/b and the type of wave field.  Higher torsional motions occur for lower a/b and

nonvertically incident coherent wave fields.
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2.3.2 Embedment

When subjected to vertically propagating coherent SH waves, embedded foundations

experience a reduction in base-slab translational motions relative to the free-field, and

rocking motions are introduced.  This rocking is not a product of base moment associated

with structural inertia, as structure and foundation masses are neglected in the analysis of

kinematic interaction.  Rather, the rocking is caused by incompatible shear strains along

the sides of the excavation and the free-field.  Roesset (1980) suggests that these

embedment effects are likely to be significant for e/r greater than about 0.15.  Analytical

and empirical studies have been performed to examine embedment effects on foundation

input motions (FIMs), the results of which are presented in the following sections.

(a) Analytical studies

Analytical studies of embedment effects have focused on the evaluation of transfer

functions expressing the amplitude ratio of base-slab translational and rocking motions to

free-field motions (e.g. Elsabee and Morray, 1977 and Day, 1977).  These formulations

are generally based on assumed vertically propagating coherent waves, so that the base-

slab averaging effects discussed in Section 2.3.1 are negligible.

Day (1977) used finite element analyses to evaluate the base motions of a rigid

cylindrical foundation embedded in a uniform elastic half space (β = 0, ν = 0.25) and

subjected to vertically incident, coherent SH waves.  Elsabee and Morray (1977)

performed similar studies but for the case of a visco-elastic soil layer of finite depth over

a rigid base (β = 0.05 and ν = 0.33).  The amplitude of the transfer functions for

translation and rocking are shown in Fig. 2.15 for the halfspace and Fig. 2.16 for the
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finite soil layer.  The only significant differences between the finite soil layer and

halfspace results are high frequency (a0 > 1.5) oscillations in the finite soil layer case.

The results for embedment ratios e/r = 0.5, 1.0, and 2.0 (halfspace) and 0.5 and 1.0 (finite

soil layer) indicate significant filtering of translational motions for a0 > 0.5 and the

development of significant rocking for a0 > 1.  At low frequencies (a0 < 1.5), the filtering

of foundation motions and the magnitude of rocking motions increases with increasing

embedment ratio, while at higher frequencies there is little sensitivity to embedment ratio.

These results can be contrasted with the behavior of a surface foundation which would

have no reduction of translational motions and no rocking motions when subjected to

vertically incident coherent shear waves.

As part of the work by Elsabee and Morray, approximate transfer functions were

proposed for the translation and rocking motions of the circular foundation as follows,
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where a r e0 2= ⋅π .  Normalized frequency a0  corresponds to the fundamental

frequency of the soil from the surface to depth e (a f r VS0 12= π  where f V eS1 4= ).  In

Fig. 2.17, these approximate transfer functions are compared to the halfspace (Day, 1977)

and finite soil layer (Elsabee and Morray, 1977) solutions for embedment ratios of  e/r =

0.5, 1.0, and 2.0.  The approximation is reasonable for each embedment ratio and both

profiles.





49

These results for an embedded rigid cylinder subjected to vertically incident coherent

SH waves have been extended for cases of (1) soil properties varying with depth (Elsabee

and Morray, 1977), (2) horizontally propagating coherent SH waves (Day, 1977), and (3)

non-circular foundations (Mita and Luco, 1989) as follows:

• For soil properties which vary with depth, Elsabee and Morray found that the

approximate transfer functions in Eq. 2.17-2.18 remain valid provided an averaged VS

across the embedment depth is used.

• For the case of horizontally propagating coherent SH waves, Day found that the base

rocking was practically negligible, the filtering of horizontal motions was significant

but was relatively insensitive to e/r, and a significant torsional response was induced

at high frequencies (a0 > 1.5).  It should be noted, however, that horizontally

propagating shear waves are generally of negligible engineering significance in SSI

problems because components of ground motion with frequencies above about 1 Hz

tend to attenuate rapidly with distance (Chen et al., 1981).

• Mita and Luco found that an embedded square foundation could be replaced by an

equivalent cylinder without introducing significant error.  The radius of the equivalent

cylinder was defined as the average of the radii necessary to match the area and

moment of inertia of the square base.

(b) Empirical studies

Studies by Seed and Lysmer (1980), Chang et al. (1985), and Johnson and Asfura

(1993) have documented reductions in ground motion with depth using both downhole

free-field arrays and comparisons of basement and free-field motions.  These data are not
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repeated here; however, it is noted that both data sets (free-field/downhole and free-

field/basement) consistently indicated reductions of peak ground acceleration and high

frequency spectral ordinates with depth.  It was also concluded by Seed and Lysmer that

deconvolution analytical procedures which assume vertically propagating shear waves

(e.g. the computer program SHAKE, Schnabel et al., 1972) simulate these effects

reasonably well.

Ishii et al. (1984) developed empirical transfer functions for translational motions

using earthquake recordings from 18 partially buried tanks in Japan.  However, the

regression analyses did not include e/r as a variable.  Hence the results are likely of

limited value as e/r appears to be significant based on the analytical studies discussed in

Part (a).

Most structures are not instrumented sufficiently at the foundation-level to measure

base rocking, so relatively little data on this effect is available.  Even for structures which

are instrumented to record base rocking, separation of the kinematic and inertial rocking

effects would be impossible without making assumptions about the foundation

impedance and wave field, so purely empirical transfer functions for kinematic base

rocking are difficult to formulate and have not been developed to date.

2.4 Summary

In this chapter, a number of simplified analytical techniques have been presented for

performing both inertial and kinematic SSI analyses.  The intent of these analysis

procedures is to predict period lengthening ratios and foundation damping factors (inertial
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interaction) and foundation/free-field transfer functions (kinematic interaction).  Key

aspects of these analytical procedures are summarized below.

2.4.1 Inertial Interaction

For analyses of inertial interaction effects, the objectives are predictions of first-mode

period lengthening 
~

/T T  and foundation damping factor 
~ζ0 .  The necessary input

parameters are:

• Soil conditions:  characterization of the site as a halfspace or finite soil layer over

rigid base; shear wave velocity VS and hysteretic damping ratio β which are

representative of the site stratigraphy and the level of ground shaking; representative

soil Poisson’s ratio ν.

• Structure/Foundation Characteristics:  effective height of structure above foundation

level, h; embedment, e; foundation radii which match the area and moment of inertia

of the actual foundation, r1 and r2; appropriate corrections to the foundation

impedance for embedment, shape, and flexibility effects.

• Fixed Base 1st Mode Parameters:  period and damping ratio, T and ζ.

Using these data, the following steps are carried out:

1. Evaluate the foundation impedance function at an assumed period for the flexible-

base structure 
~
T .  Static foundation stiffnesses are computed first according to Eq.

2.5 with appropriate modifications for finite soil layer and embedment effects (Eqs.

2.6 and 2.7).  Dynamic coefficients αu, αθ, βu, and βθ are then evaluated for the

assumed 
~
T  using equations in Veletsos and Verbic (1973) with appropriate
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modifications to βθ to account for foundation shape effects, and to αθ and βθ to

account for flexible foundation effects.

2. Calculate dimensionless parameters σ and γ using Eqs. 2.12 and 2.13.  For most

structures, it is assumed that γ= 0.15.

3. Estimate the period lengthening and damping using Eqs. 2.10 and 2.11, calculate a

new estimate of 
~
T .

4. Repeat steps 1 to 3 until the dynamic coefficients αu, αθ, βu, and βθ are estimated at

the actual system period.

5. For embedded foundations, repeat the analyses for 
~

/T T  and 
~ζ0  using the

formulation by Bielak (1975).

The procedures in steps 1 to 4 are referred to as the “modified Veletsos” formulation.

The “modified” term refers to the extension of the basic model considered in Veletsos

and Nair (1975) to account for embedded, non-circular, and flexible foundations, and

non-uniform soil profiles.  Similarly, the Bielak (1975) procedure applied in Step 5 to

embedded structures is referred to as the “modified Bielak” formulation.

2.4.2 Kinematic Interaction

For surface foundations, analytical predictions of base-slab averaging effects are

made using the transfer functions in Figs. 2.13 and 2.14.  A topic of recommended future

study is to compare these analytical transfer functions with transfer functions computed

from recordings of surface foundation and free-field motion.  From such a comparison,

the effects of ground motion incoherence and incident wave inclination could be
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approximately quantified.  Similarly, for embedded structures, the analytical transfer

functions in Eqs. 2.17 and 2.18 should be validated against field performance data.
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CHAPTER 3

SYSTEM IDENTIFICATION PROCEDURES FOR
EVALUATING SOIL-STRUCTURE INTERACTION EFFECTS

3.1 Introduction

This chapter presents the methods of system identification used to evaluate dynamic

properties of soil-structure systems from recordings of earthquake shaking at the sites

included in this study.  A review of relevant structural dynamics theory is initially

presented in Section 3.2 to establish the framework within which these analyses were

performed.  Two system identification techniques, parametric and nonparametric

analyses, are discussed in Sections 3.3 and 3.4.  In Section 3.5, the specific system

identification procedures used in this study are summarized, while the interpretation of

results for different input-output pairs is discussed in Section 3.6.

3.1.1 Objectives

As illustrated schematically in Fig. 3.1(a), the fundamental objective of any system

identification analysis is to evaluate the properties of an unknown system given a known

input into, and output from, that system.   For applications in this study, the system is

generally associated with structural flexibility alone, or the structural flexibility coupled

with foundation flexibility in rocking and/or translation.  The inputs and outputs are

various combinations of free-field, foundation, and roof-level recordings (Fig. 3.1b).  The

input-output pairs used to evaluate modal parameters for various cases of base fixity are

discussed in Section 3.6.
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The desired results from these system identification procedures are the following

system properties:

1. Modal frequencies and damping ratios of the structures for the fixed- and flexible-

base cases.

2. Transmissibility functions describing the frequency-dependent variations between

input and output motions.

3.1.2 Fundamental Assumptions

 A significant assumption made in the system identification analyses described in this

chapter is that the dynamic response of soil-structure systems can be described by linear

dynamic models with proportional damping.  The validity of this assumption is suspect

when structures are damaged or yield, or when pronounced soil degradation occurs.

However, nonlinear systems generally can be modeled by linear systems with time-

dependent parameters (Priestly, 1980).  Hence, recursive analyses were employed in this

study to track time-dependent changes of linear system parameters.  These recursive

results provide insight into possible structural damage during strong shaking, and serve as

a “check” on simpler analyses assuming linear, time-invariant response.

It was also assumed that input and output motions used for system identification

analyses were representative of their respective domains.  For foundation motions, this

implies that lateral and rocking motions at the same elevation are uniform, which strictly

holds only for rigid foundation slabs.  Roof motions are assumed to be not influenced by

torsional deformations in the structure.  Perhaps most significantly, recordings at free-

field accelerographs are assumed to be representative of the free-field at large, which is
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seldom correct due to spatial incoherence effects.  Although a given recorded motion

(roof, foundation, or free-field) is unlikely to be perfectly representative of its domain,

repeated identifications for sites with multiple input or output recordings generally

revealed that identification results were relatively insensitive to the specific output or

input motion chosen to represent a given domain.

3.2 Derivation of Transfer Functions from Modal Equations

Transfer functions describe the changes which occur to input signals as they pass

though a system and emerge as output signals.  In particular, as used here, transfer

functions describe the modification of motions between single input and output points.

Equations describing transfer functions for structures are derived in this section.

The properties of a linear structure with n degrees of freedom include its mass matrix

m, stiffness matrix k, and damping matrix c.  The damping matrix is intended to model

energy dissipation in the structure, and is assumed to be "proportional" (i.e. a linear

combination of the mass and stiffness matrices).

The dynamic displacements of the structure relative to its base are described by the

nx1 vector u , with corresponding velocity and acceleration vectors �u  and ��u ,

respectively.  The total displacement vector u t  is the sum of the ground displacement ug

and the dynamic displacement of the structure,

u u 1t T
gt t u t( ) ( ) ( )= + (3.1)
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where 1=a 1xn vector of 1's.  The equation of motion for the structure is (Clough and

Penzien, 1993):

mu cu +ku = -m1��( ) � �� ( )t (t) (t) u tT
g+ (3.2)

The undamped eigenvalue problem for the structure, kΦi=ωi
2mΦi, gives the vibration

frequencies, ωi, and vibration mode shapes, Φi, for each mode i.  The generalized mass of

mode i is defined as mi*=Φi
TmΦi, and the generalized influence factor as Li*=1TmΦi.

The solution to Eq. 3.2 is exactly represented by superposition of all n vibration

modes using generalized coordinates Xi(t), but can also be reliably approximated by J<<n

modes:

u( ) ( )t X ti i
i

J
≅

=
∑Φ

1

(3.3)

Inserting Eq. 3.3 into Eq. 3.2, multiplying both sides by Φj
T, and taking advantage of

mode orthogonality, the equation of motion for mode j can be expressed in terms of

generalized coordinates as:

�� ( ) � ( ) ( )
*

*
�� ( )X t X t X t

L

m
u tj j j j j

j

j
g+ + = −2 2ζ ω ω (3.4)

where ζj is the damping ratio for mode j.  The solution to Eq. 3.4 is obtained through the

use of Laplace transforms.  The Laplace transform of a time-dependent function is

expressed here as f t f est( ) (s)= , where s is the operator in the Laplace domain.  Using

Laplace transforms, the solution of Eq. 3.4 is:

X
s s

L

m
uj

j j j

j

j
g(s)

*

*
�� (s)= −

+ +
⋅1

22 2ζ ω ω
(3.5)
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Since strong motion recordings are of total acceleration, Eq. 3.1 is applied to Eq. 3.3

before taking its Laplace transform.  The result, after differentiating twice with respect to

time to convert to acceleration, is:

�� � � �� � � �� � �X �
W

M M
7

J

M

-

V ; V X V= +
=
∑Φ

�

(3.6a)

where �� (s) (s)X s Xj j= ⋅2 .  Making use of a relation modified from Fenves and Desroches

(1994) to substitute into Eq. 3.6(a),

1T j

jj

J

j
L

m
≈ ⋅

=
∑

*

*1

Φ (3.6b)

and substituting Eq. 3.5 into Eq. 3.6(a), the total structure accelerations can be related to

the ground acceleration as follows:

�� (s)
*

*
�� (s)u t j

jj

J

j
j j j

g
L

m
s

s s
u= ⋅ −

+ +

























=

∑
1

2

2 2
1

2
Φ

ζ ω ω
  (3.6c)

To simplify this expression, the total acceleration vector can be written as

�� � � � ��� � �X +
W

JV V X V= (3.7a)

where,

H(s)
*

*
(s)

(s)

= ⋅ ⋅

=
+

+ +

=
∑

L

m
H

H
s

s s

j

jj

J

j j

j
j j j

j j j

1

2

2 2

2

2

Φ

ζ ω ω

ζ ω ω

(3.7b)

Element j of the vector quantity H(s) in Eq. 3.7(a) represents the transfer function

between the ground (input) and degree-of-freedom j (output) in the superstructure.
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Different recording locations within a structure exhibit the same poles, so generally it is

adequate to consider only the output at the roof for identifying parameters for the lower,

most significant modes.  Hence, single-output system identification analyses were used in

this study, which reduces the vector H(s) to a scalar function for the roof response.  It

should be noted that contributions from all J modes are represented in the single-output

solution, although only fundamental-mode parameters are significantly affected by SSI

(Jennings and Bielak, 1973).

The amplitude of a particular component of H(s) is a continuous surface with peaks

located at poles which can be related to modal frequencies and damping ratios.  When a

component of H(s) is evaluated along the imaginary axis, the transmissibility function

H(iω) is obtained, which gives the ratio of output-to-input acceleration as a function of

frequency ω.  The roof component of H(s) for an example structure is presented in

Section 3.5.2(c).

3.3 Nonparametric System Identification

Nonparametric system identification is used to examine the dynamic response of

structural systems by estimating the transmissibility function H(iω) for a given input-

output pair.  Transfer functions H(s) cannot be directly estimated by nonparametric

techniques.  Calculation of transmissibility functions and smoothing procedures for these

functions are the subject of this section.
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3.3.1 Transmissibility Functions

Transmissibility functions are useful for identifying vibration frequencies and

frequency ranges over which amplification or de-amplification occurs.  This section will

describe how transmissibility functions are computed from an input x(t) and output y(t)

accelerogram pair.  The formulations are based on a single input, single output model,

meaning that H(s) in Eq. 3.7 is a scalar quantity denoted as H(s); similarly H(iω) is

denoted here as H(iω).

Fundamentally, the transmissibility function H(iω) represents the ratio of the Fourier

transform of the output signal to that of the input signal.  However, since the input signal

is random, its Fourier transform may not exist (i.e. zero amplitude) at some frequencies,

causing the H(iω) ratio to be undefined.  For this reason, H(iω) is usually computed from

power spectral density functions (Sx, Sy) and cross spectral density functions (Sxy) of the

input and output signals, which always exist (Pandit, 1991).

For an ergodic and random process with zero mean, power spectra and cross power

spectral density functions are Fourier transforms of the auto-correlation functions Rx(τ)

and Ry(τ) and the cross-correlation function Rxy(τ) for processes x and y (Clough and

Penzien, 1993):

6 5 H G

6 5 H G

6 5 H G
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\ \
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L
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(3.8)
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The functions Sx and Sy are real-valued, while Sxy is a complex-valued Hermitian

function Sxy=S*
yx (where * denotes complex conjugation).  The auto-correlation and

cross-correlation functions are, in turn, defined from the discrete input and output signals

as:

R x t x t

R y t y t

R x t y t

x
t

N

y
t

N

xy
t

N

( ) ( ) * ( )

( ) ( ) * ( )

( ) ( ) * ( )

τ τ

τ τ

τ τ

τ

τ

τ

= +

= +

= +

=

−

=

−

=

−

∑

∑

∑

0

0

0

(3.9)

where, as before, * denotes complex conjugation and N = number of data points in the

time histories x(t) and y(t).

