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ABSTRACT

In this report the transient rocking response of electrical equipment subjected to trigonomet-

ric pulses and near-source ground motions is investigated in detail. First the rocking response of a

rigid block subjected to a half-sine pulse motion is reviewed. It is shown that the solution pre-

sented by Housner (1963) for the minimum acceleration amplitude of a half-sine pulse that is

needed to overturn a rigid block is incorrect. In reality, under a half-sine pulse, a block overturns

during its free vibration regime and not at the instant that the pulse expires, as was assumed by

Housner. Within the limits of the linear approximation, the correct conditions for a block to over-

turn are established and the correct expression that yields the minimum acceleration required to

overturn a block is derived. Subsequently, physically realizable cycloidal pulses are introduced

and their resemblance to recorded near-source ground motions is illustrated. The study uncovers

the coherent component of some near-source acceleration records, and the overturning potential

of these motions is examined. The rocking response of rigid blocks subjected to cycloidal pulses

and near-source ground motions is computed with a linear and nonlinear formulation. It is found

that the toppling of smaller blocks depends not only on the incremental ground velocity but also

on the duration of the pulse, whereas the toppling of larger blocks depends mostly on the incre-

mental ground velocity. The kinematic characteristics of recorded near-source ground motions are

examined in detail. It is found that the high frequency fluctuations that occasionally override the

long duration pulse will overturn a smaller block, whereas a larger block will overturn due to the

long duration pulse. A method to determine the cut-off frequency is developed and illustrated

through examples. In this light, the rocking response of electrical equipement subjected to near-

source ground motions is shown to be quite ordered and predictable.
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CHAPTER 1

INTRODUCTION

During strong ground shaking, a variety of rigid structures such as concrete radiation shields,

electrical transformers, and other heavy equipment might slide or set up a rocking motion that

results in substantial damage. Early studies on the dynamic response of a rigid block supported on

a base undergoing horizontal motion were presented by Housner (1963). In that study, the base

acceleration was represented by a rectangular or a half-sine pulse, and expressions were derived

for the minimum acceleration required to overturn the block. Using an energy approach, he pre-

sented an approximate analysis of the dynamics of a rigid block subjected to a white noise excita-

tion, uncovering a scale effect that explained why the larger of two geometrically similar blocks

can survive the excitation whereas the smaller block may topple. He also indicated that toppling

of a given block depends on the product of the acceleration amplitude of the pulse by its duration.

This fundamental finding that toppling of a block depends on the incremental velocity (area under

the acceleration pulse) and not merely on the peak ground acceleration (West’s formula, Milne

1885, Hogan 1989) did not receive the attention it deserves. Yim et al. (1980) adopted a probabi-

listic approach and conducted a numerical study using artificially generated ground motions to

show that the rocking response of a block is sensitive to system parameters. Their simulation pro-

cedure consisted of generating samples of Gaussian white noise that was multiplied by an inten-

sity function of time and subsequently filtered through a second-order linear filter to impart a

smooth transfer function with a maximum at 2.5 Hz. The white-noise type motions used by Yim

et al. do not contain any coherent component, and the overturning of the block is the result of a

rapid succession of small random impulses (areas under the spikes of the artificially generated

high frequency acceleration histories). It is partly because of the very nature of the ground

motions used that the results exhibit such a high sensitivity to system parameters.

Experimental and analytical studies on the same problem have been reported by Aslam et al.

(1980). Their study concludes that, in general, the rocking response of blocks subjected to earth-

quake motion is in line with the conclusions derived from single pulse excitations. However, when

artificially generated motions were used, the rocking response showed high sensitivity to the sys-

tem parameters.



The rocking response of blocks subjected to harmonic steady-state loading was studied in

detail by Spanos and Koh (1984) who identified “safe” and “unsafe” regions and developed ana-

lytical methods for determining the fundamental and subharmonic modes of the system. Their

study was extended by Hogan (1989, 1990) who further elucidated the mathematical structure of

the problem by introducing the concepts of orbital stability and Poincaré section. Hogan (1989)

showed that there is a minimum value of the forcing amplitude, dependent on frequency, below

which the block asymptotic motion ceases. Perhaps Hogan’s  most relevant finding to earthquake

engineering is that the domain of maximum transients of his solutions appears relatively ordered

and possesses a high degree of predictability despite the unpredictability that is present in the

asymptotic part of the solutions. The steady-state rocking response of rigid blocks was also stud-

ied analytically and experimentally by Tso and Wong (1989 a, b). While their theoretical study

was not as in-depth as the one presented by Hogan, their experimental work provided valuable

support to theoretical findings. Other related studies are referenced in the above-mentioned

papers.

While the early work of Yim et al. (1980) used artificially generated white-noise-type

motions, and the work of Spanos and Koh (1984), Hogan (1989, 1990), and Tso and Wong (1989)

used long-duration harmonic motions, our attention in this report is redirected to pulse-type

motions which are found to be good representations of near-source ground motions (Campillo et

al. 1989, Iwan and Chen 1994).

During a seismic event, the ground movement in the near-fault region is primarily the result of

waves that are moving in the same direction as the fault rupture, thereby crowding together to pro-

duce a long-duration pulse. Near-source ground motions have distinguishable long duration

pulses. In some cases, coherent pulses are distinguishable not only in the displacement and veloc-

ity histories but also in the acceleration history in which the peak acceleration reaches usually

moderate values. In other cases, acceleration records contain high spikes and resemble the tradi-

tional random-like motions, but their velocity and displacement history uncover a coherent long-

period pulse with some high frequency fluctuations that override along. What makes these

motions particularly destructive to some engineering structures is not their peak acceleration but

the area under the long duration acceleration pulse which represents the incremental velocity that

the above ground mass has to reach (Anderson and Bertero 1986). In this report, we built on



Housner’s (1963) pioneering work to investigate the overturning potential of a near-source ground

motion. It is shown that the toppling of smaller blocks depends not only on the incremental

ground velocity (area under the acceleration pulse), but also on the duration of the pulse, whereas

the toppling of larger blocks tends to depend solely on the incremental ground velocity. Accord-

ingly, a smaller block might overturn due to the high-frequency fluctuations that override the long

duration pulse, whereas a larger block will overturn due to the long duration pulse.