Using the spectral density functions defined in Eq. 3.8, H(iω) can be computed two

ways (Ljung, 1987 and Pandit, 1991):

6 + L 6

6 + L 6

\[ [

\ [\

� � � � � �

� � � � � �

ω ω ω

ω ω ω

=

=
(3.10)

Hence, two estimates of the complex-valued H(iω) are possible:

H i
S

S

H i
S

S

yx

x

y

xy

1

2

( )
( )

( )

( )
( )

( )

ω
ω
ω

ω
ω
ω

=

=
(3.11)

The two estimates of H(iω) should theoretically be equal, but generally are not due to

noise in the signals and other errors associated with the discrete Fourier transform.  The

H1(iω) estimate is less sensitive to output noise, while H2(iω) is less sensitive to input
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noise (Fenves and Desroches, 1994).  The quality of the transmissibility function in the

presence of noise and other errors can be assessed using the coherence function, which is

defined as the ratio of the two estimates of H(iω) (Ljung, 1987 and Pandit, 1991):

γ ω ω
ω

ω

ω ω
2 1

2

2

( )
( )
( )

( )

( ) ( )
i

H i
H i

S

S S
xy

x y
= = (3.12)

The coherence varies between zero and one, and provides insight into the noise spectrum

which is proportional to 1-γ2(iω).  The transmissibility function H(iω) is well estimated

when the coherence is near unity because the signal to noise ratio is large.  However,

estimates of H(iω) with coherencies less than one are common in practice, indicating that

the absolute value of H2(iω) exceeds the absolute value of H1(iω).  Hence, H2(iω) gives

larger peaks than H1(iω), and for this reason H2(iω) was used as the estimator of the

transmissibility functions in order to illustrate the modal frequencies as clearly as

possible.

3.3.2 Smoothing of Frequency Response Functions

Unsmoothed power spectral density, cross spectral density, and coherence functions

computed using the procedures in Section 3.3.1 have a spiky appearance which can make

the interpretation of these frequency response functions difficult.  For this reason, some

smoothing was performed using periodograms as estimates of spectral density functions

(Oppenheim and Schafer, 1989).  Periodograms employ an averaging procedure which

smoothes the spectra by reducing the randomness associated with the estimation

procedures.
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The averaging procedure is based on the method by Welch (1967).  The records are

divided into equal length segments in time which may overlap.  The Fast Fourier

Transform (FFT) of each segment with a data window is computed.  The periodogram is

the average of the square of the FFT amplitudes for all the segments.  In the case of the

coherence functions, the averaging procedure is performed on each spectral density

function in Eq. 3.12 before computing the coherence.

There is a tradeoff between the smoothness of a periodogram and error, or bias,

relative to the true, unsmoothed spectrum (Pandit, 1991).  As the number of segments

used to compute the periodogram is increased, the results become smoother, but the

frequency resolution is decreased and the peaks are flattened.  In this study, periodograms

were generally computed using four equal-length segments without overlap.

Tapering windows were used for each segment in a periodogram to reduce the

statistical dependence between sections due to overlap and to diminish side lobe

interference or “spectral leakage” while increasing the width of spectral peaks (Krauss et

al., 1994).  A Kaiser window with a factor of 15.7 was used for this purpose.

3.4 Parametric System Identification

3.4.1 Introduction

Problems can arise in identifying vibration properties of a structure solely by spectral

analysis.  In essence, recovery of the general transfer function surface H(s) from a

discrete estimate of H(iω) with limited frequency resolution by the FFT can be

problematic (Pandit, 1991).  For this reason, it is desirable to identify a parameterized
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model of the structure in the discrete time domain from which a more robust estimate of

the structure's vibration properties can be computed.

The model of the structure represented in continuous time by Eq. 3.7 must initially be

converted to an equivalent model in the discrete time domain.  The parameters describing

this discrete time model are then estimated by least squares procedures to minimize the

error between the model and the recorded output.  This section will describe how these

steps were performed for this study.  As in Section 3.3.1, these formulations are based on

a single input, single output model, so the transfer function is denoted as H(s).

3.4.2 Representation of Continuous Transfer Functions in Discrete Time

The equation of motion employed in Section 3.2 (Eq. 3.2) was based on a continuous

time representation of a linear structural system.  However, earthquake recordings of

ground and structure motion are digital, and hence are data in the discrete time domain.

In this section, the continuous time transfer function in Eq. 3.7 is modified to develop an

equivalent discrete time representation.

A number of methodologies are presented in the literature for conversion from the

continuous to discrete domain; these are summarized by Safak (1988 and 1991), Franklin

and Powell (1980), and Åström and Wittenmark (1984).  The methodology employed in

this study is to approximate the transfer function by the hold-equivalence technique

(Franklin and Powell, 1980).  The continuous input is approximated by piece-wise

constants (zero-order hold), and is passed through the continuous system to calculate the

corresponding discrete output.  The discrete transfer function is then determined by taking
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the ratio of the Z-transforms of the discrete output to that of the input.  The result of this

procedure is (Franklin and Powell, 1980),
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=
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V
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(3.13)

where H(z) is the discrete time transfer function, z is the complex Z-transform operator,

and Z[f] denotes the Z-transform of the function f.  Applying Eq. 3.13 to Eq. 3.7(b),

+ ]
] ]

] ]

M M

M MM

-

� � =
+

+ +

− −

− −
=
∑

β β

α α
�

�
�

�

�
�

�
�

� �
(3.14)

where the α and β parameters are related to the parameters in Eq. 3.7(b) by equations

given in Åström and Wittenmark (1984).  According to Safak (1991), the result in Eq.

3.14 can also be obtained using several other continuous-to-discrete conversion

methodologies such as pole-zero mapping and covariance equivalence techniques.

The expression in Eq. 3.14 can be expanded as a rational polynomial (Safak, 1991),
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(3.15)

which represents a discrete time filter of order 2J (the filter order is the highest power in

the denominator).  Note that the order of the filter, and hence the order of the model, is

twice the number of modes being included in the structural idealization.

The model represented by the discrete time transfer function in Eq. 3.15 can be

described as a linear difference equation which relates the input x(t) and output y(t),

y t a y t a y t J

b x t d b x t d b x t d J
J

J

( ) ( ) ( )

( ) ( ) ( )

+ − + + − =
− − + − − + + − −

1 2

1 2 2

1 2

1 2 2

�

�
(3.16)
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where d is the time delay between the input and output (i.e. an input at time t creates an

output at time t+d).  The specific representation in Eq. 3.16 of the general model in Eq.

3.15 is referred to as an ARX model, for autoregressive model with extra input (Ljung,

1987).

3.4.3 Solution Procedures

Least squares techniques were used to solve for the parameters aj and bj in Eq. 3.16

which describe the discrete time transfer function.  Two approaches were generally used

for these analyses.  First, a single set of aj and bj parameters was determined which

minimizes the sum of the errors between the model and recorded output over all N time

steps.  This procedure is referred to as the cumulative error method (CEM), and its results

are only accurate if the system properties are time invariant.  In the second approach,

separate sets of aj and bj parameters are determined for each time step.  Referred to as the

recursive prediction error method (RPEM), this approach enables the time variation of

linear system properties to be tracked.

The solution procedures for the CEM and RPEM are summarized in Parts (a) and (b)

of this section.  Procedures for extracting modal frequencies and damping ratios from the

aj and bj parameters are presented in Part (c), while uncertainty in the estimated model is

discussed in Part (d).  The CEM as employed here was originally presented in Safak

(1991), while the RPEM was presented in Safak (1988) and Ghanem et al. (1991).
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(a) Model parameter estimation by the cumulative error method (CEM)

To simplify the notation of the solution procedure, Eq. 3.16 is re-written by defining

the following vectors:

[ ]Γ( ) ( ) ( ) ( ) ( ) ( ) ( )t y t y t y t J x t d x t d x t d J T= − − − − − − − − − − − −1 2 2 1 2 2� �

(3.17)

and

( )Θ = a a a b b bJ J
T

1 2 2 1 2 2� � (3.18)

With these substitutions, Eq. 3.16 can be re-written as

y t tT( ) ( )= ΓΓ Θ (3.19)

Since x(t) and y(t) are the recorded time histories, Γ(t) is known.  The objective of the

identification is then to determine the unknown vector Θ.

For a given Θ and time t, the error between the model and recorded output, ε(t, Θ),

can be written as

ε( , ) ( ) ( )t y t tTΘ Γ Θ= − (3.20)

A measure of the cumulative error V(Θ) can then be taken as the sum of the squares of

the errors for each time step as follows:

( )V
N

t
N

y t
t J d

N
T

t J d

N
( ) ( , ) ( )Θ Θ Γ Θ= = −

= + + = + +
∑ ∑1 12

2 1 2 1

2

ε (3.21)

The summation starts from t=2J+d+1 to prevent a negative time step from occurring in

the formation of the ΓT vector.  The optimum set of parameters is determined by

minimizing V(Θ) as,
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dV
d
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Θ

= 0 (3.22)

which leads to the following equation for Θ:
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With the vector Θ known, the discrete time transfer function for the system is completely

determined.

(b) Model parameter estimation by the recursive prediction error method (RPEM)

The notation used here is similar to that in Part (a), namely, Γ(t) and Θ are defined by

Eqs. 3.17 and 3.18, respectively, and the error, ε(t, Θ), at time step t is defined as

ε( , ) ( ) ( ) ( )t y t t tTΘ Γ Θ= − − 1 (3.24)

Note that the vector of estimated parameters Θ is now time dependent.  The fundamental

difference between the RPEM and CEM is that the total error is defined at each time step

t by,

V t t t
J d

t
( , ) ( ) ( , ) ( , )Θ Θ=
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∑1

2
2

2 1

γ β τ ε τ
τ

(3.25)

where β(t, τ) is a weighting factor and γ(t) is the normalization factor for β(t, τ) defined

by

γ
β τ

τ
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The β(t, τ) and γ(t) factors define a window of time within which incremental errors

ε(τ,Θ) are included in the computation of total error V(t, Θ) for time step t.  In this study,

an exponential window was used with a constant forgetting factor λ (Ljung, 1987).  For

these conditions, the weighting factor is defined as,

β τ λ τ( , )t t= − (3.27)

The smaller the value of λ, the shorter is the window, and the more sensitive are the

results to time dependent changes in the system properties.  However, small data

windows can be more susceptible to noise in the input and output signals.  Hence, a

tradeoff exists between the time-tracking ability of the analysis and the sensitivity of the

solution to noise.  In most cases, values of λ=0.98 to 0.99 were found to be appropriate.

As with the CEM, it is required with the RPEM to minimize the total error according

to least squares criteria,

∂
∂

V t
t

( , )
( , )

Θ
Θ

Θ= ′ =V 0 (3.28a)

where V′ is a vector of length 4J.  Due to the randomness of the signals resulting from the

noise in the system, the condition in Eq. 3.28(a) is met in an average sense by requiring,

[ ]E t′ =V ( , )Θ 0 (3.28b)

where E denotes the expected value operator.  The solution of Eq. 3.28(b) is obtained

using stochastic approximation techniques (Safak, 1988).  The result is the following

recursive relationship for Θ(t):

( )[ ] ( )Θ Θ Θ Θ( ) ( ) , ( ) , ( )t t t t t tt= − + ′′ − ′ −−
1 1 11α V V (3.29)

where αt is a series of positive constants generally taken as αt=1 (Safak, 1988).
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The solution of Eq. 3.29 requires the estimation of the total error derivatives V″(t, Θ)

and V′(t, Θ).  The development of recursive relations for these derivatives is detailed in

Safak (1988) and will not be repeated here.  The final form of the recursion relation for

the RPEM algorithm is (Safak, 1988 and Ljung, 1987),

Θ Θ Ψ Θ( ) ( ) ( ) ( ) ( ) ( , )t t t t t t= − + −1 1γ εR (3.30)

where αt was taken as 1, Ψ(t) is defined for the case of an ARX model as

[ ]Ψ( ) ( ) ( ) ( ) ( )t y t y t J y t d y t d J T= − − − − − − − −1 2 1 2� � (3.31)

and R(t, Θ), a 4Jx4J matrix, is estimated as follows:

[ ]R R R( ) ( ) ( ) ( ) ( ) ( )t t t t t tT= − + − −1 1γ Ψ Ψ (3.32)

Numerical inversion procedures for R-1(t) are discussed in Safak (1988).  In order to start

the recursion, initial values of the vectors Θ(0) and Ψ(0) and matrix γ(0)R-1(0) are taken

as

Θ Ψ( ) ( ) ( ) ( )0 0 0 0 0 101 4= = = ×−γ R It (3.33)

The initial conditions cause the results for Θ(t) early in the time history to be erratic and

unreliable, though a stable solution is usually achieved subsequently.  When erratic

results extend through more than a few seconds of the time history as a result of the initial

conditions in Eq. 3.33, a second RPEM analysis can be performed using initial conditions

derived from parameters associated with an appropriate time step from the first analysis.
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(c) Evaluation of modal frequencies and damping ratios

Once the parameters describing the discrete time transfer function (i.e. the Θ or Θ(t)

vectors) have been determined, the frequencies and damping ratios corresponding to the J

modes included in the analysis can be estimated.  The poles of the discrete time transfer

function are first identified as the roots of the denominator from Eq. 3.15,

1 01
1

2
2

2
2+ + + + =− − −a z a z a zJ

J
� (3.34)

The roots z1, z2,..., z2J are complex numbers which lie within a unit circle in the complex

plane for stable systems.

The poles of the discrete time transfer function are related to the poles in the Laplace

domain by (Safak, 1991),

s
t

zj j= 1
∆

ln (3.35)

where ∆t = the data sampling interval.  The poles sj are the roots of the transfer function

denominator in Eq. 3.7(b), which can be expressed as the complex conjugate pair (Fenves

and Desroches, 1994),

s s ij j j j j j, * = − ± −ζ ω ω ζ1 2 (3.36)

from which the modal frequencies and damping ratios can be computed as follows:

ω

ζ
ω

j j j

j
j

j

s s=

= −

*

Re(s ) (3.37)

where Re(sj) means to take the real part of the complex number sj.
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(d) Uncertainty in the estimated model

There is always uncertainty in models identified from parametric analyses due to

imperfect model structures and disturbances in the output data (Ljung, 1995).  Systematic

errors can result from inadequate model structure (i.e. poor selection of the d or J

parameters) which cannot be readily quantified.  In this study, such errors were

minimized through careful selection of the d and J parameters as described in Section

3.5.2(c).  A second type of model variability results from random disturbances in the data.

This variability is associated with how the model would change if the identification were

repeated with the same model structure and input, but with a different realization of the

output.  This uncertainty can be readily quantified as part of the estimation of an ARX

model.

3.5 Summary of System Identification Analysis Procedures

3.5.1 Data Preprocessing

Strong motion data must be preprocessed to provide satisfactory identifications of

soil-structure systems.  Preprocessing of data consists of baseline correction, removal of

outliers, filtering, decimation, and synchronization and alignment of input and output.

Many of these operations were performed by the agencies which provided much of the

strong motion data used in this study (California Strong Motion Instrumentation Program,

CSMIP, and United States Geological Survey, USGS).

Non-zero mean values in strong motion data represent static components of the

system and low frequency drifts (Safak, 1991).  These are removed via baseline
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correction, which is typically accomplished by subtracting the mean or using high-pass

filters.  Outliers in the data are erroneous peaks typically associated with instrument

failure or accidental impact against the accelerograph.  Baseline correction and removal

of outliers from accelerograms is performed as part of the digitization process by CSMIP

and USGS.

The objective of filtering is to remove the frequency components of data dominated

by noise.  These frequencies are at the low and high end of the spectrum, and are usually

not of interest in system identification because they are far removed from the modal

frequencies of typical soil-structure systems.  The cutoff frequencies used in filtering vary

somewhat from site to site due to variable accelerograph sensitivities, though typical

high-pass cutoff frequencies are about 0.1 to 0.5 Hz and typical low-pass cutoff

frequencies are about 15 to 50 Hz.  Both CSMIP and USGS typically perform low- and

high-pass filtering on accelerograms during processing (though much of the USGS data

from the Northridge Earthquake was not low-pass filtered).  The frequency cutoffs used

for each site are indicated in Stewart (1997).

Decimation refers to a process by which the sampling rate of the time histories is

decreased.  Most accelerograms are originally digitized at a sampling interval of ∆t=0.005

sec, and are decimated during processing to ∆t=0.01 or 0.02 sec.  An accelerogram

contains information up to its Nyquist frequency, which is half the sampling rate in Hz

(e.g. for ∆t=0.01 sec, fNyq=50 Hz).  In most buildings, the highest modal frequency of

interest is much less than the Nyquist frequency, and hence the accelerograms can be

further decimated without losing relevant information.  In such cases, decimation was

performed by first low-pass filtering the data with a corner at the desired new fNyq (8th
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order low-pass Chebyshev type I filter), and then re-sampling the resulting smoothed

signal at the specified lower rate.  The analysis summaries in Stewart (1997) indicate

whether decimation was performed for a given set of records and the order of decimation

(i.e. the factor by which the sampling rate was decreased).

Synchronization of accelerograms used in system identification analysis was

necessary to ensure a constant start time.  Sensors within a structure are usually connected

to a central recorder, and hence are triggered simultaneously.  At some recently

instrumented sites, free-field instruments are also connected to the central recorder, so no

synchronization was necessary.  If any synchronization was required, it was generally

between free-field and structural data.  The required time shift was typically determined

by maximizing the cross correlation between the vertical free-field and foundation

accelerations.  The cross correlations and associated time shifts are provided with the site

data in Stewart (1997) for sites where synchronization was necessary.

At some sites, the azimuths of free-field and structural recordings were different.  In

such cases, the horizontal free-field data was rotated to align it with structural sensors.

3.5.2 Analysis Procedures

Key aspects of the analyses performed for each site are outlined in this section.

Considerations in the selection of structural instruments are described, and the

nonparametric and parametric system identification techniques are summarized.  In

general, the analyses were performed using routines written for the Matlab programming

environment (Krauss et al., 1994 and Ljung, 1995).  The results compiled for each site are

not listed here, but are provided in Stewart (1997).
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(a) Instrument selection

A given instrumented level of a structure typically had several sensors at different

locations.  Sensors were selected for use in system identification analysis by considering

the following:  (1) sensors should be located within the planes of lateral force resisting

elements such as frames or shear walls, (2) for irregular structures, sensors should be

located near the centers of mass and rigidity so that torsional contributions to the recorded

motions are minimized, and (3) sensors at different elevations should be located directly

over each other.  Specific instruments used for each structure are listed in Stewart (1997).

(b) Nonparametric system identification

Transfer and coherence functions were computed for the transverse and longitudinal

directions of the structure using roof/free-field, roof/foundation, and foundation/free-field

output/input pairs.  The amplitude and phase of the transmissibility function were

examined to provide rough estimates of modal frequencies.  Coherence functions were

also computed to assess the reliability of the transmissibility function amplitudes.  Each

of these functions was smoothed according to the criteria in Section 3.3.2.

(c) Parametric system identification

The steps below were performed for input-output pairs of interest.  The procedure is

discussed using the example of the roof/free-field pair at Site A23 (Northridge

Earthquake).  These time histories are shown in the top two plots of Fig. 3.2.
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1. Two user-defined parameters are needed to define the parametric model:  the time

delay, d, between the input and output motions, and the number of modes necessary to

optimize the response, J.  The delay is evaluated by examining the variation of

cumulative error between the recorded output and model output as a function of d using a

single mode, i.e. J=1.  The value that minimizes the error for the example structure is d=2

time steps, as shown in Fig. 3.3.  Using this delay, the model order is estimated by

calculating the variation of error with J.  Fig. 3.4 shows that the error initially decreases

rapidly with J, but stabilizes beyond a value of J=4, which is the selected model order.