The study of the rocking response of rigid blocks to near-source ground motions was moti-

vated by the proximity of major urban areas and their power plants to active faults. For instance,

the San Andreas fault runs 10 km west of San Francisco, California; much of Oakland, California

is within 10 km of the Hayward fault, and a large part of the greater Los Angeles metropolitan

region in Southern California, lies over buried thrust faults capable of generating large earth-

quakes such as the January 17, 1994 Northridge earthquake. The city of Kobe, Japan was devas-

tated by the January 17, 1995 Hyogo-ken Nanbu earthquake, which generated unusually large

pulses.

In Chapter 2, the equations of motion with their analytical solutions at the linear limit are pre-

sented. We commence our analysis by revisiting the rocking response of a rigid block subjected to

a half-sine pulse. It is shown analytically in Chapter 3 that the solution presented by Housner

(1963) for the minimum overturning acceleration amplitude is incorrect. This is because, under a

half sine pulse, a block overturns during its free vibration response and not at the instant that the

pulse expires. Within the limits of the linear approximation, the correct conditions for a block to

overturn are established, and the correct expression that yields the minimum acceleration to over-

turn a block is derived. It is shown that the minimum overturning velocity amplitude depends on

the slenderness of the block, the size of the block, and the duration of the pulse.

In Chapter 4 , selected near-source ground motions are presented, and their resemblance to

physically realizable cycloidal pulses is shown. A type-A cycloidal pulse approximates a forward

pulse, a type-B cycloidal pulse approximates a forward-and-back pulse, whereas a type-Cn pulse

approximates a recorded motion that exhibits n main cycles in its displacement history. The veloc-

ity histories of all type-A, type-B, and type-Cn pulses are differentiable signals that result in finite

acceleration values. Chapters 5, 6, and 7 study the rocking response of a free standing block sub-



jected to type-A, type-B, and type-Cn pulses respectively. In Chapter 8, the effects on the nonlin-

ear nature of the rocking motion are illustrated, and the accuracy of the nonlinear numerical

algorithm is validated. In Chapter 9, the rocking response of free-standing blocks subjected to

near-source ground motions is examined in detail, showing that smaller blocks overturn due to

short duration pulses with high acceleration, whereas larger blocks that survive these pulses will

overturn from larger duration pulses with smaller peak acceleration. Chapter 10 is devoted to a

summary of the findings and conclusions. 



CHAPTER 2

PROBLEM DEFINITION AND EQUATIONS OF MOTION

Consider the model shown in Figure 1, which can oscillate about the centers of rotation O and

O’ when it is set to rocking. Its center of gravity coincides with the geometric center, which is at a

distance R from any corner. The angle α of the block is given by . Depending on

the value of the ground acceleration and the coefficient of friction, µ, the block may translate with

the ground, enter a rocking motion or a sliding motion. A necessary condition for the block to

enter a rocking motion is  (Aslam et al. 1980, Scalia and Sumbatyan 1996). The possibil-

ity for a block to slide during the rocking motion has been investigated by Zhu and Soong (1997),

and Pompei et al. (1998). In this study, it is assumed that the coefficient of friction between the

block and its base is sufficiently large to prevent sliding at any instant in the rocking motion.

Under a positive horizontal ground acceleration, , the block will initially rotate with a negative

rotation, θ<0, and, if it does not overturn, it will eventually assume a positive rotation and so forth.

Assuming zero vertical base acceleration ( ), the equations of motion are

,  θ<0, (2.1)

and

,  θ>0. (2.2)

For rectangular blocks, , equations (2.1) and (2.2) can be expressed in the compact

form

, (2.3)

where  is a quantity with units in rad/sec. The larger the block is (larger R), the smaller

p is. The oscillation frequency of a rigid block under free vibration is not constant, since it

strongly depends on the vibration amplitude (Housner, 1963). Nevertheless, the quantity p is a

measure of the dynamic characteristics of the block. For an electrical transformer, ,

α( )tan b h⁄=

µ b h⁄>

u··g

v··g t( ) 0=

Ioθ·· mgR α– θ–( )sin+ mu··gR α– θ–( )cos–=

Ioθ·· mg α θ–( )sin+ mu··gR α θ–( )cos–=

Io
4
3
---mR2=

θ·· t( ) p2 α θ t( )[ ]sgn θ t( )–( )
u··g
g
----- α θ t( )[ ]sgn θ t( )–( )cos+sin

 
 
 

–=

p 3g
4R
-------=

p 2rad s⁄≈





and for a household brick, . Table 2.1 summarizes approximate geometric and

dynamic characteristics of electrical equipement that have been subjected to strong rocking

motion during earthquake shaking (Fujisaki 1998).

When the block is rocking, it is assumed that the rotation continues smoothly from point O to

O’. Conservation of momentum about point O’ just before the impact and right after the impact

gives

, (2.4)

where  is the angular velocity just prior to the impact, and  is the angular velocity right after

the impact. The ratio of kinetic energy after and before the impact is 

, (2.5)

which means that the angular velocity after the impact is only  times the velocity before the

impact. Substitution of (2.5) into (2.4) gives

TABLE 2.1. Approximate geometric characteristics and estimated values of the frequency parameter, p, of 
electrical equipement.

Equipment b(ft) h(ft) R(ft) α(rad) p(rad/s)

E1 3.0 6.0 6.71 0.4636 1.90

E2* 1.5 2.5 2.92 0.5404 2.32

E3 8.0 20 21.54 0.3805 1.06

E4 1.5 3.0 3.35 0.4636 2.68

E5 1.75 4.5 4.83 0.3709 2.24

E6 1.25 4.25 4.43 0.2860 2.33

E7* 1.5 2.5 2.92 0.5404 2.32

E8 1.0 3.5 3.64 0.2783 2.58

E9 1.75 2.75 3.26 0.5667 2.21

E10* 1.75 2.75 3.26 0.5667 2.21

E11* 2.5 4.5 5.15 0.5070 1.73

p 8rad s⁄≈

Ioθ· 1 mθ· 12bR α( )sin– Ioθ· 2=

θ· 1 θ· 2

r
θ· 2

2

θ· 1
2

-----=

r

c.g

R
α

2b

2h

OO’

* Cylindrical shapes



. (2.6)

The value of the coefficient of restitution given by (2.6) is the maximum value of r under which a

block with slenderness α will undergo rocking motion. If additional energy is lost due to interface

mechanisms, the value of the true coefficient of restitution, r, will be less than the one computed

from (2.6). In this study, the entire analysis is conducted using the maximum value of the coeffi-

cient of restitution given by (2.6).

Equations (2.1) and (2.2) are well known in the literature (for example, Yim et al. 1980, Spa-

nos and Koh 1984, Hogan 1989). They are valid for arbitrary values of the block angle α. For tall

slender blocks, the angle  is relatively small and equations (2.1) and (2.2) can be

linearized. Closed form solutions of the linearized equations for harmonic excitation have been

presented by Housner (1963) for positive rotations only , and by Hogan (1989) for positive

and negative rotations. Herein, the solution of the linearized equations is derived for a sinusoidal

ground motion for both positive and negative rotations in order to revisit the overturning condi-

tions due to a half-sine pulse that were postulated by Housner and to examine the rocking behav-

ior of rigid blocks subjected to cycloidal pulses. Within the limits of the linear approximation and

for a ground acceleration

, (2.7)

equations (2.1) and (2.2) become 

,  θ<0 (2.8)

and

,  θ>0, (2.9)

where  is the phase when rocking initiates. Assuming a zero initial rotation,

the integration of (2.8) and (2.9) gives

r 1 3
2
--- αsin2–

2
=

α b h⁄( )tan 1–=

θ 0>( )
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,  θ<0 (2.10)

and

,  θ>0, (2.11)

where

, (2.12)

, (2.13)

. (2.14)

The time histories for the angular velocities are directly obtained from the time derivatives of

(2.10) and (2.11)

,  θ<0 (2.15)

and

,  θ>0. (2.16)
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The solution presented by Housner (1963) is a special case of the solution given by (2.10) to

(2.14). Assuming zero initial rotation and zero initial angular velocity , the

substitution of (2.12) and (2.13) into (2.10) gives

. (2.17)

Recalling that , equation (2.17) takes the form

, (2.18)

which is the solution reported by Housner (equation (10) in his paper). The minus sign on the left

hand side of (2.18) is because we considered that the ground moves with a positive sine accelera-

tion, and therefore the block initially rotates with a negative angle .
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CHAPTER 3

RESPONSE TO A HALF-SINE PULSE

The analytical solutions given by (2.10), (2.11), (2.15), and (2.16) can be used to compute the

linear rocking response and the minimum acceleration amplitude of any sinusoidal excitation with

finite duration that is needed to overturn a block. A solution for the minimum acceleration ampli-

tude of a half-sine pulse that is needed to overturn a block was presented by Housner (1963).

Unfortunately, the solution presented in that pioneering work and subsequently presented in later

papers (Yim et al. 1980, among others) is incorrect. In this chapter this flaw is rectified by estab-

lishing the conditions necessary for a block to overturn.

In his seminal paper, Housner postulated that the condition for overturning is that the angle of

rotation, θ, is equal to the angle α of the block at time , which is the time that the

half-sine pulse expires. Based on this forced postulate, he derived a simple expression that pro-

vides the minimum acceleration amplitude required to overturn the block.

In reality, under the minimum acceleration amplitude, the block will overturn during its free

vibration regime. This can be easily found by examining the free vibration response where the

homogeneous part of the solution is expressed by (2.10) and (2.11) with . In the homoge-

neous solution, the initial rotation  and initial angular velocity  in the integration constants,

A1 and A2, are the rotation and angular velocity of the block at the instant when the sinusoidal

excitation expires. Figure 2 plots the response of a rigid block with dimensions b=0.2 m and h=0.6

m subjected to a half-sine pulse excitation with duration 0.5 sec and excitation frequency

. On the left of Figure 2 the amplitude of the acceleration pulse is m/sec2

(0.5535g) and the block does not overturn, whereas on the right of Figure 2, m/sec2

(0.5545g) and the block overturns. The solid line is the analytical solution presented in Chapter 2,

and the dashed line is the result of the numerical solution of the linearized equations of motion

presented in Chapter 8. Figure 2 illustrates that the overturning of the block happens much later

than the time Housner had considered i.e., the end of the excitation pulse. Under the ideal condi-

tion that the block is being subjected to the exact value of the minimum acceleration needed to

overturn it, the time when overturning occurs is infinitely large.
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With b=0.2m and h=0.6m, the slenderness angle rad and p=3.411

rad/sec. For rad/sec,  and according to Housner’s calculation, the mini-

mum acceleration amplitude that will overturn the block is ,

whereas Figure 2 shows that an acceleration amplitude of  is sufficient to overturn

the block. Consequently, within the limits of the linear formulation, the minimum acceleration

values reported by Housner and later by Yim et al. (1980) are unconservative.