2. Using these d and J values, parameters describing the transfer function surface are

calculated by the CEM. These parameters are used to define a transfer function surface

with “poles” (high points) and “zeros” (low points). Fig. 3.9 presents the roof/free-field

transfer function surface for the example structure with the axes on the horizontal plane

scaled according to Eq. 3.37 to match the modal frequency and damping at the poles.

The modal frequencies (ωj) and damping ratios (ζj) computed from the complex-valued

pole locations are indicated in Table 3.1. Standard deviations arising from random

disturbances in the data are reported along with the mean values in Table 3.1.

Coefficients of variation for first-mode parameters are usually about 0.5 to 1.5% for

frequency and 5 to 15% for damping.
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3. The intersection of the model transfer function surface with the imaginary plane is

compared to the nonparametric transmissibility function amplitude to check the model.

Major peaks of the curves should occur at similar frequencies, but the amplitude match is

not always good because nonparametric transmissibility functions are somewhat arbitrary

due to their dependence on the smoothing technique used and the number of points in the

FFT.  As shown in Fig. 3.5, a good match is obtained near the first-mode frequency.  The

match is poor at higher frequencies, indicating the limited ability of transmissibility

functions to capture higher mode responses containing relatively little seismic energy.

4. Additional checks on the parametric identification are performed as follows: (a) The

unscaled poles and zeros of the transfer function are plotted in the complex plane to

check for pole-zero cancellation (Fig. 3.6).  The pole locations (sj) in Fig. 3.6 are the

unscaled counterparts to the pole locations on the horizontal plane in Fig. 3.9.  The

unscaled poles should always plot inside the unit circle, whereas zeros can be inside or

outside the circle.  If poles and zeros are found to overlap, the model is over-constrained

and J is decreased.  (b) The model and recorded outputs are compared, and the residual is

computed (e.g. Fig. 3.7).  This check is made to confirm that the residual is small

compared to the recorded output, and that the residual has no dominant frequencies. (c)

The cross-correlation of the residual with the input is computed to determine if there are

components common to these time series (e.g. Fig. 3.8).  The dashed lines in Fig. 3.8 are

the 99% confidence intervals of independence, meaning that there is a 99% probability

that the cross correlation will be contained within these limits if the residual and input are

truly independent.  Significant cross-correlation indicates that the model order should be
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increased to better define the transfer function (Safak, 1988).  However, high cross-

correlation at negative lags is common and indicates output feedback in the input (Ljung,

1987).  This is a product of SSI, and does not imply a problem with the model.

5. The nonlinearity of the structural response can be investigated using the time

variability of  first-mode parameters calculated by recursive parametric identification

(Safak, 1988).  These analyses are performed using the d and J values from Step 1.  Plots

of the time dependent first-mode frequencies and damping ratios for the example pair are

presented in Fig. 3.2, from which an essentially time invariant first-mode response is

observed.

3.6 Interpretation of Results

In system identification analysis of structural systems, the physical meaning of the

results depends on the input and output motions used.  The purpose of this section is to

derive the input and output pairs used to evaluate fixed- and flexible-base modal

parameters, and to describe how these parameters can be estimated when a direct

identification is impossible as a result of insufficient instrumentation at a site.

3.6.1 Base Fixity Conditions for Different Input-Output Pairs

In this section, transfer functions and corresponding pole descriptions for different

input-output pairs are derived in terms of soil, foundation, and structure properties.

Expressions for the frequencies and damping ratios associated with the poles are then
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derived so that relationships between these modal parameters and the system properties

can be defined.

The interpretation of the modal parameters that are identified from different input-

output pairs is made with respect to the simple SSI model shown in Fig. 2.2.  Single

degree-of-freedom structural models are commonly employed in SSI analyses because

inertial interaction effects are most pronounced in the first mode.  As noted in Section

2.2.1, if this simple system represents an approximate model of a multi-mode, multi-

storey structure, the height h is the distance from the base to the centroid of the intertial

forces associated with the first vibration mode, and displacement u is that of the centroid.

The effective displacement in Fig. 2.2 is different than the roof displacement used for

single-output system identification.  This use of different displacements in the single

degree-of-freedom model and the system identification does not affect the location of the

poles, and fundamental mode parameters derived from the system identification

procedures in Section 3.4 can be used in conjunction with the simple model in Fig. 2.2.

As shown in Fig. 2.2, the displacement of mass m has contributions from structural

deformation u, free-field motion ug, and foundation translation and rocking, uf and hθ,

respectively.  The equations of motion describing the simple system in Fig. 2.2 are as

follows (Chopra and Gutierrez, 1973),

lateral at m: m u h u cu ku muf g(�� �� ��) � ��+ + + + = −θ (3.38a)

total lateral: m u h u m u c u k u m m uf f f u f u f f g(�� �� ��) �� � ( )��+ + + + + = − +θ (3.38b)

total rotation: mh u h u I c k mhuf g(�� �� ��) �� � ��+ + + + + = −θ θ θ θθ θ (3.38c)
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where I is the rotational moment of inertia of the structure, and ku , cu , kθ , and cθ  are

foundation impedance values (Eq. 2.4) evaluated at the frequency of the soil-structure

system.  Eq. 3.38a-c are divided through by m, m+mf, and mh, respectively, and the time-

dependent functions are transformed to the Laplace domain according to f t fest( ) �= .

With this transformation, the quantities �ku , �cu , �kθ , and �cθ  are interpreted as

foundation impedance values in the Laplace domain evaluated at the pole of the transfer

function being sought.  With these substitutions, Eqs. 3.38a-c can be re-written as,

s u s h Au s uf g
2 2 2
� � � �+ + = −θ (3.39a)

A u s h s u s uu f g� � � �+ + = −2 2 2µ θ µ (3.39b)

s u A h s u s uf g
2 2 2
� � � �+ + = −θ θ (3.39c)

where µ = m/(m+mf).  Neglecting the rotational inertia of the structure and the mass of

the foundation (i.e. I = 0, µ = 1), the A coefficients are defined as

A s s= + +2 22ζω ω (3.40a)

A s su u u u= + +2 22ζ ω ω (3.40b)

A s sθ θ θ θζ ω ω= + +2 22 (3.40c)

where the frequencies and damping ratios in Eqs. 3.40a-c describe the dynamic behavior

of the structure (ω, ζ) or soil-foundation system (ω ζu u,  and ω ζθ θ, ).  These parameters

are related to the system properties in Fig. 2.2 as follows,

ω2 =
�k
m

ζ
ω

=
�c

m2
(3.41a)
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ζ
ωu
u

u
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2
(3.41b)

ωθ
θ2
2

=
�k

mh
ζ

ω
θ

θ

θ
=

�c

mh2 2
(3.41c)

In Eqs. 3.39a-c, there are three unknown response functions (u, uf, and θ) and three

equations.  Hence, the deformations can be solved for directly in terms of the system

properties, with the results that follow:
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B B s
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2
(3.42a)
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f
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2
(3.42b)

h
u

BB s

Cg

u

s

�

�

θ = −
2

(3.42c)

where B = A - s2, Bu = Au - s
2, Bθ = Aθ - s

2, and ( )C s B B B B B B B BBs u u u= + + +2
θ θ θ .

Eqs. 3.42a-c represent the complete solution for the simple structure in Fig. 2.2, so

any transfer function of interest can be directly evaluated from these results.  Three

specific input-output pairs are considered in the following Parts (a) to (c).

(a) Flexible-base

For the flexible-base case, the input is the free-field ground motion (ug) and the

output is the total motion at the roof level (ug + uf + hθ + u).  The transfer function is

defined as the ratio of these two motions,
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(3.43)

Substituting Eqs. 3.42 into Eq. 3.43 and simplifying,

H
B BB

Ca
u

s
(s) = θ (3.44)

The poles for the flexible-base case are defined as those values of s for which CS = 0.

Expanding CS in terms of the system properties and ignoring small terms which are the

product of two damping ratios, a 3rd order polynomial in s is found as follows,

( ) ( ) ( )[ ]
( )
( )

C

s

s u u u u

u u

u u u u u

= + + + + + +

+ + +

+ + +
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θ θ θ θ
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θ θ θ θ θ

�

� (3.45a)

which can be re-written as

C A s A s A s AS = + + +1
3

2
2

3 4 (3.45b)

where
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θ θ

θ θ θ θ

θ

(3.45c-f)

Finding the roots of the third-order polynomial in Eq. 3.45(a) is a non-trivial algebraic

problem, though it is known from the factors in Eqs. 3.45c-f that the discriminant is

positive and hence there are one real and two complex conjugate roots.  Of these, only the

complex conjugate roots are physically meaningful.  The complex conjugate roots were
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found to be well approximated by an expression with the same form as Eq. 3.36, but with

system frequency and damping (~ω  and 
~ζ ) defined as,

~ω
ω ω ω

ω ω ω ω ω ω
ω ω ω

θ

θ θ
θ

2 4

1

2 2 2

2 2 2 2 2 2

2 2 2

1
1 1 1

= =
+ +

=
+ +

A
A

u

u u

u

(3.46a)

and

~

~
ζ
ω

=
−A A A A

A A
2 3 4 1

2 42
(3.46b)

which simplifies to,

~ ~ ~ ~
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u
u

3 3 3

(3.46c)

Eqs. 3.46a-c are an approximate representation of the roots to Eq. 3.45(a) because terms

which are the product of damping ratios are neglected.

These results indicate that flexible-base parameters are dependent on the foundation

impedance in translation and rocking and the structural parameters.

(b) Pseudo flexible-base

The pseudo flexible-base case applies for a condition of partial base flexibility,

representing base rocking only.  This condition is important because actual flexible-base

parameters are often well-approximated by pseudo flexible-base parameters.

Furthermore, pseudo flexible-base parameters can be used in procedures to estimate

either fixed- or flexible-base parameters (see Section 3.6.2).  For the pseudo flexible-base
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case, the input is the total base translation (ug+uf) and the output is the total motion at the

roof level  (ug + uf + hθ + u).  Proceeding as in Part (a), the transfer function is,

H
u u h u

u u

u u
u

h
u

u
u

u u
u

B BB

C s B B
b

g f

g f

g
f

g g g

g
f

g

u

s

(s)
� � � �

� �

�
�

�

�

�
�
�

�
�

�

=
+ + +

+
=

+ + +





+





=
−

θ
θ

θ

θ

1

1
2

(3.47)

The denominator is again a 3rd order polynomial in s,
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from which the system frequency and damping ratio can be evaluated as,
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From Eqs. 3.49a-b, pseudo flexible-base parameters are seen to be dependent on the

rocking impedance of the foundation and the structural properties.  It may be noted that

flexible- and pseudo flexible-base parameters are numerically similar when base rocking

dominates the SSI (which, excepting broad, short structures, is often true).
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(c) Fixed-base

For the fixed-base case, the input is the sum of the total base translation and the

contribution of base rocking to roof translation (ug+uf+hθ), and the output is the total

motion at the roof level (ug + uf + hθ + u).  Proceeding as with Parts (a) and (b), the

transfer function is,
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The denominator in this case can be reduced to the product of a first- and second-order

polynomial in s,

( )
( )[ ]( )

C s B B BB

s s

s u

u u u u

− + =

+ + + +

2

2 2 2 2 2 22s 2

θ

θ θ θ θζ ω ω ζ ω ω ω ω ζω ω
(3.51)

The second-order polynomial in Eq. 3.51 is the same as the denominator of Eq. 3.7(b).

Hence, by analogy to that solution, the fixed-base parameters identified from this analysis

are simply ω and ζ, respectively.

(d) Summary

The results presented in parts (a)-(c) show that a component of system flexibility is

absent from the parametric system identification results when its associated motion is

added to ug in the input.  For example, in Part (b), when the base translation motion is

added to ug in the input, the results represent only the structural flexibility and rocking

foundation flexibility (i.e. base translation effects are “removed”).  Similarly, when base
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rocking and translation are added to ug for the input in Part (c), the only remaining system

flexibility is that of the structure.

The input and output required to evaluate system parameters for various conditions of

base fixity are summarized in Table 3.2.  These same results were derived by Luco

(1980a), who solved the equations of motion (i.e. Eqs. 3.38a-c) in the frequency domain

to determine the input-output pairs necessary for evaluations of flexible-, pseudo flexible-

, and fixed-base modal parameters using nonparametric identification procedures.  The

advantage of the present approach is that the more accurate estimates of transfer functions

from parametric identification can be used to derive fundamental mode vibration

parameters for various conditions of base fixity.

7DEOH����� 5HTXLUHG�LQSXW�DQG�RXWSXW�WR�HYDOXDWH�V\VWHP�SDUDPHWHUV
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3.6.2 Estimation of Fixed and Flexible-Base Modal Parameters

Based on the results in Table 3.2, it is necessary to have recordings of free-field,

foundation and roof translations as well as base rocking to evaluate directly both fixed-

and flexible-base modal parameters of structures.  If no recordings of roof translation are

available, no modal parameters can be identified.  However, if one of the other three

motions is missing, the set of modal parameters not directly evaluated can be estimated.

The two specific cases that will be considered here are missing base rocking motions (in

6\VWHP ,QSXW 2XWSXW

D )OH[LEOH�%DVH ug u u h ug f+ + +θ
E 3VHXGR�)OH[LEOH�%DVH u ug f+ u u h ug f+ + +θ
F )L[HG�%DVH u u hg f+ + θ u u h ug f+ + +θ
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which case fixed-base parameters are estimated), and missing free-field motions (in

which case flexible-base parameters are estimated).  The derivations in this section are

made with respect to the single degree-of-freedom model in Fig. 2.2.  For multi-mode

structures, the quantities m and h are the effective mass and height, respectively.

Although m and h are functions of participation factors (which are not identified), the

fundamental frequency and damping ratio are generally insensitive to reasonable

estimates of m and h.

Verification of these parameter estimation procedures is presented in Section 5.3.2

using results from sites where all three sets of modal parameters were directly evaluated

from system identification analyses.

(a) Estimation of fixed-base modal parameters (missing base rocking motions)

It will be shown in this section that fixed-base modal parameters for a structure can

be estimated from “known” flexible- and pseudo flexible-base parameters.  Hence, it is

assumed that  ~ω , 
~ζ , ~*ω , and 

~*ζ  have been determined from system identification

analyses [Cases (a) and (b) in Table 3.2].  Considering frequency first, Eqs. 3.46(a) and

3.49(a) are re-written as,

( )

1 1 1 1

1 1 1

2 2 2 2

2 2 2

~

~ *

ω ω ω ω

ω ω ω

θ

θ

= + +

= +

u
(3.52)

from which ωu can be readily determined as
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( )
1 1 1
2 2 2ω ω ωu

= −
~ ~ *

(3.53)

The ratio of ωθ to ωu is then taken using Eq. 3.41 to evaluate ωθ as follows,
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where �αu  and �αθ  are modifiers to the static foundation impedance defined in the

Laplace domain (similar to the frequency dependent α factors defined in Eq. 2.4).

For surface foundations, Eq. 3.54 can be simplified using the impedance for a rigid

circular disk foundation on the surface of a homogeneous, isotropic halfspace.  In this

case, the static stiffnesses are as indicated in Eq. 2.5, and the ratio of ωθ to ωu can be

expressed as,
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(3.55)

where r2 and r1 are defined in Eq. 2.3.  Assuming the effective structure height,

foundation geometry, and soil Poisson’s ratio are known, the only unknown quantity in

Eq. 3.55 is the ratio of dynamic factors � / �α αθ u .  In the frequency domain, the factors αu

and αθ are commonly evaluated as functions of both frequency and soil hysteretic

damping.  Hence, such solutions may also be considered valid in the Laplace domain.  As

an approximation, the ratio � / �α αθ u  can be computed for surface foundations using the

frequency dependent impedance factors for a circular foundation on a uniform

viscoelastic half-space derived by Veletsos and Verbic (1973).  As shown in Fig. 2.3,
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both factors are nearly unity for the low frequencies of most structures (a0 < 1), so the

� / �α αθ u  ratio should not significantly affect the results.

For embedded foundations, Eq. 3.54 can be simplified using the impedance for a

rigid circular disk foundation embedded into a homogeneous, isotropic halfspace.  Using

the solution by Elsabee and Morray (1977) for shallowly embedded (e/r < 1) foundations

discussed in Section 2.2.2(d), the solution of Eq. 3.54 is reduced to
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where �αθ  and �αu  are derived for surface foundations.

Obviously, use of Elsabee and Morray’s approximate solution for embedded

foundation impedance increases the expected error in estimates of the ratio ω ωθ / u .

However, for the moderate embedment ratios of many building structures (e/r < 0.5), this

error is expected to be small.

Once ωθ is computed from Eqs. 3.55 or 3.56, the fixed-base frequency can be readily

computed from Eq. 3.49(a) as,

( )
1 1 1
2 2 2ω ω ωθ

= −
~ *

(3.57)

The evaluation of fixed-base damping involves slightly more algebra, but the same

principles apply.  Eqs. 3.46(c) and 3.49(b) are used in conjunction with the ratio of the

damping definitions for ζu and ζθ (Eq. 3.41) to evaluate the unknown damping quantities

ζu, ζθ, and ζ.  The result is as follows,
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The terms �βu  and �βθ  in C4 are dimensionless dashpot coefficients similar to the βu  and

βθ  terms in Eq. 2.4.  The only assumption made in this analysis is that the ratio of soil

damping factors � �β βθu  can be computed from the formulation in Veletsos and Verbic

(1973), with appropriate corrections for foundation embedment, shape, and non-rigidity

effects.  Even for surface foundations and low frequencies, these factors can be quite

sensitive to frequency and hysteretic soil damping (e.g. Fig. 2.3), so the evaluation of

� �β βθu  may be subject to significant errors.  These errors are compounded for embedded

foundations because radiation damping from basement-wall/soil interaction is not

rigorously accounted for in the estimation of �βu  and �βθ .  Hence, estimates of fixed-base

damping are subject to greater uncertainty than estimates of fixed-base frequency.
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(b) Estimation of flexible-base modal parameters (missing free-field motions)

For the derivation of flexible-base modal parameters, it is assumed that fixed- and

pseudo flexible-base system identification analyses have been performed [Cases (b) and

(c) in Table 3.2].  Hence, parameters ~*ω , 
~*ζ , ω, and ζ are assumed known.  The

derivation follows the same steps as in Part (a).  Using Eq. 3.49(a), ωθ is evaluated as

( )
1 1 1
2 2 2ω ω ωθ

= −
~ *

(3.59)

Frequency ωu is computed from the ratio ωθ/ωu in Eqs. 3.55 or 3.56, and the flexible-base

frequency is determined directly from Eq. 3.46(a).

For the case of damping, the algebra is less lengthy than Part (a).  The first step is the

calculation of ζθ from Eq. 3.49(b),
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Damping ζu is then evaluated from the following,
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and the flexible-base damping is determined directly from Eq. 3.46(c).

The same limitations on solution accuracy that were stated in Part (a) apply here as

well.  Namely, the accuracy of estimated flexible-base frequency is generally better than

the accuracy of flexible-base damping, especially for embedded foundations.
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CHAPTER 4

SELECTION OF SITES AND CONDITIONS CONSIDERED

Two general classes of sites were used in this study for empirical evaluations of SSI

effects.  The first, denoted as ‘A’ sites, have a free-field accelerograph and a structure

instrumented to record base and roof translations.  A few of the structures at ‘A’ sites are

also instrumented to record base rocking.  The second class of sites (‘B’ sites) have

structures instrumented to record base rocking as well as base and roof translations, but

have no free-field accelerographs.  This chapter presents the criteria employed for the

selection of ‘A’ sites.  Criteria for the selection of  ‘B’ sites are relatively trivial, as

structures at these sites merely needed the appropriate instrumentation.  This chapter is

concluded with a summary of the geotechnical, structural, and ground shaking conditions

at the ‘A’ and ‘B’ sites.

4.1 Site Selection Criteria:  ‘A’ Sites

The key consideration for the selection of ‘A’ sites was the degree to which “free-

field” motions recorded near a building are likely to remain pure of contamination from

structural vibrations or excessive spatial incoherence.  For most sites, the suitability of

“free-field” recordings was evaluated based on the distance separating the structure and

free-field instrument, with due consideration of the structure’s fundamental frequency and

the site conditions.  This section presents criteria for evaluating conditions for which

“free-field” instruments are too close or too far from a structure.



98

4.1.1 Effects of Building Vibrations on Ground Motions

A number of studies have sought to quantify ground motions induced by structural

vibrations.  Analytical studies have examined (a) two-dimensional shear walls on both an

undamped elastic halfspace (Trifunac, 1972) and a soil layer overlying a halfspace

(Wirgin and Bard, 1996), and (b) three-dimensional lumped mass structures on a soil

layer overlying a halfspace (Bard et al., 1996).  Empirical studies have examined ground

motions induced by forced vibration tests in structures (Jennings, 1970 and Kobori and

Shinozaki, 1982) and coherencies between foundation and “free-field” earthquake

motions (Celebi, 1995).

(a) Analytical studies

Several studies have evaluated ground motions induced by vibrations of two-

dimensional shear walls.  Trifunac (1972) analyzed the response of an elastic wall with a

rigid semi-cylindrical foundation resting on an undamped elastic halfspace subjected to

plane SH waves of variable incidence angles (Fig. 4.1a).  It was found that the presence of

the wall significantly influenced the amplitude of ground displacements to a distance one

order of magnitude greater than the characteristic foundation dimension (i.e. to about

10×a or 5×building width).  Fig. 4.2 shows the Fourier amplitude of the surface motion

near the wall normalized by the amplitude of free-field motion (i.e. the surface motion in

the absence of the wall) for vertically incident SH waves.  The zero amplitude at the wall

is a result of these curves being computed at frequencies matching the fixed-base natural

frequencies of the elastic shear wall.  If the wall-soil system were damped, a finite base-
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of-wall displacement would occur, but the general trends of ground surface displacements

near the wall would be similar (Trifunac, 1972).

Two-dimensional shear walls were also studied by Wirgin and Bard (1996), who

analyzed uniformly spaced viscoelastic walls with flat foundations resting on a layered

viscoelastic halfspace subjected to vertically incident SH waves (Fig. 4.1b).  Analyzed

were cases of lightly damped soft soils (Vs = 200 ft/sec, β = 1.7%) overlying a relatively

stiff base (Vs = 2000 ft/sec).  The ground vibrations induced by the walls were found to

be substantial when the soil layer frequencies were close to, but less than, the wall’s

fundamental frequency.  Results for such a case are shown in Fig. 4.3.  The vertical scale

on these time histories is the surface motion amplitude relative to the motion that would

occur in the free-field if the soil were a uniform halfspace (e.g. the amplification that

results from the soil layering alone is indicated on the free-field plot).  Though the

amplitude of the ground surface motions are only slightly increased by the structural

vibrations, the duration was considerably lengthened.

Bard et al. (1996) extended Wirgin and Bard’s analysis to encompass three-

dimensional lumped mass structures with and without foundation embedment.  Base

rocking was found to generate more significant ground waves than base translation, and

the most efficient transmission of ground waves occurred when the structure and site

were in resonance and the structure was embedded.  For a particular ground instrument in

Mexico City located 164 feet from an embedded structure which is resonant with the site,

Bard et al. predicted 31% amplification of peak ground acceleration due to structural

vibrations.  This situation effectively represents a worst case scenario for these effects.



101

(b) Empirical studies

Ground motions resulting from structural vibrations can only be directly examined on

an empirical basis when the true free-field motions that would occur in the absence of the

structure are known.  Such is the case with forced vibration testing of structures, as the

free-field motions are zero (ignoring noise).  Such ground motions have been examined

by Jennings (1970) for forced vibration testing of a 9-story building (69 by 75 feet in

plan) and Kobori and Shinozaki (1982) for forced vibration testing of a 6.5 x 6.5-ft. test

footing.  Jennings recorded ground motions dominated by the first-mode period of the

structure that had about 11 to 22% of the base-of-structure amplitude 30 to 60 ft. from the

structure, and 0.0015% amplitude 6.7 miles from the structure.  The testing involved a

low foundation-level peak acceleration of 0.0019g.  The site examined by Kobori and

Shinozaki (1982) had cut and fill areas, and the variation of ground motion amplitude

with distance away from the structure had some minor peaks.  Nonetheless, a general

trend of degradation of velocity Fourier amplitude with distance was observed, with

relative velocity amplitudes at 26 and 184 feet separations of about 2 to 6% and 0.04 to

0.08%, respectively.

Ground motions associated with earthquake-induced structural vibrations can be

approximately examined by comparing foundation and “free-field” recordings.  Celebi

(1995) examined potential correlations between these motions using spectral and

coherence functions.  Four sites were examined, each of which was also considered in

this study (A4, A11, A32, A33).  Celebi argued that high coherencies at the structure’s

modal frequencies provide evidence for contamination of “free-field” recordings from
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structural vibrations.  As shown in Fig. 4.4, at site A4, the motions are fairly coherent

near the second and third modal frequencies; at site A11, the motions are coherent near

the first-modal frequency; and at sites A32 and A33, the motions are coherent near the

first two modal frequencies.  However, the high coherencies only directly indicate a

similarity in the respective motions, and do not constitute proof of structural vibrations

affecting “free-field” motions.  In fact, it is expected that “free-field” and foundation

motions would be fairly coherent at sites with relatively uniform geologic conditions and

with soil-structure systems not prone to significant inertial interaction effects (which is

generally the case for the sites examined by Celebi).

The uncertainty associated with the interpretation of high coherencies between

foundation and ground motions can be illustrated by further examination of sites A4 and

A33.  At site A4, coherencies computed from the north ground instrument (130 feet from

the structure) are nearly unity for f < 2.2 Hz, whereas coherencies using the south ground

instrument (530 feet from the structure) have substantial fluctuations.  In this case, the

relatively high coherencies obtained using the north ground data clearly indicate the

strong influence of structural vibrations on recordings at this instrument.  On the other

hand, at site A33, coherencies computed from three ground instruments (located 662,

125, and 502 feet from the structure) are near unity for f < 2 Hz for each pair.  As there is

no significant variation in coherence with structure-ground instrument separation at this

site, it appears that the high coherencies are a result of uniform site conditions and

minimal SSI and not structural vibrations.  Hence, as illustrated by these examples, high

coherencies between foundation and ground motions must be interpreted with caution.
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(c) Summary

The key observations from the above-cited studies are as follows:  (1) at low soil

damping (i.e. < 2%), the analytical studies indicate a significant influence of structural

vibrations on ground motions to a distance of about 5×building width for a halfspace, and

to much greater distances for a soft soil layer overlying a stiff material, provided the

frequency of the soil layer is nearly equal to or less than the structural frequency, (2)

structural vibrations often affect the duration of nearby ground motions more than the

amplitude, (3) structures induce ground vibrations most efficiently when they are

embedded, and when there is significant base rocking, and (4) high coherencies between

seismic ground and foundation motions at modal frequencies can be associated with

structural vibrations affecting the ground instrument, but do not provide proof of such

interaction.  Since the analytical studies and forced vibration test data are only applicable

for low hysteretic soil damping, results from these studies may not be applicable to

earthquake loading conditions involving strong shaking.  To the extent that high

coherencies between foundation and ground motion recordings indicate at least a

potential influence of structural vibrations on ground motions, such analyses can provide

insight.  However, unless multiple ground recordings from the site are available, the true

cause of such high coherencies is difficult to ascertain.

In this study, the potential influence of structural vibrations on “free-field” motions

was examined as follows:  (1) using power spectral density functions, “free-field” spectra

were examined for peaks at the modal frequencies of the adjacent structure, especially if

such peaks were also present in the spectra of foundation motions, (2) coherencies

between foundation and “free-field” motions were examined for values near unity at
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modal frequencies, and (3) “free-field” motions were checked for unusually long

durations if significant free vibrations occurred in the structure following the conclusion

of strong ground shaking.  For the sites in this study, the influence of structural vibrations

on “free-field” motions was generally estimated to be minor or negligible, with a few

exceptions noted below.

The only cases where a significant influence of structural vibrations was evident in

the “free-field” data was at sites A26 and A29.  Fig. 4.5 shows power spectral density and

coherence functions for these sites, from which contamination is suspected based on

unusually large spectral amplitudes at the frequencies noted.  At both sites, the spurious

vibrations likely originated from another structure unusually close to the “free-field”

accelerograph (i.e. about 50 feet from a parking garage at site A26 and about 6 feet from a

3-story storage building at site A29).  However, these vibrations occurred at frequencies

far removed from the lower-mode frequencies of the instrumented structure, so the “free

field” motions were still used in system identification analyses of the flexible-base

structural response.

4.1.2 Effects of Spatial Incoherence on the Compatibility of Foundation and Free-Field
Motions

Even at uniform sites, earthquake ground motions recorded at different locations are

spatially incoherent as a result of different wave ray paths and local heterogeneities in the

geologic media.  These effects have been studied empirically using data from dense arrays

of strong motion instrumentation at sites in Lotung, Taiwan (e.g.  Abrahamson et al.,

1991 and Abrahamson, 1988), Parkfield, California (e.g. Schneider et al., 1990),
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Coalinga, California (e.g. Somerville et al., 1991), and Imperial Valley, California (e.g.

Smith et al., 1982).

Spatial incoherence effects are generally quantified in terms of a coherency function

which is the square root of the coherence function defined in Eq. 3.12,
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Coherency is a complex-valued function with the real part describing the similarity of two

ground motions without correction for passage of inclined plane waves.  The modulus,

( )γ ω , removes the wave passage effect.  Abrahamson et al. (1991) defined Re(γ) as

unlagged coherency and ( )γ ω  as lagged coherency, and these definitions are retained

here.

In the selection of ‘A’ sites, the key issue with regard to spatial incoherence is

deciding when free-field instruments are located too far from a structure.  Incoherence

resulting from wave passage effects alone are correctable with synchronization (Section

3.5.1), so the principle concern here is the lagged coherency.

Abrahamson (1988) performed regression analyses on ( )tanh−1 γ ω , which is

approximately normally distributed, using 13 stations in the SMART 1 array in Lotung,

Taiwan.  The station separations ranged from 87 to 411 m.  Separate regressions were

performed for four events ranging in magnitude from MS = 5.6 to 7.8, and in epicentral

distance from 6 to 79 km.  Abrahamson et al. (1991) also performed regression analyses

on ( )tanh−1 γ ω  using 15 closely spaced stations within the SMART 1 array known as

the LSST array.  Station separations in the LSST array range from 6 to 85 m.  The
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regression was performed using data from 15 events ranging in magnitude from 3.7 to 7.8

and in epicentral distance from 5 to 80 km.

The results from the LSST regression are shown in Fig. 4.6 together with the

SMART 1 regression results for a specific event (Event 40, MS = 6.4, epicentral distance

= 68 km).  Event 40 regression results were similar to results for other events for

frequencies < 2 Hz.  In Fig. 4.6, the coherency is seen to decrease more rapidly with

frequency than with distance in the motions recorded at both arrays.

The results in Fig. 4.6 were based on data from the Lotung site which has a relatively

uniform near-surface geologic profile.  Regression results from the Parkfield array, which

also has a relatively uniform soil profile, were found to be similar to those for the Lotung

array (Schneider et al., 1990).  In contrast, spatial incoherence in highly heterogeneous

media, such as folded sedimentary rock at the Coalinga array, does not show the strong

dependence on distance and frequency evident in Fig. 4.6 (Somerville et al., 1991).

Further, the coherence for such heterogeneous sites is lower at close distances and low

frequencies than at uniform sites.

Many of the sites considered for this study had relatively uniform soil profiles, and it

was assumed that the regression curves in Fig. 4.6 provide a reasonable quantification of

spatial incoherence effects.  It was decided to maintain coherencies greater than about 0.8

at the predominant period of the building.  For the majority of sites in this study, this

required free-field-structure separations less than about 2600 ft (800 m) for 1 Hz

structures, 1500 ft (450 m) for 2 Hz structures, and 500 feet (150 m) for 4 Hz structures.

Since the likelihood of geologic uniformity decreases for large separations, an effective
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maximum separation of about 1500 ft was used for low frequency (f1 < 2 Hz) structures.

These guidelines were used for the initial screening of sites for this study.

The sites considered in this study are listed in Table 4.1 along with their first-mode

period and the separation distance between the free-field instrument and structure.

Almost all of the sites meet the above guidelines for separation distance, and for most

sites, spatial incoherence is not believed to have significantly contaminated the free-field

recordings.  Several sites which narrowly meet the above separation distance guidelines

(A20 and A36) have fairly uniform geologic profiles, and incoherence effects were not

excessive.  Several rock sites are quite geologically heterogeneous (sites A5, A6, and

A11); of these, the separations at sites A5 and A11 are relatively small (about 500 ft.) and

significant incoherence was not encountered.  Spatial incoherence was a problem at sites

A6 and A22.  At site A6, the combination of a 1260 ft. separation and  heterogeneous

geologic media resulted in significant incoherence which essentially invalidated the

analytical results.  At site A22, the 1700 ft. separation for this 2 Hz structure slightly

exceeds the maximum separation distance guidelines.  The free-field and base-of-

structure motions were fairly dissimilar in this case, hence the analytical results were

tagged with a “low confidence” designation (see Section 5.3.3).

4.2 Conditions Examined

The purpose of this section is to provide a brief overview of the range of conditions

represented by the sites considered in this study.  All of the sites are listed in Table 4.1.

As noted above, there are two classes of sites: ‘A’ sites which have an instrumented
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structure and a free-field accelerograph, and ‘B’ sites which have a structure specially

instrumented to record base rocking, but no free-field accelerograph.  There are 45 ‘A’

sites and 13 ‘B’ sites, with a total of 79 sets of available processed data.  Sites A19 and

B8 were omitted in the final compilation for reasons discussed below.

With the exception of the 1/4-scale reactor structure in Lotung, Taiwan, all of the

sites are located in California.  Fig. 1.2 is a map of California showing the locations of the

sites and major earthquakes considered in this study.  Larger scale maps for particular

areas of interest are presented in Figs. 4.7 to 4.10 for the Humboldt/Arcata Bay area, San

Francisco Bay area, Los Angeles area, and San Bernardino areas.  The contributing

earthquakes in the Humboldt/Arcata Bay area (Fig. 4.7) were the 1975 Ferndale and 1992

Petrolia events, and there are three ‘A’ sites in this vicinity.  The 1989 Loma Prieta

Earthquake was the key event for the San Francisco Bay area (Fig. 4.8), with six

recordings at ‘A’ sites and seven recordings at ‘B’ sites.  In the Los Angeles and San

Bernardino areas (Figs. 4.9-10), the contributing events were the 1971 San Fernando,

1985 Redlands, 1987 Whittier, 1990 Upland, 1991 Sierra Madre, 1992 Landers, and 1994

Northridge earthquakes.  There are a total of 25 ‘A’ sites and 6 ‘B’ sites in these two

regions.  Sites not included in the local maps (Figs. 4.7-10) are A7 in Hollister, A9 near

Coalinga, A12 in El Centro, A13 in Indio, A14-16 in Lancaster, A34 in Palmdale, and

A45 in Ventura.  The locations of these sites are shown in Fig. 1.2.

A summary of the 15 California earthquakes which contributed data to this study is

presented in Table 4.2.  The magnitudes range from 4.8 to 7.4, though the events

contributing the vast majority of the data were the MW = 6.0 Whittier, MW = 6.9 Loma

Prieta, MW = 5.6 Upland, MW = 7.0 Petrolia, MW = 7.3 Landers, and MW = 6.7 Northridge
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earthquakes.  The maximum horizontal accelerations (MHAs) produced by these

earthquakes at the sites break down as,

MHA > 0.6g 1 data sets
MHA = 0.4-0.6g 4 data sets
MHA = 0.2-0.4g 23 data sets
MHA = 0.1-0.2g 17 data sets
MHA < 0.1g 34 data sets

Hence, moderate- and low-level shaking is well represented in the database, but data for

intense shaking (MHA > 0.4g) is relatively sparse (only 4 data sets).

7DEOH�������(DUWKTXDNHV�ZKLFK�FRQWULEXWHG�GDWD�WR�WKLV�VWXG\

As indicated in Table 4.1, the geologic conditions at the sites break down as 46 soil

sites and 12 rock sites.  The average VS indicated in the table is computed as the ratio of

r1 to the travel time for shear waves to travel to the surface from a depth of r1 (where r1 is

the disk foundation radius defined in Eq. 2.3).  These calculations were made using the

small-strain shear wave velocities provided for each site in Stewart (1997), with

supplementation by more recently obtained data for several sites. It may be observed from

(DUWKTXDNH 0DJQLWXGH 5HFRUGLQJV

���� .HUQ &RXQW\ �NQ� 0:  ��� �

���� 6DQ )HUQDQGR �VI� 0:  ��� �

���� )HUQGDOH �IQ� 0/  ��� �

���� ,PSHULDO 9DOOH\ �LPS� 0:  ��� �

���� &RDOLQJD �FJ� 0:  ��� �

���� &RDOLQJD $IWHUVKRFN
�FJD�

0:  ��� �

���� 5HGODQGV �UG� 0/  ��� �

���� :KLWWLHU �ZW� 0:  ��� �

���� /RPD 3ULHWD �OS� 0:  ��� ��

���� 8SODQG �XS� 0:  ��� �

���� 6LHUUD 0DGUH �VP� 0:  ��� �

���� 3HWUROLD �SW� 0:  ��� �

���� 3HWUROLD $IWHUVKRFN �SWD� 0:  ��� �

���� /DQGHUV �OG� 0:  ��� ��

���� 1RUWKULGJH �QU� 0:  ��� ��



118

the table that shear wave velocities at many of the rock sites are sufficiently low that there

is relatively little distinction between the VS at these sites and some stiff soil sites (e.g.

sites A6, A8, A21, A25, A27, B7, and B11 to B14).