The time that the overturning occurs is very sensitive to the value of the acceleration ampli-

tude. Figure 3 shows the computed response for two different acceleration amplitudes in the vicin-

ity of the critical acceleration. It is shown that a slight increase in the acceleration has a significant

effect on the time history response. The more the acceleration amplitude approaches the critical

overturning acceleration, the more the block will delay before re-centering, and, for the exact

value of the critical acceleration, the block will theoretically spend an infinitely long time decid-

ing whether it should re-center or overturn. This observation indicates that the limit state condi-

tion for overturning is that the time when overturning occurs can be arbitrarily large.

The overturning condition of the block is established in Figure 2, which suggests that the

block experiences the maximum rotation during the free vibration regime. Since the angle of rota-

tion at the end of the excitation pulse is negative, the equation of motion during the free vibration

regime that immediately follows is

 , (3.1)

where A1 and A2 are integration constants that depend on the rotation and angular velocity of the

block at the end of the excitation pulse and are given by

  ,  . (3.2)

During this free vibration regime that immediately follows the forced vibration regime, the

block will not overturn as long as the angular velocity decreases in magnitude monotonically,

reaches zero, and then increases while the block rotates back to the equilibrium position. How-
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ever, if the velocity does not reach zero, but instead reaches an extremum, the block will overturn.

Accordingly, the block overturns when

(3.3)

which gives

. (3.4)

Our previous analysis uncovered that, under the critical acceleration, the time when overturn-

ing occurs is large enough so that tanh(pt)=1, and the condition for overturning reduces to

. (3.5)

The computation of A1 and A2 (see equations (2.12) and (2.13)) involves the evaluation of  and

 at the beginning of the free vibration regime, which occurs at time . Conse-

quently,  and  are computed from equation (2.18) and its derivatives at time

. This gives

, (3.6)

. (3.7)

With the substitution of the expressions (3.6) and (3.7) into (2.12) and (2.13), equation (3.5) takes

the form 

(3.8)
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Equation (3.8) is the condition for overturning. The solution of this transcendental equation

gives the value of ψ for which the acceleration  is the minimum acceleration

needed to overturn the block. Figure 4 (top) plots with a solid line the solution of (3.8) as a func-

tion of , and is compared with the unconservative solution presented by Housner (1963)

(dotted line).

The points shown in Figure 4 (top) are the numerical solutions for different values of the block

slenderness obtained with a nonlinear formulation that is presented in Chapter 8. Figure 4 (top)

also illustrates that, in the range , the minimum overturning acceleration amplitude

is a nearly linear function of . A dependable approximation of the correct solution is

 . (3.9)

At the end of the half-sine pulse, the ground has reached the constant velocity . For

a rectangular block, , equation (3.9) offers a dependable approximation for the

minimum overturning velocity amplitudes

. (3.10)

The results of the approximate expression given by (3.10) are shown in Figure 4 (bottom) next to

the exact linear solution (solid line), the numerical solution (points), and the unconservative solu-

tion presented by Housner (1963). Equation (3.10) shows that, for , the minimum over-

turning velocity amplitude depends not only on the slenderness, α, and the size, R, but also on the

duration of the pulse. Consequently, if one considers two different half-sine acceleration pulses

with the same product , the short-period pulse with the larger acceleration amplitude is more

capable of overturning a block than the longer period pulse with the smaller acceleration ampli-

tude.
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CHAPTER 4

CLOSED FORM APPROXIMATION OF NEAR-SOURCE GROUND MOTIONS

During the last two decades, an ever increasing database of recorded earthquakes has demon-

strated that the dynamic characteristics of the ground near the faults of major earthquakes have

distinguishable long duration pulses. Near-source ground motions contain large displacement

pulses, say one or two coherent pulses from 0.5 m to more than 1.5 m with peak velocities of 0.5

m/s or higher. Their duration is usually between one to three seconds, but it can be as long as 6 s.

A typical value of the frequency, p, for an electrical transformer is , therefore the low fre-

quency range  is of interest. Of particular interest are the forward motions, the for-

ward-and-back motions, motions that exhibit one main cycle in their displacement history, and

motions that exhibit two main cycles in their displacement histories. 

Figure 5 (left) shows the East-West components of the acceleration, velocity and displacement

histories of the September 19th, 1985 Michoacan earthquake recorded at the Caleta de Campos

station (Anderson et al. 1986). The motion resulted in a forward displacement of the order of 0.4

m. The coherent long duration pulse responsible for most of this displacement can also be distin-

guished in the velocity history, whereas the acceleration history is crowded with high frequency

spikes. Figure 5 (right) plots the acceleration, velocity, and displacement histories of a type-A

cycloidal pulse given by (Jacobsen and Ayre 1958, Makris 1997)

, , (4.1)

, , (4.2)

, . (4.3)
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In constructing Figure 5 (right), the values of Tp=5.0 sec and Vp=0.16 m/sec were used. These are

approximations of the duration and velocity amplitude of the main pulse. Figure 5 indicates that a

simple one-sine pulse can capture some of the kinematic characteristics of the motion recorded at

the Caleta de Campos station. On the other hand, the resulting acceleration amplitude,

, is one order of magnitude smaller than the recorded peak ground acceler-

ation.

Another example of a recorded ground motion that resulted in a forward pulse is the fault par-

allel motion recorded at the Lucerne Valley station during the June 18th, 1992 Landers earth-

quake, which is shown on Figure 6 (left). Although the displacement history results in a clean

forward pulse, the acceleration history is crowded with high-frequency spikes that reach 0.75 g.