Some of the structural/foundation conditions at the sites can be categorized as

follows.  Foundations for 23 buildings have piles or piers, while 35 have shallow

foundations such as footings, mats, or grade beams.  Most buildings are not embedded

(36) or have shallow single-level basements (14).  Only eight buildings have multi-level

basements.  The building heights and principle lateral force resisting systems break down

as,

1 to 4 stories: 18 buildings
5 to 11 stories: 27 buildings
> 11 stories: 13 buildings

Masonry/concrete shear walls: 20 buildings
Dual wall/frame systems: 11 buildings
Concrete frames:   4 buildings
Steel frames: 19 buildings
Base isolated:   4 buildings

Lastly, it should be noted that two sites, A19 and B8, were omitted from the

compilation.  Data for site A19 did not become available by the time this report was

prepared.  There were flaws in the analytical results for site B8 that could not be resolved.
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CHAPTER 5

EMPIRICAL EVALUATION OF SOIL-STRUCTURE INTERACTION
EFFECTS AND CALIBRATION OF ANALYSIS PROCEDURES

5.1 Introduction

The principal objectives of this study are to make use of strong motion data from

recent earthquakes to evaluate the effects of soil-structure interaction (SSI) on structural

response for a range of site and structural conditions, and then to use these results to

calibrate existing simplified analytical formulations intended to predict these same

effects.  Previous chapters have described the system identification procedures used to

evaluate SSI effects from earthquake strong motion recordings (Chapter 3), and

simplified analytical methodologies against which the empirical results can be compared

(Chapter 2).  This chapter will realize the stated project objectives by (1) empirically

quantifying SSI effects of interest through an assessment of system identification results

for the 58 sites considered in this research, and (2) evaluating the accuracy and limitations

of the simplified analytical procedures through comparisons of the predicted and

empirical SSI effects.  It should be noted that the results presented here are a summary of

key findings from 58 individual site studies; specific analysis results and site conditions

for each site are presented in Stewart (1997).

SSI effects evaluated from site studies are collectively examined in three stages to

address different aspects of the problem.  The initial stage, presented in Section 5.2,

examines variations between free-field and foundation motions using indices such as

peak acceleration, velocity, and displacement and various spectral accelerations.  These



120

comparisons simplistically illustrate the filtering effects of kinematic interaction on

foundation translational motion and the contributions of inertial interaction to foundation

motion near the first-mode period of the structure.

In the second stage (Section 5.3), inertial interaction effects are investigated using

fixed- and flexible-base first-mode parameters derived from system identification and

related modal parameter estimation procedures.  These effects are quantified by the

flexible-to-fixed-base period lengthening ratio (
~

/T T ) and the foundation damping factor

~ζ0 , which represents the effects of hysteretic and radiation damping in the soil and

foundation.

In the third stage (Section 5.4), the “empirical” period lengthening ratios and

foundation damping factors are compared to predictions from the “modified Veletsos”

and “modified Bielak” analytical methodologies to calibrate these procedures.  Section

5.5 goes on to compare the empirical results to evaluations of period lengthening and

foundation damping from procedures in the BSSC (1997) and ATC (1978) seismic design

codes.

In the following, sites are referred to by number with direction and earthquake

information tagged on when necessary.  For example, A25-L(nr) indicates site A25,

longitudinal direction (L = longitudinal, tr = transverse), Northridge Earthquake.  The

shorthand for earthquakes is defined in Table 4.2.  No direction is given if the tag applies

to both directions or if there is only one direction for which data are available.  Similarly,

no earthquake tag is given if data are only available for one event at the site.



121

5.2 Comparison of Free-Field and Foundation-Level Structural Motions

The simplest way to evaluate basic kinematic and inertial interaction effects is to

compare indices of free-field and foundation motions.  The ground motion indices

examined in this section are peak horizontal acceleration, velocity, and displacement, as

well as 5%-damped spectral acceleration at the flexible-base period of the structure (
~
T )

and the predominant period of free-field shaking (7HT).  The 
~
T  values were determined

from system identification analysis, while 7HT is defined as the period at which the power

spectral density of free-field motion is maximized.

The motions examined consist of processed data from ‘A’ sites.  A significant

amount of additional unprocessed data is available for these and other sites which could

have been used to supplement the database compiled for this study.  However, these

unprocessed data are almost entirely for low shaking levels (i.e. peak acceleration < 0.1g)

which are well-represented in the database, and hence the incorporation of potentially

erroneous unprocessed data is not justified.

The ground motion indices compiled for the 45 ‘A’ sites are presented in Table 5.1.

Presented in Figs. 5.1 to 5.5 are comparisons of free-field and foundation-level strong

motion indices sorted by (a) rock/soil sites, (b) structures with deep/shallow foundations,

(c) short/tall structures, and (d) structures with/without basements.  For each of plots (a) -

(d), second-order polynomials fit to the data using linear regression analyses are drawn to

clarify trends for the respective conditions.
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5.2.1 Peak Accelerations, Velocities, and Displacements

The data in Fig. 5.1 indicate that peak foundation-level accelerations are generally

de-amplified relative to the free-field.  No significant differences are apparent between

the average de-amplification of foundation motions at rock vs. soil sites or buildings with

deep vs. shallow foundations.  However, the de-amplification is larger in “short”

structures (1-4 stories) than “tall” structures (> 4 stories), and is also larger in embedded

than surface structures.  The data for peak velocities and displacements in Figs. 5.2 and

5.3 generally indicate less de-amplification than was observed from the peak acceleration

data.  The trends in the data for rock vs. soil, deep vs. shallow foundations, short vs. tall

structures, and embedded vs. surface structures are similar to those for acceleration.

The deviations between foundation and free-field motions in Figs. 5.1 to 5.3 are

associated with kinematic and inertial interaction effects, as well as peculiarities of

particular sites, structures, and earthquakes.  Hence, it is tenuous to draw firm

conclusions about a particular SSI effect from these results.  However, there are some

notable trends in the data which provide insights into SSI effects, and these are discussed

below along with peculiar results for several sites.

(a) Larger de-amplification of foundation peak accelerations than peak velocities or
displacements

Peak acceleration is sensitive to high frequency components of motion, whereas

velocities and displacements are sensitive to lower frequency components.  The de-

amplification of foundation accelerations likely results from the filtering effect of

kinematic interaction on high frequency components of ground motion.  The smaller de-

amplification of velocities and displacements likely results from both the reduced
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kinematic interaction at these lower frequencies and contributions to foundation motion

from inertial interaction effects (which typically occur at relatively low frequencies).

(b) Increased de-amplification of foundation-level motions in embedded structures

The pronounced de-amplification of basement motion relative to free-field motion is

a result of the tendency for ground motion amplitude to decrease with depth, and to some

extent from wave scattering effects.  Such de-amplification was also noted by Poland et

al. (1994).

(c) Reduced de-amplification of foundation-level motions in >4-story structures

Inertial interaction effects in tall structures can enhance their foundation motions

relative to those in shorter structures.  This occurs because tall, heavy structures develop

more inertia during earthquake shaking than short, light structures, and because

foundation damping effects decrease with increasing aspect ratio (i.e. Fig. 2.10).

(d) Large de-amplification of foundation-level accelerations at particular sites

The de-amplification of foundation-level accelerations relative to the free-field was

particularly significant for sites A3 and A9 and for several data sets from the Upland

Earthquake (at sites A35-37).   The structure at site A3 is an 86-foot deep caisson with a

30-foot radius (e/r = 86/30 = 2.9), and hence the embedment effect is unusually

pronounced.  At site A9, the structure and free-field accelerograph are at the foot and top,

respectively, of a 3H:1V, 84-foot tall slope.  Hence, topographic effects, which would

tend to amplify the free-field motions and de-amplify the structural motions by as much
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as 20% at this slope angle (Ashford and Sitar, 1994), may have contributed to the large

de-amplification at this site.

Data pairs from sites A35-37 in the Upland earthquake indicated unusually de-

amplified foundation accelerations in the structures’ longitudinal direction.  These

structures have basements, and a pronounced embedment effect may have resulted from

the free-field motions having high predominant frequencies (feq ∼ 6 to 7 Hz) in the

structure’s longitudinal directions.  These high frequencies give rise to short wavelengths

(about 140 feet based on VS ∼ 800 to 1000 fps at these sites) which have a node (at 1/4 of

the wavelength) near the embedment depth (10 to 20 feet).   In contrast, the predominant

frequency of the transverse free-field motions was lower (feq ∼ 2 to 4 Hz), and the

attenuation of foundation motions relative to the free-field was less significant.

(e) Amplification of foundation-level motions

As can be seen from Figs. 5.1 to 5.3, amplification of foundation motions relative to

the free-field was unusual.  Where it occurred (e.g. sites A12, A42-tr), amplification was

generally most pronounced in acceleration data, and hence appears to be a high frequency

effect.   In the case of site A42-tr, the foundation instrument is located adjacent to a 6 to

8-foot deep pit, and a reinforced concrete retaining wall separates the pit from the floor

where the instrument is located (the transverse direction of the structure is normal to the

alignment of the retaining wall).  The high frequency amplification in this case may have

resulted from local topographic amplification near the wall.  In the case of site A12,

further study is required to determine the cause of the amplification of foundation-level

accelerations.  The behavior of the soil-foundation-structure system is relatively complex
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in this case as the structure was severely damaged by the earthquake shaking and was

subsequently razed.

5.2.2 Spectral Accelerations

Spectral accelerations at the first-mode flexible-base period of the structures (
~
T ) for

foundation and free-field motions are compared in Fig. 5.4.  The contributions of inertial

interaction to foundation motion are most pronounced at 
~
T , and a comparison of Figs.

5.1 and 5.4 confirms that less de-amplification of foundation motion occurred in spectral

accelerations at 
~
T  than in peak accelerations (which are the spectral acceleration at T=0).

Relative trends in the data for the various conditions in plots (a) to (d) are similar to those

noted for peak accelerations.  No significant differences in spectral accelerations are

observed for rock/soil sites or structures with shallow/deep foundations, but the

attenuation of foundation motions is notably more pronounced for “short” than “tall” and

for embedded than surface foundations.  In fact, no de-amplification of spectral

accelerations at 
~
T  occurred on average for either “tall” or surface structures.

Spectral accelerations from foundation and free-field motions are also compared at

the fundamental period of earthquake shaking (7HT) in Fig. 5.5.  This comparison shows

significant de-amplification of these foundation spectral accelerations.  The same relative

trends noted above for conditions in plots (a) through (d) are observed again in Fig. 5.5.

Some of the outliers in the spectral acceleration comparisons are labeled in Figs. 5.4

and 5.5.  Explanations for the large de-amplifications at sites A3, A9, and A35-37 (up)

were discussed in Section 5.2.1.  Foundation spectral accelerations at sites A12 and A42-



133

tr were not amplified (except at site A42-tr, minor amplification at the low 7HT value),

which contrasts with the amplification of peak accelerations in Fig. 5.1.  Amplified

foundation spectral accelerations at site A22 may be unreliable due to potentially large

spatial incoherence effects (the free-field and structure are separated by about 1700 feet).

5.3 Empirical Evaluation of the Effects of Inertial Interaction

5.3.1 Evaluation of Modal Parameters: Overview

For the investigation of inertial interaction effects in this study, modal parameters

were evaluated for two cases of base fixity:  (1) a “fixed-base” case in which the system

flexibility is associated entirely with the structure (i.e. no SSI effects), and (2) a “flexible-

base” case in which the system flexibility is associated with foundation translation and

rocking as well as structural deformations.  Inertial interaction effects are quantified by

the first-mode period lengthening ratio (
~

/T T ) and the foundation damping factor (
~ζ0 ).

Modal parameters were evaluated using the system identification procedures

described in Sections 3.1 to 3.5.  As described in Section 3.6, the fixed- and flexible-base

parameters were directly evaluated using system identification procedures when the site

instrumentation included a free-field accelerograph, a structure with foundation- and roof-

level lateral sensors, and foundation-level vertical sensors capable of measuring base

rocking.  However, the instrumentation at many sites lacked foundation sensors for

measuring base rocking (many ‘A’ sites) or free-field accelerographs (all ‘B’ sites).  For

these cases, the fixed- or flexible-base parameters were estimated using procedures in

Section 3.6.2.  These procedures require that modal parameters be evaluated for a third
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“pseudo flexible-base” case.  Hence, modal parameters identified for each structure

included fixed-base (T,ζ ), flexible-base (
~

,
~

T ζ ), and pseudo flexible-base (
~

*,
~

*T ζ ).

5.3.2 Verification of Estimated First-Mode Periods and Damping Ratios

 Analytical procedures were developed in Section 3.6.2 to estimate fixed- or flexible-

base parameters for sites with inadequate instrumentation for direct identifications.  For

sites where these parameters can be evaluated directly, verification of the estimation

procedures against identified parameters is possible.  Results for eleven such sites, with

19 data sets, are evaluated in this section.  The results are summarized in Table 5.2.

The conditions necessary to apply the parameter estimation procedures are that

~ ~
*f f<  for estimating fixed-base parameters and 

~
*f f<  for estimating flexible-base

parameters.  For the 11 sites with complete instrumentation sets, these conditions were

met for 11 of the 19 data sets for estimating fixed-base parameters, and in 17 of 19 data

sets for estimating flexible-base parameters.  Each site which failed the 
~ ~

*f f<  or 
~
*f f<

criteria had negligible period lengthening, and the criteria were not met as a result of

small numerical errors inherent to all system identification results.  These errors can be

associated with inadequate model structure and random disturbance errors in the output

data, as discussed below in Section 5.3.3(b).

 Based on the results in Table 5.2, the parameter estimation procedures appear to

provide good estimates of fixed- and flexible-base periods both at sites where inertial

interaction effects are significant (e.g. A46) as well as sites where these effects are minor

(e.g. A8).
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Estimates of fixed-base damping (ζ) differed from identified values by absolute

differences of about 1 to 2% (except at site A4, where random disturbance errors in ζ are

large).  At several sites with significant interaction, estimated ζ values are closer to

“known” ζ values than are the pseudo flexible-base damping (
~

*ζ ) values (e.g. A31,

A45).  By contrast, the estimation of flexible-base damping (
~ζ ) is highly sensitive to

differences between ζ and 
~

*ζ  values, and where such differences are small (i.e. within

the range of uncertainty of the system identification results), 
~ζ  values can be significantly

overestimated [e.g. A8, A25, A37 (rd), A37 (up), A43(nr)].  However, when the

difference between ζ and 
~

*ζ  values is large (e.g. A24, A31, A45, A46), the flexible-base

damping is generally well predicted.  Overestimated 
~ζ  values are usually fairly obvious

from comparisons with 
~

*ζ  values.  For such cases, the results in Table 5.2 indicate that

flexible-base damping is generally better estimated by 
~

*ζ  values.

The fixed-base parameters could not be estimated for site A46.  A large increase in f

relative to 
~
f  is predicted by the procedure (which is consistent with the unusually large

SSI effect at this site), but the estimate is undefined because ~ ~ *ω ωθ <  (i.e. see Eq. 3.57).

In this case, the estimation of f  is highly sensitive to the relatively small difference

between 
~
f  and 

~
*f , and the instability of the estimate is likely associated with small

numerical identification errors.  Errors associated with model structure are unusually

large at this site due to the stiff structural response (i.e. the system identification results in

this case were sensitive to the order of the model, J).  In contrast, the flexible-base
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parameters were accurately estimated because the estimate is based on the relatively large

differences between the fixed and pseudo flexible-base parameters.

In summary, the estimation procedures generally provide reasonable estimates of

system identification results at eleven sites where complete instrumentation sets are

available.  Comparisons of estimated and “known” first-mode parameters show that (1)

fixed- and flexible-base frequencies are reliably predicted by the parameter estimation

procedures, (2) estimated fixed-base damping ratios are fairly accurate (absolute

difference between estimated and actual values of about 1 to 2%), and (3) flexible-base

damping is generally well predicted when SSI effects are significant, but can be

overpredicted when SSI effects are modest.  For cases with modest SSI effects but large

differences between estimated flexible-base damping and identified fixed-base damping,

the flexible-base damping is better estimated by the pseudo flexible-base damping.

5.3.3 Interpretation of Modal Parameters

System identification analyses for the 57 sites considered in this study were

performed according to the procedures in Chapter 3.  Modal vibration periods and

damping ratios were evaluated for the fixed-base (T,ζ ) and flexible-base (
~
,
~

T ζ ) cases,

and are listed in Table 5.3.   This section will describe the assignment of relative

confidence levels to these parameters, and the assessment of numerical errors and system

nonlinearities in the identification results.
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(a) Confidence levels

System identification results for each site were assigned one of three possible

confidence levels:  A = acceptable confidence, L = low confidence, and U = unacceptable

confidence.  Unacceptable confidence is associated with one of the following situations:

• U1:  Reliable flexible-base parameters could not be developed due to significant

incoherence between foundation and free-field motions.

• U2:  The structure and foundation were so stiff that the roof and foundation level

motions were essentially identical, and hence the response could not be established by

system identification.

• U3:  At ‘A’ sites, fixed-base parameters could not be obtained directly by system

identification, and also could not be estimated because (1) 
~ ~

*T T<  and (2) base

rocking effects were evident from comparisons of vertical foundation and free-field

motions.  Evidence of base rocking suggests that SSI effects are significant, and that

fixed-base period will differ substantially from flexible- and pseudo flexible-base

period.  Hence, the inability to estimate fixed-base period necessarily terminates the

analysis. At ‘B’ sites, the U3 error indicates that flexible-base parameters could not be

estimated because T T> ~
* .

• U4:   Reliable parametric models of structural response could not be developed for

unknown reasons.  This occurred at site A29-L (wt) and B3, and may have resulted in

part from contamination of ground motions from vibrations of nearby structures.

Low confidence levels occur most often because of poor characterization of

geotechnical conditions (i.e., insufficient data to evaluate stratigraphy and shear wave

velocities to depths of about one foundation radius).  Although geotechnical data have no
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direct effect on vibration parameters evaluated with system identification, VS affects the

manner in which SSI results are interpreted relative to other sites through the parameter

σ=VS⋅T/h.  Other reasons for low confidence in the results include contamination of free-

field data from vibrations of nearby structures (A26 and A29), moderately incoherent

foundation and free-field motions (A22 and A36), and short duration strong motion data

[A2 (pta) and A9 (cga)].

(b) Errors in first-mode parameters

As noted in Section 3.4.3(d), there is always uncertainty in models identified from

parametric analyses due to imperfect model structures and disturbances in the output data

(Ljung, 1995).  Systematic errors can result from inadequate model structure (i.e. non-

optimal selection of the d or J parameters) which cannot be readily quantified.  A second

type of error results from random disturbances in the output data.  This error quantifies

how the model would change if the identification were repeated with the same model

structure and input, but with a different realization of the output.  This uncertainty can be

readily computed from the least-squares solution for the model parameters.  The

coefficients of variation associated with random disturbance errors are generally about 0.5

to 1.5% for frequency and 5 to 15% for damping.

Errors associated with inadequate model structure are controlled by selecting J so as

to minimize deviations between the model output and roof recording, while not over-

parameterizing the model in such a way as to cause pole-zero cancellation in the transfer

function.  However, an additional constraint is to maintain the same value of J for all

output/input pairs in a given direction.  This is enforced to maximize the likelihood that
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variations between modal parameters for different conditions of base fixity are reflective

of true SSI effects and are not by-products of the analyses.  As a result of this constraint

on J, models for some output/input pairs may not be optimally parameterized with respect

to the minimization of model error.

Despite these efforts to develop consistent model structures for different output/input

pairs, numerical errors can still occur which result in conditions such as 
~ ~

*T T< ,

T T> ~
* , or 

~ζ0 0< .  Such errors are generally small (i.e. within the range of the

“random” errors noted above), and only become apparent at sites where inertial

interaction effects are small.  Nonetheless, the 
~ ~

*T T<  and T T> ~
*  conditions make

impossible the implementation of fixed- and flexible-base parameter estimation

procedures, respectively.  If T T> ~
*  at a ‘B’ site, a U3 error is assigned.  If 

~ ~
*T T< , the

significance of base rocking is evaluated using foundation-level and free-field vertical

motions, and one of the following is done:  (a) if rocking is evident from amplification of

foundation-level vertical motions at the fundamental mode of the structure, a U3 error is

assigned, or (b) if no rocking is evident, fixed-base parameters are approximated by

pseudo flexible-base parameters.  Hence, the final results for some sites indicate 
~
T T< ,

despite the obvious error associated with such a finding.  Similarly, there were cases of

~ζ0 0< .  Such results are interpreted as indicative of small SSI effects, and are taken as

~
/T T = 1 or 

~ζ0 0= .
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(c) System nonlinearities

Modal parameters are generally developed from CEM parametric system

identification analyses, and hence are based on the assumption of linear, time invariant

behavior.  As a check of this assumption, the time dependence of first-mode parameters is

also evaluated by recursive techniques (i.e. RPEM).

An example of essentially linear, time invariant response was previously provided in

Fig. 3.2.  An illustration of nonlinear structural response is provided by the six-story

Imperial County Services Building (site A12) which partially collapsed during the 1979

Imperial Valley Earthquake.  As shown in Fig. 5.6, reductions in first-mode frequency

and high damping are evident during the first 20 seconds of strong shaking.  A nonlinear

structural response such as this can lead to significant differences between RPEM modal

parameters at a given time and CEM modal parameters evaluated across the duration of

the time history.  What is important from the standpoint of evaluating inertial interaction

effects is that differences between CEM parameters for different cases of base fixity are

consistent with differences in RPEM parameters during times when the identification is

stable.  For example, at site A12, differences between fixed- and pseudo flexible-base

frequencies were generally consistent with the difference in CEM frequencies throughout

the duration of strong shaking (CEM results were 
~

.f = 136 , 
~

* .f = 154  Hz).  Conversely,

differences between damping values were strongly time-dependent, with 
~ζ  significantly

exceeding 
~

*ζ  for t < 20 sec. and the opposite trend subsequently.  The corresponding

CEM results are 
~

.ζ = 16 0%  and 
~
* .ζ = 13 5% , which is reasonably representative of

RPEM results during early portions of the time history.  Recursive results for t < 20





145

seconds are likely more stable than subsequent results due to the much reduced amplitude

of shaking for t > 20 seconds.  Hence, the CEM damping results were consistent with

recursive results from the most stable portion of the time history in this case, and the

CEM results were used for final characterization of SSI effects at the site.

Occasionally, differences between modal parameters from CEM and RPEM analyses

are inconsistent.  In such cases, average differences between parameters for different base

fixity conditions computed from RPEM analyses over times of stable identification can

be used for evaluating SSI effects.  Such usage of recursive results was seldom necessary,

but was more common for evaluating 
~ζ0  than 

~
/T T .  Where made, these corrections are

indicated in Stewart (1997).

5.3.4 Evaluation of Period Lengthening and Foundation Damping Factors

(a) Definition of soil and structure parameters

The data presented in Table 5.3 is used to illustrate the inertial interaction effects of

~
/T T  and 

~ζ0 .  These data are plotted against the ratio of structure-to-soil stiffness as

expressed by the parameter 1/σ = h/(VS⋅T), where h, VS, and T  are defined as follows:

• h is the distance above the foundation level at which the building’s mass can be

concentrated to yield the same base moment that would occur in the actual structure

assuming a linear first-mode shape.  For many low- to mid-height structures, it was

found than h ≈ 0.7×H (H = full structure height, from foundation level to roof).

• VS is the effective shear wave velocity of either a halfspace or a finite soil layer

overlying a rigid base (all sites except A24-L were characterized as a halfspace).  VS
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and hysteretic soil damping (β) are stain-dependent material properties calculated

with the aid of deconvolution analyses [details presented in Stewart (1997) and

Section 2.2.2 (b)].

• T  is the fixed-base period of the structure.

(b) General trends

Presented in Fig. 5.7 are the variations of 
~

/T T  and 
~ζ0  with 1/σ for sites where

there is an “acceptable” or “low” confidence level in the modal parameters.  Also shown

are second-order polynomials fit to the acceptable confidence data by linear regression

analysis, and analytical results by Veletsos and Nair (1975) for h/r = 1 and 2.  Both 
~

/T T

and 
~ζ0  are seen to increase with 1/σ, and the best fit lines through the data are similar to

the Veletsos and Nair curves.  The Veletsos and Nair curves are only shown to provide a

benchmark against which the empirical results can be compared.  Detailed comparisons

of 
~

/T T  and 
~ζ0  values with predictions by the “modified Veletsos” and “modified

Bielak” procedures are presented in Section 5.4.

There is significant scatter in the data in Fig. 5.7, although much of this results from

systematic variations in 
~

/T T  and 
~ζ0  associated with factors such as structure aspect

ratio and foundation embedment, type, shape, and flexibility effects.  In addition, 
~ζ0  is

influenced by the hysteretic soil damping (β), which varies with soil type.

Results from several sites help to illustrate the strong influence of 1/σ on inertial

interaction effects.  The most significant inertial interaction occurred at site A46
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(
~

/T T ≈ 4  and 
~ζ0 30%≈ ), which has a stiff (T ≈ 0.1 sec) cylindrical concrete structure

(h=47 feet, r=16 feet) and relatively soft foundation soils (VS ≈ 275 fps), giving a large

1/σ of about 1.5.  Conversely, the inertial interaction effects are negligible at site A21

(
~

/T T ≈ 1 and 
~ζ0 0%≈ ), which has a relatively flexible (T ≈ 0.8-1.0 sec) base-isolated

structure (h=21 feet, r1=71 feet) that is founded on rock (VS ≈ 1000 fps), giving a much

smaller 1/σ value of 0.02-0.03.  These two sites represent the extremes of inertial

interaction.  More typical SSI effects occur at sites B14 (
~

/ .T T = 114  and 
~

.ζ0 3 4%≈ )

and A1-tr (
~

/ .T T = 157  and 
~

.ζ0 15 4%≈ ).  The structures at both sites are shear wall

buildings with periods of T = 0.49 and 0.15 sec, respectively, and are founded on

medium-stiff soils (VS = 840 and 700 fps), combining to give 1/σ ≈ 0.12 at B14 and 1/σ ≈

0.29 at A1-tr.  The results from these four sites indicate that both 
~

/T T  and 
~ζ0  increase

with increasing 1/σ.

Several sites appear to be significant outliers with respect to the database.  Site A34-

tr is a stiff (T ≈ 0.12 sec.) shear wall structure founded on soil that has pronounced period

lengthening relative to the general trend as well as unusually high damping in both

directions.  Several sites with small aspect ratios (h/r2 ≈ 0.5) had pronounced damping

without unusually large period lengthening [A2 (pt) and A17-tr], while some high aspect

ratio structures (h/r2 > 2.5) had little foundation damping but significant period

lengthening (A16, A23).  Many of these outlying results are explained to a large extent by

factors other than 1/σ which are not incorporated into Fig. 5.7.  A discussion of “true”

outliers that remain after correction for these effects is deferred to Section 5.4.2(h).
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(c) Effect of aspect ratio

The data in Table 5.3 is plotted in Fig. 5.8 to illustrate the influence of aspect ratio

(h/r2) on 
~

/T T  and 
~ζ0 .  For these plots, the data was sorted into aspect ratios h/r2 < 1 and

h/r2 > 1.  Second-order polynomials fit to the data using linear regression analyses are

plotted through both data sets in Fig. 5.8.  Though the overall range of aspect ratios was

0.18 to 5.2, separate regressions for smaller discretizations of aspect ratio were not

justified as only 16% of the data has h/r2 > 2, and many of these are long period structures

with essentially negligible 
~

/T T  and 
~ζ0 (see Part f).

A trend of increasing period lengthening and decreasing foundation damping with

increasing h/r2 is evident in Fig. 5.8. These findings are consistent with aspect ratio

effects predicted by theoretical formulations such as Veletsos and Nair, 1975 (i.e. Figs.

2.9 and 2.10).

In order to more rationally evaluate the influence of aspect ratio on inertial

interaction effects, it is necessary to compare results for pairs of sites with similar 1/σ,

embedment, and structure type, but different h/r2.  Few such pairs are present in the

database, but two that are suitable are A1-tr/B5 and A8-tr/B7.  Sites A1-tr and B5 have

stiff shear wall structures on moderately stiff soil (1/σ = 0.28 and 0.25, respectively), but

different aspect ratios of h/r2 = 0.74 and 1.24, respectively.  Sites A8-tr and B7 have shear

wall structures founded on bedrock materials (1/σ = 0.087 and 0.096, respectively), but

have significantly different aspect ratios of 0.5 and 3.4, respectively.  As shown in Fig.
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5.8, B5 and B7 have higher 
~

/T T  and smaller 
~ζ0  than A1-tr and A8-tr, respectively

(though the differences in 
~

/T T  are small).

(d) Effect of foundation type

The database was separated according to foundation type (i.e. deep foundations such

as piles or piers and shallow foundations such as footings or mats) for the plots in Fig.

5.9.  Regression curves were calculated for each data set and are plotted in the figure.

For values of 1/σ > 0.15 to 0.20, the period lengthening and damping for deep

foundations exceed that for shallow foundations, though it is noted that the data are

sparse in this range.  The opposite trend is present for 1/σ < 0.15, where the bulk of the

data resides, indicating that it would be tenuous to draw firm conclusions from these data.

In general, these results do not clearly indicate a strong effect of foundation type on 
~

/T T

or 
~ζ0 .

These data should not be interpreted to imply that foundation type cannot be a

potentially important factor in inertial interaction processes.  Presented in this form, the

data are simply unable to illustrate the relatively modest influences of deep foundations

on these inertial interaction effects.  Deep foundations are addressed in more detail in

Section 5.4.2 (d) where analytical formulations for shallow foundations are examined for

their ability to predict 
~

/T T  and 
~ζ0  values for sites with deep foundations.
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(e) Effect of embedment

The database was separated into embedded and surface structures for the plots in Fig.

5.10.  A majority of the structures with basements are shallowly embedded (e/r = 0.1 to

0.5), and of the deeply embedded structures, many have long periods and negligible

inertial interaction effects (see Part f).  Hence, the data for embedded structures was not

discretized into subsets of embedment ratio (e/r).

The regression curves in Fig. 5.10 indicate greater period lengthening for surface than

embedded structures, which is consistent with the analytical findings of Bielak (1975) and

Aviles and Perez-Rocha (1996) (i.e. Fig. 2.11).  Empirical results for 
~ζ0  indicate larger

damping for surface structures than embedded structures, which counters the analytical

findings.  The empirical trend in this case may be misleading, and highlights the difficulty

of evaluating subtle influences (such as embedment) on 
~

/T T  and 
~ζ0  when other,

potentially more significant effects (such as aspect ratio) cannot readily be controlled for

in the regression.

A more detailed analysis of embedment effects is provided in Section 5.4.2(b),

where empirical inertial interaction effects for embedded structures are compared to

predictions from the “modified Veletsos” and “modified Bielak” analytical formulations.

(f) Effect of structure type

Five different types of lateral load resisting systems are represented in the database:

shear walls, dual wall/frame systems, concrete frames, steel frames, and base-isolation

systems.  For plots of 
~

/T T  and 
~ζ0  in Figs 5.11 to 5.13, these are grouped as:  (1) base
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isolated buildings, (2) frame and dual wall/frame buildings, and (3) shear wall buildings.

Also shown in Fig. 5.11 are 
~

/T T  and 
~ζ0  values for long period (

~
T > 2  VHF�) structures

having lateral load resisting systems such as base isolation or frames.

The database contains four base-isolated structures, two on rock (A21, A25) and two

on stiff soils with VS > 900 fps (A37, A43).  Modal parameters for these structures

include isolator flexibility, and the structures have fairly long periods of 0.6 to 1.2 sec.

These relatively long structure periods and stiff ground conditions combine to yield low

1/σ values of 0.02 to 0.08.  Accordingly, as seen in Fig. 5.11, 
~

/T T  and 
~ζ0 values are

small (< 1.04 and 4%, respectively), which is consistent with the general trends in the

overall database.

Results for ten long-period structures are also presented in Fig. 5.11 [A4, A27-28,

A29-tr (nr), A40, B3, B6, B9, B13].  As with base-isolated structures, the long periods of

these buildings generally result in low 1/σ values (< 0.06), though two buildings on soft

soils (A4, B3) have 1/σ = 0.17-0.20.  These structures characteristically have little period

lengthening (
~

/ .T T < 103 ), which is consistent with trends from the overall database

except at sites A4 and B3.  Further discussion on the performance of these structures is

deferred to Sections 5.4.2(d) and (e).  Damping values for long period structures are

generally consistent with the best fit curve for acceptable confidence sites.

Period lengthening and damping for frame and dual wall/frame buildings (Fig. 5.12)

and shear wall buildings (Fig. 5.13) are consistent with the general trends for acceptable

confidence sites.  These results are not surprising, as the primary difference between these

types of structures is their height-to-stiffness ratio, which is accounted for in 1/σ.
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(g) Effect of ground shaking intensity

At several sites with multiple earthquake recordings, the magnitude of inertial

interaction effects increased with the severity of ground shaking.  For example, peak

ground accelerations at site A44-L were about 0.05-0.06g during the MW 6.0 Whittier

Earthquake and 0.60-0.84g during the MW 6.7 Northridge Earthquake, and as shown in

Fig. 5.7, 
~

/T T  and 
~ζ0  values were significantly larger during the Northridge event.

Similarly, as shown in Fig. 5.11, the long period structure at site A27 (T ≈ 3 to 3.5 sec)

and the base-isolated structure at site A25 had larger 
~ζ0  values during the Northridge

(0.19g and 0.49g, respectively) than the Landers events (0.03g and 0.04g, respectively);

significant period lengthening was observed at neither sites A27 nor A25.

Inertial interaction effects increase with ground motion amplitude due to strain

softening of foundation soils, which decreases the shear modulus and increases the

hysteretic damping.  These effects are approximately captured by the strain-dependent VS

and β terms used in the development of impedance functions.  Fixed-base structural

period T can increase with shaking amplitude, but the soil degradation effect is typically

greater so that 1/σ=h/(VS⋅T) has a net decrease.
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5.4 Calibration of Predictive Analytical Formulations for Inertial Interaction
Effects

5.4.1 Overview of Analysis Procedures and Required Input

Simplified analyses for inertial interaction estimate the first-mode period lengthening

ratio (
~

/T T ) and foundation damping factor (
~ζ0 ) given the fixed-base properties of the

structure (T, ζ) and parameters describing foundation and site conditions.  One

methodology is termed the “modified Veletsos” (MV) formulation, because it is based on

the impedance function developed by Veletsos and Verbic (1973) and the evaluations of

~
/T T  and 

~ζ0  by Veletsos and Nair (1975).  The basic model considered in the MV

formulation is a single degree-of-freedom structure supported on a rigid circular

foundation resting on the surface of a homogeneous visco-elastic halfspace.  The

“modified” term refers to adjustments to the impedance function required to account for

the effects of nonuniform soil profiles and foundation embedment, shape, and non-

rigidity.  Due to shortcomings in the impedance function adjustments for foundation

embedment effects, a second analysis procedure adapted from Bielak (1975) is used for

embedded structures.  This “modified Bielak” (MB) formulation utilizes the same

procedures for characterizing non-uniform soil profiles and foundation shape and

flexibility effects as are used in the MV approach.

Input parameters used in the MV or MB formulations are as follows:

• Soil conditions:  shear wave velocity VS and hysteretic damping ratio β, both of

which should be representative of the site stratigraphy and the severity of ground

shaking;  Poisson’s ratio ν.
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• Structure/Foundation Characteristics:  effective height of structure above foundation

level, h; foundation embedment, e; foundation radii which match the area and

moment of inertia of the actual foundation, r1 and r2; appropriate corrections to the

foundation impedance for embedment, shape, and non-rigidity effects.

• Fixed-Base 1st Mode Parameters:  period and damping ratio, T and ζ.

These parameters are listed in Table 5.3 for the sites considered in this study.

Using these input parameters, 
~

/T T  and 
~ζ0  were predicted using the MV

formulation for each site.  For sites with embedded structures, 
~

/T T  and 
~ζ0  were also

predicted using the MB formulation.  The empirical and predicted values of 
~

/T T  and

~ζ0  are listed in Table 5.4.

5.4.2 Assessment of Predicted Period Lengthening and Foundation Damping Factors

(a) General trends

Deviations in MV predictions of 
~

/T T  and 
~ζ0  relative to empirical values are shown

in Fig. 5.14(a) for sites with acceptable and low confidence designations.  Also plotted

are best fit second-order polynomials established from linear regression analyses on data

from acceptable confidence sites.  For most sites, the predictions were found to be

accurate to within absolute errors of about ±0.1 in 
~

/T T  and ±3% damping in 
~ζ0  for 1/σ

= 0 to 0.4.  The regression curves indicate no significant systematic bias in predictions of

either 
~

/T T  and 
~ζ0  up to 1/σ = 0.4.  However, there is a significant downward trend in

the best fit curve for damping for 1/σ > 0.5 due to a large underprediction of 
~ζ0  at site
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A46 (at which 1/σ = 1.5).  As noted below in Part (b), this underprediction of 
~ζ0  is

associated with a pronounced embedment effect at site A46.