On the right of Figure 6, the results of equations (4.1) to (4.3) are shown for the values of Tp=7.0

s and Vp=0.5 m/s, which are approximations of the pulse period and the pulse velocity amplitude

of the recorded motion. Again, while the resulting displacement history is in very good agreement

with the record, the resulting acceleration amplitude  is one order of

magnitude smaller than the recorded peak ground acceleration.

Figure 7 (left) shows the acceleration, velocity, and displacement histories of the fault-normal

motions recorded at the El Centro Station Array #5 during the October 15th, 1979 Imperial Valley

earthquake. This motion resulted in a forward-and-back pulse with a 3.2 sec duration. In this case,

the coherent long period pulse is distinguishable not only in the displacement and velocity record,

but also in the acceleration record. Figure 7 (right) plots the acceleration, velocity, and displace-

ment histories of a type-B cycloidal pulse given by Makris (1997).

, , (4.4)

, , (4.5)

, . (4.6)

In constructing Figure 7 (right) the values of Tp=3.2 s and Vp=0.7 m/s were used as approximate

values of the pulse period and velocity amplitude of the recorded motions shown on the left.
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Figure 8 (left) portrays the fault-normal components of the acceleration, velocity, and dis-

placement histories of the January 17th, 1994 Northridge earthquake recorded at the Rinaldi sta-

tion. This motion resulted in a forward ground displacement that recovered partially. The velocity

history has a large positive pulse and a smaller negative pulse that is responsible for the partial

recovery of the ground displacement. Had the negative velocity pulse generated the same area as

the positive velocity pulse, the ground displacement would have fully recovered. Accordingly, the

fault normal component of the Rinaldi station record is in between a forward and a forward-and-

back pulse. Figure 8 (center) shows the results of equations (4.1) to (4.3) by assuming a pulse

duration Tp=0.8 s and a velocity amplitude Vp=1.75 m/s which are approximations of the dura-

tion and velocity amplitude of the first main pulse shown in the record. Figure 8 (right) shows the

results of equations (4.4) to (4.6) by considering a pulse duration Tp=1.3 s and a velocity ampli-

tude Vp=1.3 m/s. A similar situation prevails for the fault normal motion recorded at the Lucerne

Valley station during the June 18th, 1992 Landers earthquake, which is shown in Figure 9 (left).

Again, the velocity history has a large negative pulse that is followed by a smaller positive pulse.

Had the second positive pulse generated the same area as the negative pulse, the ground displace-

ment would have fully recovered. Figure 9 (center) shows the results of equations (4.1) to (4.3) by

considering a pulse duration Tp=3.0 sec. and a velocity amplitude Vp=1.0 m/s which are approxi-

mations of the duration and velocity amplitude of the first main pulse shown in the record. Figure

9 (right) shows the results of equations (4.4) to (4.6) by considering a pulse duration Tp=5.0 s and

a velocity amplitude of Vp=1.0 m/s. Trends similar to those observed in Figure 6 are also present

in Figure 9. Although the constructed displacement and velocity histories either with a type-A

pulse or a type-B pulse are capturing distinct elements of the kinematics of the recorded motion,

the resulting ground acceleration is an order of magnitude smaller than the peak recorded value. 

Not all near-source records are forward or forward-and-back pulses. Figure 10 (left) portrays

the fault-normal component of the acceleration, velocity, and displacement time histories

recorded at the Sylmar station during the January 17th, 1994 Northridge earthquake. The ground

displacement consists of two main long-period cycles, the first cycle being the largest, and the

subsequent ones decaying. These long period pulses are also distinguishable in the ground veloc-

ity history whsere the amplitude of the positive pulses is larger than the amplitude of the negative

pulses. Figure 11 (left) portrays the fault parallel components of the acceleration, velocity, and 









displacement histories recorded at the Rinaldi station during the January 17th, 1994 Northridge

earthquake. The ground displacement consists of two main long period cycles and subsequently

the motion decays. These near-fault ground motions, where the displacement history exhibits one

or more long duration cycles, are approximated with type-C pulses. A one-cycle ground displace-

ment is approximated with a type-C1 pulse that is defined as

,  (4.7)

,  (4.8)

,  (4.9)

Figure 12 (third column) plots the acceleration, velocity, and displacement histories of a type-C1

pulse given by equations (4.7) to (4.9). In deriving this expression it is required that the displace-

ment and velocity are differentiable signals. The value of the phase angle, , is determined by

requiring that the ground displacement at the end of the pulse is zero. A type-C1 pulse with fre-

quency  has duration . In order to have a

zero ground displacement at the end of a type-C1 pulse

(4.10)

Equation (4.10), after evaluating the integral, gives

(4.11)

The solution of the transcendental equation given by (4.11) gives the value of the phase

 for a type-C1 pulse.
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A two-cycle ground displacement is approximated with a type-C2 pulse which is described by

the same equations (4.7) to (4.9). A type-C2 pulse has duration

. The condition for a zero ground displacement at the

end of a type-C2 pulse gives

(4.12)

The solution of (4.12) gives the value of  for a type-C2 pulse. Figures 11 and 12

(right) plot the acceleration, velocity, and displacement histories of a type-C2 pulse. 

A type-Cn pulse is expressed by

,  (4.13)

,  (4.14)

,  (4.15)

where the phase, , is the solution to the transcendental equation

(4.16)

As n increases, a type-Cn pulse tends to a harmonic steady-state excitation. Figure 12 summarizes

the acceleration, velocity, and displacement shapes of a forward-pulse, a forward-and-back pulse,

a type-C1, and a type-C2 pulse. The displacement of a forward-and-back pulse has the same shape

as the velocity of a forward pulse. Similarly, the shape of the displacement of a type-C1 pulse

resembles the shape of the velocity of a forward-and-back pulse and the shape of the acceleration

of a forward pulse. This shows that type-C pulses provide a continuous transition from cycloidal

pulses to harmonic steady-state motions.
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CHAPTER 5

RESPONSE TO A ONE-SINE PULSE (TYPE-A PULSE)

Chapter 4  indicates that the kinematic characteristics of certain ground motions that result in a

considerable permanent ground displacement can be described with a one-sine pulse also known

as a cycloidal pulse of type A. The linear rocking response of a rigid block subjected to a one-sine

pulse can be computed with (2.10), (2.11), (2.15), and (2.16). Figure 13 plots the response of the

rigid block (b=0.2m and h=0.6 m) subjected to a one-sine pulse excitation with duration of 1sec

( ). The solid line is the analytical solution presented in Chapter 2, and the dashed line is

the result of the linear formulation of the numerical solution presented in Chapter 8. The agree-

ment between the two solutions validates the performance of the numerical algorithm. On the left

of Figure 13, the amplitude of the acceleration pulse is m/sec2 (0.3899g) and the

block does not overturn, whereas on the right of Figure 13,  m/sec2 (0.3900g) and the

block overturns. Figure 13 indicates that, under a one-sine input, the block also overturns during

free vibration. However, the acceleration amplitude needed to overturn the block during a one-

sine pulse is less than the acceleration amplitude required to overturn the block during a half-sine

pulse (compare the results of Figure 13 with Figure 2). Another important difference between the

responses shown in Figures 2 and 14 is that, under a half-sine pulse, the block overturns at the end

of the first quarter cycle, whereas under a one-sine pulse, the block overturns at the end of the

third quarter cycle after experiencing one impact. This reversal of the angle of rotation before

overturning does not allow for the derivation of a closed form expression that will yield the mini-

mum acceleration needed to overturn the block. It becomes clear, however, that, under a type-A

pulse, the value of the coefficient of restitution affects the value of the critical overturning acceler-

ation, since the block experiences one impact before overturning. Consequently, even the linear

solution for the minimum overturning accelerations is angle dependent since the coefficient of

restitution, r, is a function of the slenderness of the block, . The results presented herein are for

the maximum value of the coefficient of restitution given by (2.6).
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Figure 14 presents the same study for a larger but geometrically similar block (b=0.5 m and

h=1.5 m) subjected to the full-sine pulse excitation with . On the left of Figure14, the

amplitude of the acceleration pulse is ap=4.426 m/sec2 (0.4513g) and the block does not overturn,

whereas on the right of Figure 14, ap=4.429 m/sec2 (0.4514g) and the block overturns. Again,

overturning occurs during free vibration, during the third quarter cycle, after the block has experi-

enced one impact.

The minimum acceleration amplitude of a one-sine pulse needed to overturn a rigid block

with slenderness α is plotted on Figure 15 (top). Results are computed for , , and

 with the nonlinear formulation that is presented in Chapter 8 and are compared with the lin-

ear solution for the minimum overturning acceleration of a half-sine excitation (equation (3.8)). It

is shown that, for a one-sine pulse (type-A pulse), a considerably smaller acceleration amplitude

is needed to overturn a block, since in this case the ground decelerates during the second half of

the pulse. It is observed that the solution for  exhibits a stiffening effect for ,

while for , Figure 15 (top) indicates that the minimum overturning acceleration ampli-

tude, , is a nearly linear function of  in the frequency range of interest ,

which can be approximated with

(5.1)

From equation (4.1), the velocity amplitude of the one-sine pulse is , and for a

slender rectangular block, the minimum overturning velocity amplitude, , of a one-sine pulse

can be approximated with

(5.2)

The results of the approximate expression given by (5.2) are shown in Figure 15 (bottom) next to

the results derived from the nonlinear numerical solution. The multiplication factor 1/3 of the size

term in equation (5.2) indicates that the size of the block, R, has a weaker effect in preventing top-
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 pling than in the case of a half-sine pulse. As an example, consider the smaller block (b=0.2 m,

h=0.6 m, R=0.632 m and =1.84) that is under investigation. Under a half-sine pulse with

Tp=1 s, equation (3.10) indicates that whether the block overturns depends 48% on its size and

52% on the duration of the pulse. Under a one-sine pulse with Tp=1 s, equation (5.2) indicates that

whether the block overturns depends 23.5% on its size and 76.5% on the pulse duration. Equation

(5.2) indicates that the overturning of wide large blocks (  and ) has a weaker

dependence on the duration of the pulse than is the case with small and slender blocks.
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CHAPTER 6

RESPONSE TO A ONE-COSINE PULSE (TYPE-B PULSE)

While some near source ground motions result in a forward pulse (non reversing pulse),

other near-source ground motions result in a forward-and-back pulse where the ground disloca-

tion recovers either fully or partially. The fault normal component of the El Centro Array #5

motion recorded during the October 15th, 1979 Imperial Valley earthquake and the Lucerne Val-

ley motion recorded during the June 28th, 1992 Landers earthquake are examples of such for-

ward-and-back pulses. In Chapter 4  it was shown that many of the features of these forward-and-

back pulses can be captured with a one-cosine pulse (Pulse type-B). Figure 16 plots the response

of the rigid block (b=0.5m and h=1.5m) subjected to a one-cosine pulse excitation with duration

of 1 sec and . On the left of Figure 16 the amplitude of the acceleration pulse is

 and the block does not overturn, whereas on the right of Figure 16,

 and the block overturns. Figure 16 indicates that, under a one-cosine pulse, the

block again overturns during the free vibrations. However, now the acceleration amplitude needed

to overturn the block with  is larger than the acceleration amplitude needed to over-

turn the same block during a one-sine pulse. The minimum acceleration amplitudes, , of a

one-cosine pulse needed to overturn a rigid block with slenderness α are plotted in Figure 17

(top). Results are computed for , , and  with the nonlinear formulation that is

presented in Chapter 8.