Results from several sites help illustrate the general findings of Fig. 5.14(a).  The

minimal inertial interaction effects at site A21 (1/σ = 0.02 to 0.03, 
~

/T T ≈ 1 and

~ζ0 0%≈ ) were well predicted by the MV analyses, as was typical of sites with 1/σ < 0.1.

Satisfactory predictions were generally also obtained for sites with intermediate 1/σ

values such as B14 and A1-tr (1/σ = 0.12, 1/σ = 0.29).  At these sites, period lengthening

values of 1.14 and 1.57 are over- and under-predicted by absolute differences of about

0.11 and 0.06, respectively, while foundation dampings of 3.4 and 15.4% are

underpredicted by absolute differences of 2.3 and 4.8%, respectively.  The large inertial

interaction effects at site A46 (1/σ = 1.5, 
~

/ .T T ≈ 4 0  and 
~ζ0 30%≈ ) are predicted to

within an absolute difference of about 0.4 for period lengthening, but damping was

underpredicted by an absolute difference of 14%.  With the exception of the damping

results at site A46 (where there is a significant embedment effect), these results indicate

that predictions of 
~

/T T  and 
~ζ0  by the MV procedure are generally reasonably good

considering the breadth of conditions represented in the database.

There are several noteworthy outliers in Fig. 5.14(a).  The significance of these

outliers is clarified by normalizing differences between empirical and predicted SSI

effects by the magnitude of the SSI effect.  In Fig. 5.14(b), errors in period lengthening

ratio are normalized by empirical period lengthening, while errors in foundation damping

factors are normalized by empirical flexible-base damping (normalization by empirical
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~ζ0  was not practical, as some values of 
~ζ0  are nearly zero).  Based on Fig. 5.14(b), the

most significant outliers for period lengthening are seen to be site A34 and several long

period structures (A4, B3).  Long period structures are discussed in Part (e).  The unusual

results at site A34 are discussed in Part (h).

Parts (b) to (g) below focus on the effects of embedment, aspect ratio, foundation

type, structure type, and foundation shape and non-rigidity on the accuracy of the

predicted inertial interaction effects.

(b) Effect of embedment:  comparison of “modified Veletsos” (MV) and “modified
Bielak” (MB) methodologies

Plotted in Fig. 5.15 are deviations between predicted and empirical results for three

data sets, (1) MV predictions for buildings with surface foundations, (2) MV predictions

for buildings with embedded foundations, and (3) MB predictions for buildings with

embedded foundations.  As before, the best fit curves are second-order polynomials

established from linear regression analyses.

The regression curves in Fig. 5.15 suggest that 
~

/T T  is slightly overpredicted for

embedded structures (by either MV or MB), and fairly well-predicted for surface

structures.  The differences between MV and MB predictions are generally minor (e.g.

absolute differences of about 0.02 at A20-tr, 0.02 at A23) for common values of 1/σ (i.e.

< 0.4).  At site A46 (1/σ = 1.5), the absolute difference between the predictions is about

1.2, which is modest compared to the empirical value of 
~

/ .T T ≈ 4 0 .

The accuracy of 
~ζ0  predictions in Fig. 5.15 by the MV methodology are comparable

for surface and embedded structures.  However, there are disparities between the MB and
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MV 
~ζ0  predictions for embedded structures which increase with 1/σ (e.g. absolute

differences of 0.7% at A23, 1/σ = 0.11; 2.7% at A20-tr, 1/σ = 0.17; 10% at A46, 1/σ =

1.5).  The regression curves are principally controlled by the shallowly embedded

foundations (e/r < 0.5), which are the most numerous in the database.  For such cases,

MV predictions are typically more accurate than MB predictions, as shown by the

regression curves in Fig. 5.15, and as illustrated by sites A20 (e/r = 0.27) and A26 (e/r =

0.41).  However, there are systematic errors in MV predictions for more deeply embedded

foundations.  These errors are not surprising because only the MB formulation

incorporates dynamic basement wall/soil interaction effects into the foundation

impedance function.  As shown by individual labeled sites in Fig. 5.15, MV predictions

of 
~ζ0  are generally too low for structures with relatively deeply embedded foundations

with continuous basement walls around the building perimeter such as A46 (e/r = 0.92) as

well as A9, B12, and A16-L (e/r > 0.5).  Other structures in the database with e/r > 0.5

had negligible foundation damping (i.e. 
~ζ0 < 1%) which was overestimated by both the

MV and MB predictions (i.e. A16-tr and B13).  Hence, it appears that MB predictions of

~ζ0  are generally more accurate than MV predictions for structures with e/r > 0.5 and

significant SSI effects.  These differences are most pronounced at site A46, where the MB

prediction of 
~ζ0 27%=  matches the empirical value of 30% better than the MV

prediction of 17%.

In summary, the accuracy of period lengthening predictions by the MV methodology

are reasonably good for surface and embedded structures, and differences between the

MV and MB predictions are generally minor for 1/σ values of common engineering
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interest (1/σ < 0.4).  Accuracies of MV damping predictions are generally acceptable for

surface and shallowly embedded structures (e/r < 0.5).  For deeper embedment (e/r > 0.5),

MB damping predictions are generally more accurate.  These results suggest that dynamic

basement-wall/soil interaction modeled by the MB procedure can be important for deeply

embedded foundations.

Recognizing the limitations of the MV methodology for high embedment ratios, the

data in Fig. 5.14(a) were re-plotted in Fig. 5.16 using MV predictions for e/r < 0.5 and

MB predictions for e/r > 0.5.  Subsequent plots in Figs. 5.17 to 5.19 are based on these

mixed MV/MB predictions.

(c) Effect of aspect ratio

The results from Fig. 5.16 are re-plotted in Fig. 5.17 for aspect ratios of h/r2 < 1 and

h/r2 > 1.  Differences in the average errors of 
~

/T T  and 
~ζ0  predictions for structures in

both ranges are modest and not statistically significant.  Hence, the effects of aspect ratio

appear to be reasonably well captured by the analytical formulations.
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(d) Effect of foundation type

The results from Fig. 5.16 are re-plotted in Fig. 5.18 for structures with shallow

foundations (i.e. footings, grade beams, and mats) and deep foundations (i.e. piles and

piers).  Across the range of 1/σ strongly represented in the database (0 to 0.2), the average

errors in predictions of 
~

/T T  and 
~ζ0  are comparable for structures with either foundation

type, suggesting that the influence of deep foundations on inertial interaction effects is

small within this range. However, many of the deep foundation sites for which this trend

was established have fairly stiff surficial soils and no marked increase in stiffness across

the depth of the foundation elements.  For such cases, it is reasonable that dynamic

foundation behavior would be strongly influenced by the interaction of surface foundation

elements (e.g. pile caps, base mats, footings) with soil.  For example, sites B5 and A24

have 44-foot long friction piles and 15- to 25-foot deep belled piers, respectively, with VS

≈ 650 to 1000 fps across the foundation depth (in both cases).  Large inertial interaction

effects occurred at both sites which are slightly under-predicted by the MV procedure,

indicating that the deep foundations were unlikely to have contributed significant rocking

stiffness or radiation damping to the foundation impedance.

A limited number of sites have foundation piles which pass through relatively soft

surficial soils (e.g. VS < 500 fps) into stiffer underlying materials (A4, A12, B3).  Period

lengthening ratio is overpredicted at sites A4 and B3, which are pile supported high-rise

structures in the San Francisco Bay Area underlain by soft cohesive Holocene sediments.

In contrast, period lengthening is underpredicted at site A12, which is a mid-height shear

wall structure supported by piles and underlain by soft clays.  The contrast in results for
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these sites suggests that the errors in 
~

/T T  for these pile supported structures may be

associated with factors other than foundation type.  With regard to damping, 
~ζ0 was

underestimated at A4 and A12 (
~ζ0  not estimated at B3), suggesting that soil-pile

interaction may have contributed to the foundation damping in these structures.

(e) Effect of structure type

The results from Fig. 5.16 are re-plotted in Fig. 5.19 and 5.20 for structures with

lateral force resisting systems comprised of base isolation, frames and dual wall/frames,

and shear walls. Also shown in Fig. 5.19 are results for long period (
~
T > 2  VHF�)

structures.  The average errors in predictions of 
~

/T T  and 
~ζ0  are comparable for

structures with the above lateral force resisting systems, suggesting that the influence of

structure type on inertial interaction effects is generally small.

As shown in Fig. 5.19 and previously noted in Part (d), differences between empirical

and predicted inertial interaction effects are significant for two high-rise structures on soft

soils (sites A4 and B3).  An examination of system identification results for long period

structures (
~
T > 2  sec.) in Table 5.3 indicates 

~
/T T  values near unity.  Most of these are

founded on relatively stiff soils and have 1/σ < 0.06 [i.e. A27, A28, A29-tr(nr), A40, B6,

B9, B13], so predictions of 
~

/T T  are near unity.  However, predicted 
~

/T T  for sites A4

and B3 are about 1.17 to 1.24 due to the soft soils and associated large 1/σ values (0.17-

0.20).  The cause of the poor predictions at these sites may be associated with limitations

of the MV and MB single degree-of-freedom models for structures with significant
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higher-mode responses. As noted in Part (d), the errors of 
~ζ0 predictions for long-period

structures (A4 and B3) appear to relate to foundation type.  As shown in Fig. 5.19, the

underprediction of 
~ζ0  is not as clear in long-period structures with lower 1/σ values.

(f) Effect of foundation shape

The evaluation of foundation impedance for both the MV and MB methodologies is

based on a circular foundation shape.  Different foundation radii are used for translation

and rocking deformation modes to match the area and moment of inertia, respectively, of

the actual foundation (Eq. 2.3).  However, Dobry and Gazetas (1986) found that a non-

circular foundation can have a greater radiation damping effect in the rocking mode than

a circular foundation with equivalent moment of inertia.  Hence, rocking radiation

damping values are increased for non-circular foundations according to the criteria in

Section 2.2.2(d) in calculating the MV and MB predictions of 
~ζ0  reported in Table 5.4.

This section evaluates the significance of shape effects by comparing predicted 
~ζ0  values

developed with and without the corrections to empirical 
~ζ0  values.

Shape effect corrections to rocking radiation damping were made in the prediction of

~ζ0  values at 31 sites (A1, 5, 7-13, 15, 21, 27-29, 31-34, 36-37, 39, 42-43, 45, B1-2, 5, 7,

10-11, 14).  For 23 sites, the absolute difference in damping associated with the

correction was less than 0.05%.  These corrections were small because the radiation

damping effect for the rocking deformation mode is small for structures with low

fundamental mode frequencies.  For the remaining eight sites, Table 5.5 lists empirical



174

~ζ0  values along with predictions made with and without shape effect corrections.  The

empirical values are dependent on whether the shape effect correction was made because

this correction affects the estimated fixed- or flexible-base parameters.  The predictions

are based on the MV and MB methodologies for e/r < 0.5 and e/r > 0.5, respectively.

7DEOH ���� (PSLULFDO DQG SUHGLFWHG YDOXHV RI IRXQGDWLRQ GDPSLQJ IDFWRU
~ζ0

GHYHORSHG ZLWK DQG ZLWKRXW FRUUHFWLRQV IRU VKDSH HIIHFWV
�6 LQGLFDWHV VKDSH FRUUHFWLRQ PDGH� 6 � LQGLFDWHV QR FRUUHFWLRQ�

The data in Table 5.5 indicate no significant improvement in 
~ζ0  predictions with the

shape correction, suggesting that foundation shape effects on rocking radiation damping

are minor for the structures in this database.

(g) Effect of foundation flexibility

Both the MV and MB methodologies use the assumption of rigid foundations.  As

discussed in Section 2.2.2(e), foundation flexibility can significantly reduce the rocking

stiffness and damping of foundations with continuous base-slabs loaded only through

rigid central core walls.  Three structures in this study have central core shear walls which

are designed to resist the bulk of the structure’s lateral loads in at least one direction:

A24-L, B2, and B7.  The foundation for the central core walls at site B7 is independent of

(PSLULFDO 3UHGLFWHG

6 6 � 6 6 �

$��WU ���� ���� ���� ����
$���WU ���� ���� ���� ����
$���/ ���� ���� ���� ����
$���/ �QU� ���� ���� ���� ����
$���WU ���� ���� ���� ����
$���WU ���� ���� ���� ����
%��WU ���� ���� ���� ����
%��WU ���� ���� ���� ����



175

the foundations for the remainder of the structure.  Hence, the effects of foundation non-

rigidity could only be assessed at sites A24-L and B2.

The base slab in both of these structures is loaded both through a stiff central core

and through vertical load bearing elements outside of the core.  Hence, the assumption in

the theoretical formulations of a flexible base slab loaded only through a rigid core is not

satisfied.  The suitability of the theoretical corrections for foundation flexibility (which

were adapted from Iguchi and Luco, 1982) are investigated by repeating the predictive

analyses for four conditions:  (1) rigid foundation, (2) flexible foundation with corrections

to foundation rocking impedance (both stiffness and damping), (3) flexible foundation

with corrections to foundation rocking impedance for stiffness only, and (4) rigid

foundation beneath central core, but perfect flexibility outside of the core (i.e. only the

core area is considered in calculating foundation impedance).  Shown in Table 5.6 are the

empirical 
~

/T T  and 
~ζ0  values along with predictions for the four sets of conditions.  At

site B2, it was necessary to estimate flexible-base parameters using the procedures in

Section 3.6.2, so the empirical 
~

/T T  and 
~ζ0  values depend on the assumed foundation

flexibility.  At site A24, both flexible- and fixed-base parameters are obtained from

system identification, and hence are unaffected by assumptions about foundation

flexibility.
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7DEOH ���� &RPSDULVRQV RI HPSLULFDO SHULRG OHQJWKHQLQJV DQG IRXQGDWLRQ
GDPSLQJ IDFWRUV IRU VLWHV $���/ DQG %� ZLWK 09 SUHGLFWLRQV IRU
GLIIHUHQW DVVXPHG FRQGLWLRQV RI IRXQGDWLRQ QRQ�ULJLGLW\

These results indicate that foundation flexibility significantly affects interaction

phenomena for these structures.  The predictions are poor for the rigid foundation

assumption (Condition 1).  When corrections to the stiffness and damping components of

rocking impedance are made (Condition 2), 
~

/T T  values improve, but 
~ζ0  predictions are

erroneous.  For site A24-L, the best overall results for 
~

/T T and 
~ζ0 are obtained when

the foundation area beyond the core is neglected (Condition 4), implying that the pier and

grade beam foundation is sufficiently flexible outside of the core that it effectively does

not participate in the structural response of the core.  For site B2, the best results are

achieved when corrections for foundation flexibility are only made for stiffness

(Condition 3).  This result implies that the 2.5 to 5-foot thick foundation slab for this

building is unaffected by the vertical load bearing columns outside of the core from the

standpoint of rocking stiffness, but that the restraint on the foundation provided by these

columns effectively eliminates any reduced damping effect that might otherwise be

expected from foundation flexibility.
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~
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�� 5LJLG FRUH (PSLULFDO ���� ��� ���� ���
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(h) Discussion of site A34

As shown in Figs. 5.7, 5.14(b) and 5.16, 
~

/T T  and 
~ζ0  values at A34 were unusually

large for the value of 1/σ ≈ 0.1 at this site.  The site was given an “acceptable” confidence

designation based on the criteria in Section 5.3.3.  As shown in Fig. 5.21(a), the structure

at site A34 is a four-story concrete block shear wall building with no basement.  The

foundation consists of 2.3-foot deep footings beneath the walls.  The free-field instrument

is located in a parking lot about 240 feet from the structure.  As shown in Fig. 5.21(b),

soil conditions consist of sands and silty sands with VS values ranging from 1000 to 2500

fps, as established by downhole measurements by Fumal et al. (1982).

The most likely cause of the unusual result at site A34 is shear wave velocities which

are too high. Generally, when both shear and compression wave velocities are measured,

VS is found to be about one-half of VP in unsaturated cohesionless soils (implying that ν

= 0.33).  For this site, however, VS/VP ratios were in the range of about 0.7 to 0.8, which

is not possible, as this condition would require ν > 0.5  for the sandy soils at the site.

Hence, there is an error in the measured velocities, but it is not known if the error is in VS

or VP (Gibbs, pers. communication, 1996).  Thus, a conclusive determination of the

source of the unusual results at site A34 cannot be made.  However, it is interesting to

note that if VS is lowered so that the VS/VP = 0.5, 1/σ increases to about 0.16, and 
~

/T T

and 
~ζ0  predictions are increased such that the absolute differences with empirical values

are about -0.3 and -5% in the transverse direction and -0.05 and -4% in the longitudinal

direction.  Such underpredictions would not be particularly significant outliers relative to

results for other sites.
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5.5 Verification of Code Provisions for Inertial Interaction

5.5.1 Overview of Analysis Procedures and Required Input

In this section, current SSI provisions in two U.S. building codes (BSSC, 1997 and

ATC, 1978) are examined relative to the database of  “observed” SSI effects.  The code

procedures are based on the framework developed by Veletsos and Nair (1975) and Bielak

(1975) wherein inertial soil-structure interaction effects are described in terms of period

lengthening ratio 
~
T T  and foundation damping factor 

~ζ0 .  These provisions incorporate

inertial SSI effects into evaluations of seismic base shear forces in structures, but are

“optional” in the current versions of these codes, and are commonly neglected in practice.

Kinematic interaction effects are neglected in current code provisions, consequently the

focus here is on inertial interaction.

The code provisions are based on a single degree-of-freedom structure model with a

rigid disk foundation resting on the surface of a visco-elastic halfspace.  Parameters needed

to evaluate the system response to a given ground motion include:  (1) fundamental-mode

fixed-base period (T) and damping ratio (ζ), as well as effective structure height (h), (2)

foundation radii for rocking (r1) and translation (r2), and (3) soil shear wave velocity (VS)

and hysteretic damping ratio (β).