Figure 17 (top) also indicates that the minimum overturning acceleration amplitude of a

one-cosine pulse needed to overturn a block with an average slenderness of  can be

approximated with the linear expression

. (6.1)
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From equation (4.4) the velocity amplitude of the one-cosine pulse is , and, for a

rectangular block, equation (6.1) gives

. (6.2)

The results of the approximate expression given by (6.2) are shown in Figure 17 (bottom) next to

the results derived from the nonlinear numerical solution. The multiplication factor of the size

term in (6.2) is 1/2, which indicates that for a one-cosine pulse the size, R, of a block has a weaker

effect in preventing toppling than in the case of a half-sine pulse.
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CHAPTER 7

RESPONSE TO TYPE-C PULSES

Figure 18 plots the response of the rigid block (b=0.2 m, h=0.6 m, p=3.41 rad/sec) subjected

to the type-C1 pulse given by equations (4.7) to (4.9) with Tp=1.0 sec . On the left of

Figure 18, the amplitude of the pulse is  (0.4037g) and the block does not over-

turn, whereas on the right of Figure 18,  (0.4047g) and the block overturns. In

this case the block experiences an early rocking motion with small amplitudes that is followed by

a large rotation. Figure 19 plots the response of the same block (b=0.2 m, h=0.6 m, p=3.41 rad/

sec) subjected to a type-C2 pulse with Tp=1.0 sec . On the left of Figure 19 the ampli-

tude of the pulse is  (0.3965 g) and the block does not overturn, whereas on the

right of Figure 19,  (0.3976 g), and the block overturns. While there are many

differences in the rocking motion of the block when subjected to a type-C1 pulse and a type-C2

pulse, the values of the overturning acceleration amplitudes for this case  are

close.

The minimum acceleration amplitudes of a type-C1 and a type-C2 pulse needed to overturn a

block with slenderness  are plotted on Figure 20 (top). For values of , the

acceleration values increase with frequency at a larger rate. However, for values of ,

Figure 20 (top) indicates that the minimum overturning acceleration amplitudes for both a type-C1

and a type-C2 pulse is a nearly linear function of , which can be approximated with

(7.1)

The relation given by (7.1) is the same as the relation given by (5.1), which was derived for a type-

A pulse. For the type-C pulse equations, equations (4.12) and (4.13) give that the velocity ampli-

tude , which is half the velocity amplitude that one obtains from a type-A pulse with

the same acceleration amplitude . Accordingly, for a slender block , the minimum overturning

velocity amplitude of either a type-C1 or type-C2 pulse can be approximated with 
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. (7.2)

The results of the approximate expressions given by (7.2) are shown in Figure 20 (bottom) next to

results obtained with the non-linear numerical solution for .
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CHAPTER 8 

NONLINEAR FORMULATION - NUMERICAL SOLUTION

 The rocking response of a rigid block subjected to earthquake excitation is computed

numerically via a state-space formulation which can accommodate the nonlinear nature of the

problem. Similar integration of the equation of motion has been carried out by Yim et al. (1980),

Spanos and Koh (1984), and Hogan (1989) among others. The state vector of the system is merely 

(8.1)

and the time-derivative vector f(t) is

(8.2)

For slender blocks, the linear approximation becomes dependable, and equation (8.2) reduces to 

(8.3)

The numerical integration of (8.2) or (8.3) is performed with standard ODE solvers available in

MATLAB (1992). The fidelity of the numerical algorithm is validated in Figures 2, 14, and 15

where the numerical solution of the linear equations of motion given by (8.3) (dashed lines) is

compared with the analytical solution given by (2.10), (2.11), and (2.15), (2.16) (solid lines). With

the nonlinear formulation given by (8.2), the significance of the nonlinear nature of the problem is

examined. The true minimum acceleration amplitudes of a half-sine pulse needed to overturn rigid

blocks with various geometries are shown in Figure 4 and are compared with the correct linear

solution given by (3.8) and the unconservative linear solution given by Housner (1963). The non-

linear solution reveals that two blocks with the same size (same ) will require different val-
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ues of  to be overturned. For instance, the normalized minimum acceleration needed to

overturn a block with α=10o is very close to the value obtained with the linear solution (equation

(3.8)). However, when the slenderness of the block decreases (α=20o, α=30o) the normalized

minimum acceleration needed to overturn the block increases. It so happens that these values lie

in between the correct linear solution provided by equation (3.8) and the unconservative solution

presented by Housner (1963). The nonlinear formulation was also used to compute the true mini-

mum acceleration needed to overturn blocks with various slenderness when subjected to a cycloi-

dal pulse type-A (Figure 15 (top)), a cycloidal pulse type-B (Figure 17 (top)), and cycloidal pulses

type-Cn (Figure 20 (top)). Again, the value of the true normalized minimum acceleration required

to overturn the block increases with α, showing that the linear solution is conservative. For these

types of pulses, the solution for different values of the block angle, α, involves different values of

the maximum coefficient of restitution r which depends on α through equation (2.6). It is interest-

ing to note that, for , the true minimum acceleration needed to overturn a block has

approximately two times the acceleration value resulting from the linear solution.

ap αg( )⁄

α 30°=



CHAPTER 9

RESPONSE TO SEISMIC EXCITATION

In Chapters 5, 6, and 7 we analyzed the rocking response of a free standing block subjected to

three types of trigonometric pulses that can approximate some of the kinematic characteristics of

near-source ground motions. We derived expressions to express the minimum overturning acceler-

ation and velocity amplitudes of these pulses, and we concluded that, for small values of the fre-

quency ratio , the toppling of a block depends on its slenderness, α, its size, R, and

the duration of the pulse, Tp. In this chapter, the foregoing analysis is used to provide information

on the stability of a block subjected to near-source ground motions. 