The single degree-of-freedom model is extended to multi-story structures by taking

height (h) as the distance from the base to the centroid of the inertial forces associated with

the first mode.  This effective height is taken as 70% of the total structure height.  Higher

modes are not considered to be affected by SSI, hence only fundamental-mode structural

parameters are required as input.
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The foundation geometry is represented by equivalent disk radii so that closed-form

solutions for the static impedance of a rigid disk foundation (Eq. 2.5) can be used.  Eq. 2.3

is used to compute foundation radii which match the area (Af) and moment of inertia (If) of

the actual foundation (i.e. ru = √Af/π and rθ = 4√4If/π).  Eq. 2.7 is used to extend the

analysis to embedded foundations and soil conditions more appropriately modeled as a

finite soil layer over a rigid base.  The real part of the foundation impedance function is

taken as the static value (i.e. the α factors defined in Eq. 2.4 are taken as 1.0).  The

imaginary part is not directly computed, rather the graphical solution in Fig. 5.22 is used to

evaluate 
~ζ0  from 

~
T T .  This relationship, which was modified from Veletsos (1977), was

derived for rigid disk foundations on a homogeneous halfspace, and no corrections for

conditions such as foundation embedment, shape, or flexibility are suggested in the code

provisions or commentary.

For non-uniform soil profiles, effective shear moduli (or shear wave velocities, VS) are

derived from irregular VS profiles by taking the ratio of profile depth to travel time through

the profile. The code commentary recommends effective profile depths of 1.5 × r2 for

rocking, and 4 × r1 for translations.  The strain-dependence of the VS profile is correlated

with the effective long-period ground motion parameter Av using Table 5.7.

Other soil parameters needed in the analysis are Poisson’s ratio (υ) and strain-

dependent hysteretic damping ratio (β).  The BSSC code commentary recommends

υ=0.33 for clean sands and gravels, υ=0.40 for stiff clays and cohesive soils, and υ=0.45

for soft clays.  Soil damping ratio β is correlated to ground motion parameter Av in Fig.

5.22, and does not directly enter the analysis.
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5.5.2 Verification Analyses

(a) Database

The empirical database used for the verification studies was presented in Section 4.2.

Period lengthening ratios and foundation damping factors are presented in Table 5.8 for

sites in which the confidence level in the result accuracy is “acceptable” or “low” based on

the criteria in Section 5.3.3(a).

(b) Analysis procedures

Several suites of analyses were performed to evaluate period lengthening and

foundation damping for comparison with the system identification results.  These are

summarized as:

• Method 1:  Code procedures (ATC, 1978 and BSSC, 1997) as described in 5.5.1.

Period lengthening is computed as,

~
.
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r h
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where γ is a dimensionless structure-to-soil mass ratio (Eq. 2.13) and is usually taken as

0.15, and VS1 and VS2 are defined for profiles of depth 4 × r1 for translations and 1.5 × r2

for rocking, respectively.  Foundation damping is evaluated from 
~
T T  using Fig. 5.22.

• Method 2:  Same as Method 1, except the strain-dependence of VS is evaluated from

deconvolution analyses with the program SHAKE (Schnabel et al., 1972).  These

analyses made use of recorded free-field motions, as well as modulus degradation and

damping curves by Seed et al. (1986) for sands, Vucetic and Dobry (1991) for clays, and
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Schnabel (1973) for rock.  The deconvolution was taken to the code-recommended

profile depths of 1.5 × r2 for rocking and 4 × r1 for translations.

• Method 3:  Same as Method 2, except the effective profile depth is taken as r1 for

rocking and translation (similar to the MV and MB procedures).

• Method 4:  The code procedures are implemented as in Method 1, with the exception

that the frequency dependence of the real part of the foundation impedance function is

accounted for using the relations by Veletsos and Verbic (1973).  In Method 1, it was

assumed that the real part of the foundation impedance function was independent of

frequency.

• Method 5:  The code procedure is implemented as in Method 1, with the exception that

the effective structure height (h) is taken as the distance from the base to the centroid of

the inertia forces associated with the first mode (assuming triangular distribution of

inertial force across height of structure, unless structure-specific data suggested

otherwise).  In the code procedure, h was taken as 70% of the total structural height.

• Method 6:  MV procedures are used for shallow foundations (e/r1 < 0.5) and MB

procedures for deeper embedment (e/r2 > 0.5).  The predictions by Method 6 are

identical to those shown in Fig. 5.16.
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(c) Results

Deviations in Method 1 predictions of 
~

/T T  and 
~ζ0  relative to “observed” values

from the system identification are shown in Fig. 5.23 for all sites with acceptable and low

confidence designations.  Also plotted are best fit second order polynomials established

from regression analyses on data from acceptable confidence sites.  For most sites, the

predictions are accurate to within absolute errors of about ±0.2 in 
~

/T T  and ±5% in 
~ζ0 .

The regression curves indicate no significant systematic bias in predictions of 
~

/T T  or

~ζ0  for the range of 1/σ which is substantially represented in the database (about 0 to 0.2).

Small inertial interaction effects for long-period structures on stiff soil or rock (e.g.

A21 and B6, 1/σ ≈ 0.02 to 0.03) are well predicted by the Method 1 analyses.  Period

lengthening and damping estimates for structures with intermediate 1/σ (about 0.1 to 0.2)

can be significantly in error (e.g. A17, A45), but do not appear to be systematically biased.

An exception is long-period structures (T > 2 sec.) on soft clay soils (e.g. A4, B3; 1/σ ≈

0.2), for which period lengthening is consistently overpredicted.

Eight “high confidence” level sites in the database have 1/σ1 (based on Method 1

velocities) > 0.2: A1-tr, A10-tr, A12-tr, A24-L, A44-L, A46, B1 and B5.  When

normalized by 
~

/T T , errors in Method 1 period lengthening predictions for these sites

were less than 20%.  Damping was reasonably accurately predicted for A1, A10-tr, A12-

tr, and A44-L, significantly overpredicted for A24-L, B1, and B5, and could not be

evaluated for A46 (the 
~

/T T  is beyond the range of Fig. 5.22).

Best fit second order polynomials for the deviations between Method 1 through 5

predictions and the empirical data are presented in Fig. 5.24.  It can be seen that when
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averaged over a large number of sites, the accuracy of period lengthening predictions by

the different methods does not vary significantly.  Damping is shown as being

overpredicted at 1/σ > 0.2 by each method, but this is primarily a product of consistent

overprediction at site B5.  Further insight into distinctions between methods can be

gained through examination of results for six sites with 1/σ6 > 0.2 which experienced the

most significant SSI [A1, A12, A24-L, A44-L, A46, and B5]:

• Of the four modifications to the Method 1 procedure, the use of frequency-dependent

foundation stiffness with Method 4 generally had the most significant effect on 
~

/T T .

This influence of frequency on impedance increases with structural stiffness, and is

most pronounced at sites A1 and A46, which have high fundamental-mode, fixed-

base frequencies (f1 > 6 Hz).  Inclusion of the frequency effect improved the

predictions at each of the six sites except A46, where overpredictions of 
~

/T T  were

increased.

• For all sites except A46, use of a shallower soil profile for calculating VS (Method 3)

improved the 
~

/T T  analysis results.  These sites generally have only moderate

increases in soil stiffness with depth, and hence the effect of profile depth is of

modest importance.

• More precise definitions of soil modulus degradation (from deconvolution analysis,

Method 2) or effective building height (Method 5) appear to only modestly affect

average 
~

/T T  analysis results.

Deviations between Method 6 analysis results and the empirical data were presented

in Fig. 5.16.  Many of the general trends from Fig. 5.23 are also present in Fig. 5.16.  The
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small SSI effects for structures with 1/σ < 0.1 are well predicted by both methods.

However, the more rational modeling of the soil-foundation-structure system in Method 6

can reduce prediction errors for structures with intermediate 1/σ (e.g. sites A17 and A45).

Similarly, predictions for structures with large 1/σ were significantly improved in several

cases (e.g. A1 for 
~

/T T ; B5 for 
~ζ0 ).  Based on the findings from the analyses by

Methods 2 to 5,  the principal contributors to these improvements are incorporation of

dynamic effects in analysis of the impedance function and evaluation of VS across a

shallower profile depth.

For several sites, large errors from Method 1 are also observed with Method 6 for

reasons such as possible system identification errors associated with incoherent ground

motions, poor geotechnical site characterization (A34), or the inadequacy of single-mode

modeling procedures for long-period structures (A4, A27, B3).

It may also be noted that 
~

/T T  and 
~ζ0  for site A46 were accurately estimated by

Method 6 (no analysis was possible by Method 1).  The foundation at site A46 is

relatively deeply embedded (e/ru = 0.92), and inclusion of embedment effects in the

analysis of the impedance function is critical to obtaining reasonable estimates of 
~ζ0 .
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CHAPTER 6

SUMMARY AND CONCLUSIONS

6.1 Scope of Research

A wealth of strong motion data has become available over the last decade from sites

with instrumented structures and free-field accelerographs which has provided an

opportunity to evaluate empirically the effects of soil-structure interaction (SSI) on the

seismic response of structures.  Prior to the availability of this data, insights into inertial

and kinematic interaction processes were generally drawn only from analytical studies or

low-amplitude forced and ambient vibration testing.  While these studies were helpful in

establishing the framework within which SSI analyses are performed, the paucity of

strong motion data has contributed to the widely held belief among practicing engineers

that SSI effects are unimportant and that to ignore them is conservative.

In this study, strong motion data were used in system identification analyses to

quantify the effects of SSI on modal parameters of structures and the motions which

occur at the base of structures.  From these results, the conditions under which SSI effects

are significant were determined, and the reliability of simplified analytical techniques

intended to predict these effects was evaluated.

Simplified analytical methodologies to predict inertial interaction effects such as

period lengthening ratio (
~

/T T ) and soil/foundation damping factor (
~ζ0 ) have been

available for over twenty years (e.g. Veletsos and Nair, 1975, Bielak, 1975, Jennings and

Bielak, 1973).  These formulations are for a single degree-of-freedom structure with a
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rigid circular foundation resting on (Veletsos and Nair), or embedded into (Bielak), a

uniform visco-elastic halfspace.  Design code provisions by the Applied Technology

Council (ATC, 1978) and National Earthquake Hazards Reduction Program (NEHRP)

(BSSC, 1997) are based on an adaptation of the approach by Veletsos and Nair.  To apply

these procedures to structures in this study, guidelines were developed for modeling

within these simplified frameworks “realistic” conditions such as nonuniform soil

profiles, embedded structures, and foundations which are non-circular in shape or non-

rigid.  The guidelines and models were combined to form unified analytical procedures

termed the “modified Veletsos” (MV) and “modified Bielak” (MB) methodologies.  The

principle difference between the two is that the MB methodology is expected to simulate

more accurately embedment effects such as dynamic basement wall-soil interaction.

The analysis of recorded data was performed using system identification techniques.

By repeating the analyses for a given site with different output/input data pairs, it was

possible to determine modal parameters for different conditions of base fixity.  What was

sought for each site were first-mode periods and damping ratios for the flexible-base case

(which includes SSI effects) and a fictional fixed-base case in which SSI effects are

“removed” and the results reflect only the flexibility of the structure.  With the limited

instrumentation available at many sites, it was not always possible to evaluate directly

one set of either the fixed- or the flexible-base parameters.  For these situations, it was

necessary to consider a third condition of base fixity (pseudo flexible-base) which

incorporates the effects of structural deformations and base rocking, but not relative

foundation/free-field translations, into the overall system flexibility.  Using the pseudo

flexible-base parameters in conjunction with either the fixed- or flexible-base parameters
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(whichever was available), the unknown set of modal parameters could be estimated

using analytical techniques developed as part of this research.

For each of the 58 sites considered in this study, system identification analyses and

related parameter estimation procedures were performed to evaluate the fixed- and

flexible-base modal parameters.  To aide in the interpretation of these results, data on

structural and geotechnical conditions at each site were compiled such as foundation

radii, effective structure height, type of lateral force resisting system, soil stratigraphy and

type, and shear wave velocity profiles.  Using these data, 
~

/T T  and 
~ζ0  values at the sites

were evaluated as functions of various factors including structure-to-soil stiffness ratio,

structure type and aspect ratio, foundation type and embedment ratio, and the amplitude

of ground motion.  These empirical results were then compared to predictions from the

MV and MB methodologies, as well as more simplified code-based procedures, to

evaluate the accuracy of these analytical formulations.  Collectively, these empirical and

analytical results provided significant insights into inertial interaction phenomena.

6.2 Research Findings and Recommendations

Inertial interaction effects for buildings can be expressed in terms of the lengthening

of first-mode period (
~

/T T ) and the damping associated with soil-foundation interaction

(
~ζ0 ).  The motivation for characterizing these effects is that they can be used to estimate

flexible-base vibration parameters (
~
T ,

~ζ ), which in turn are used in response spectrum-

based approaches for evaluating design-level seismic base shear forces and deformations
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in structures.  As shown in Fig. 6.1, whether SSI increases or decreases the base shear

force is a function of the period lengthening, the change in damping between the fixed-

and flexible-base cases, and the shape of the design spectra.

Kinematic interaction effects were interpreted in an approximate manner from

variations between free-field and foundation-level ground motion indices, although both

inertial and kinematic interaction were found to affect foundation motions.

6.2.1 Interaction Effects as Quantified from Foundation/Free-Field Ground Motion
Indices

Available strong motion data suggests that foundation-level and free-field spectral

accelerations at the period of principal interest in structural design (i.e. the first-mode

flexible-base period, 
~
T ) are similar for structures with surface foundations, and that

foundation-level spectral accelerations are generally only modestly de-amplified

(averaging about 20%) for embedded foundations.  Since the free-field and foundation

level ground motions therefore appeared to be comparable for most of the structures in

this study, the focus of this research was primarily on evaluating the effects of inertial

interaction on structural response.

6.2.2 Inertial Interaction Effects as Quantified by Variations between Fixed- and
Flexible-Base First-Mode Parameters

The factor found to exert the greatest influence on 
~

/T T  and 
~ζ0  was the ratio of

structure-to-soil stiffness as quantified by the parameter 1/σ = h/(VS⋅T).  When 1/σ was

nearly zero, 
~

/T T  and 
~ζ0  values were about unity and zero, respectively, whereas at the
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maximum observed value of 1/σ = 1.5 at site A46, interaction effects dominated the

structural response (
~

/T T ≈ 4  and 
~ζ0 30%≈ ).  Additional factors of secondary

importance which affect the inertial interaction process include:

1. Structure aspect ratio (h/r2).  The data indicate an increase in period lengthening and

a decrease in foundation damping factor with increasing h/r2.  These effects are

adequately captured by the analysis procedures.

2. Foundation embedment.  No significant differences are observed between 
~

/T T  and

~ζ0  values for surface and shallowly embedded structures (e/r < 0.5).  However, more

deeply embedded structures can have significant additional damping as a result of

dynamic soil/basement-wall interaction.  The MV predictive analyses are sufficiently

accurate for surface and shallowly embedded structures (e/r < 0.5), whereas the MB

approach provides superior results for cases of deeper embedment.

3. Foundation type.  No significant differences are observed between 
~

/T T  or 
~ζ0

values for structures with deep foundations (piles and piers) and shallow foundations

(footings, grade beams, or mats).  Further, the accuracy of predicted 
~

/T T  or 
~ζ0

values by the MV or MB methodologies (which assume shallow foundations) is on

average equally good for both foundation types.  However, these results from deep

foundation sites are strongly influenced by a large number of sites with fairly stiff

surficial soils (VS > 500 fps) and no marked increase in soil stiffness across the depth

of the foundation elements.  For such cases, the dynamic foundation behavior appears

to be dominated by the interaction of near-surface foundation elements with soil.  For

a limited number of cases where piles pass through soft surficial soils and bottom out
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in stiffer underlying materials, there is pronounced additional damping in the system

that may be associated with radiation damping from soil-pile interaction.  This

damping is not captured by the MV or MB procedures.

4. Foundation shape effects.  Non-circular foundation shapes can have a higher level of

radiation damping in the rocking mode than circular foundations with equivalent

moment of inertia.  However, this was generally a small effect (absolute difference of

< 0.5% damping) for the structures considered in this study.

5. Foundation flexibility effects.  Based on analyses from a single site (B2), it appears

that continuous flexible foundations supporting a stiff central core of shear walls and

gravity loading bearing columns outside the core can exhibit a marked decrease in

rocking stiffness relative to a rigid foundation.  Foundation damping in the rocking

mode is not similarly decreased in the case history, although a decrease is predicted

by theoretical studies by Iguchi and Luco (1982) for a flexible foundation loaded only

through a central core.

6. Structure type.  The effect of the type of lateral force resisting system appears to be

adequately captured by the ratio of fixed-base structural period to height that is

incorporated into the 1/σ parameter.  However, the period lengthening is surprisingly

small in several tall, long-period structures (T > 2 sec.) founded on soft soils, which

may result from significant higher-mode responses in these buildings.

SSI design provisions in the BSSC (1997) and ATC (1978) codes are able to capture

gross increases in period lengthening ratio and foundation damping factor with increasing

1/σ, but generally these procedures replicate the observed SSI effects less accurately than

the MV or MB procedures.  These errors appear to be associated with several simplifying
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assumptions made in the development of the code provisions.  In particular, neglecting of

the frequency-dependence of  the real part of the foundation impedance function leads to

significant errors for high frequency structures.  Further, the response of deeply embedded

foundations is poorly modeled by the rigid disk on halfspace foundation model.   Finally,

the code-prescribed profile depths of 1.5r2 and 4.0r1 do not appear to improve estimates of

effective soil shear stiffness for analyses of foundation impedance functions relative to the

r1 depth employed in the MV and MB procedures.

6.2.3 Recommendations and Considerations for Design

As previously noted, the key SSI effects for an engineering design are the period

lengthening ratio (
~

/T T ) and foundation damping factor (
~ζ0 ).  The foundation damping

factor is combined with the fixed-base damping and period lengthening as per Eq. 2.11 to

evaluate the flexible-base damping ratio.  Based on this study, it appears that these

inertial interaction effects can generally be reliably predicted by the MV methodology for

many types of buildings (including base-isolated buildings).  However, several caveats to

this basic recommendation are appropriate:

1. Inertial interaction effects were generally observed to be small for 1/σ < 0.1 (i.e.

~
/ .T T < 11 and 

~ζ0 4%< ), and for practical purposes could be neglected in such

cases.

2. For structures with foundations having embedment ratios greater than 0.5, the MB

methodology should be used in lieu of MV to appropriately model the extra damping

contributed by dynamic soil/basement-wall interaction.
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3. Damping results for pile supported structures on relatively soft foundation soils (VS <

500 fps) should be interpreted with caution, as the damping is likely to exceed the

values predicted from simplified analyses (which assume shallow foundations) due to

soil-pile interaction effects.

4. Period lengthening for tall (T > 2 sec.) structures with significant higher-mode

responses should be neglected.

5. Corrections to rocking damping values for foundation shape effects are generally

small and can be neglected without introducing significant errors.

Kinematic interaction effects are often neglected in SSI analyses for earthquake

loading conditions.  Additional study of free-field and foundation-level ground motions is

needed to evaluate the potential significance of these effects.
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