The challenge with such motions is that, in many instances the main long duration pulse that

generates the substantial displacements is jammed by high-frequency fluctuations that override

along. For instance, this phenomenon is most apparent at the Caleta de Campos record, shown in

Figure 5, and the Lucerne Valley records, shown in Figures 6 and 9. The El Centro Array #5

record, shown in Figure 7, contains few distinct fluctuations on top of the main pulse, whereas the

Rinaldi station record, shown in Figure 8, is clear to the extend that the pulse motion is distin-

guishable even in the acceleration history.

Figure 8 indicates that the Rinaldi station record is in between a 0.8-second duration type-A

pulse and a 1.3-sec duration type-B pulse. From equation (5.2), the minimum overturning velocity

amplitude of a one-sine pulse with Tp=0.8 sec that is needed to overturn the 0.5m x 1.5m block

( rad, p=2.157 rad/s) is m/s. Accordingly, since the velocity

amplitude of the Rinaldi station record, when considered as a forward pulse, is approximately

1.75m/s, the approximation of the Rinaldi station motion with a one-sine pulse yields that 74%

( ) of the Rinaldi motion is sufficient to overturn the block. On the other hand,

equation (6.2) indicates that the minimum overturning velocity amplitude of a one-cosine pulse

with Tp = 1.3 sec that is needed to overturn the same block is m/s. Now the approxi-

mation of the Rinaldi station to a one-cosine pulse yields that 78% ( ) of the

Rinaldi motion is sufficient to overturn the block. Figure 21 (left) plots the rocking response of the

0.5m x 1.5m block subjected to the 75% level of the Rinaldi station motion at which the block 
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does not overturn, whereas on the right of Figure 21, the block overturns when subjected to a 76%

level of the Rinaldi station record. This level of 76% is between the levels of 74% and 78% that

we computed with equations (5.2) and (6.2), respectively.

Figure 22 plots the minimum overturning velocity spectrum of the Rinaldi station motion by

assuming a pulse frequency  rad/s. The velocity spectrum of a pulse type-

A together with the solution of the approximate expression given by (5.2) are also shown in Fig-

ure 22. The good agreement of the results presented in Figure 22 indicates that the response val-

ues obtained from cycloidal pulses can provide dependable information on the overturning of a

block when subjected to the Rinaldi station record. 

Our analysis proceeds by investigating the rocking response of blocks to near source ground

motions that contain a distinct long duration pulse as well as high frequency fluctuations that

override along the long duration pulse. The question that arises with such records is whether a

block will overturn due to the high frequency spike or due to the low acceleration, low frequency

pulse.

This question is partially addressed by observing the forward-and-back motion recorded at the

El Centro Array #5 station shown in Figure 7. At approximately 5.5 s, the velocity history dis-

plays a distinct fluctuation which is distinguishable in the acceleration history. Figure 23 plots the

first 10 seconds of the El Centro Array #5 station record, and it can be observed that the local fluc-

tuation BCDEFGH is nothing more than a type-C1 pulse with approximate period  s and

an approximate acceleration amplitude , which is twice the value of the

acceleration amplitude  of the long duration pulse AIZ.
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Consider now a set of geometrically similar blocks with slenderness , and various sizes, R, sub-

jected to the El Centro Array #5 acceleration shown in Figure 23. Within the limitations of the

proposed approximate analysis, equation (7.1) indicates that any block with p such that

(9.1)

will overturn due to the type C1 pulse BCDEFGH. After rearranging terms equation (9.1) gives

. (9.2)

Accordingly, blocks which are small enough such that inequality (9.2) is satisfied will be over-

turned by the short duration type-C1 pulse. Larger blocks will survive the type C1 pulse

BCDEFGH, and will be subjected to the long duration pulse AIZ. According to equation (6.1),

any block with p such that

(9.3)

will overturn due to the type-B pulse AIZ. Rearranging terms inequality (9.3) gives

. (9.4)

The substitution of 

,  , (9.5)

and

,  , (9.6)

into equation (9.2) gives
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(9.7)

Consequently, blocks which are small enough to satisfy inequality (9.7) will overturn due to the

short period type-C1 pulse, whereas blocks of a size that satisfies

(9.8)

will overturn due to the long period type-B pulse. The cut-off frequency is the intersection of the

two lines defined by (9.7) and (9.8) when the equality sign is considered. For example, for the El

Centro Array #5 station record,  and . Figure 24 shows that blocks with  less

than 2 will overturn due to the short duration pulse, whereas blocks with  will overturn

due to the long-duration type-B pulse. This calculation indicates that the 0.5m x 1.5 m block with

p=2.157 rad/s will overturn due to the short type-C1 pulse of the El Centro Array #5 record since

rad/s and therefore , which is less than 2. Figure 25 (left)

plots the rocking response of the 0.5m x 1.5m block subjected to 122% level of the El Centro

Array #5 motion and the block does not overturn, whereas on the right, the block overturns for a

slightly higher acceleration level. The block clearly overturns due to the presence of the short

duration pulse. Figure 26 (top) plots the minimum overturning acceleration spectrum of the El

Centro Array #5 record as a function of , where rad/s is the pulse frequency

of the 3.2 second duration pulse. Indeed, the spectrum has a distinct jump at . This is

because, for values of , blocks overturn due to the presence of the short-period type-C1

pulse, whereas for values of  blocks overturn due to the long duration type-B pulse as

was predicted by Figure 24.

Figure 26 (bottom) plots the minimum overturning velocity spectrum of the El Centro Array

#5 record as a function of  where rad/s. For values of , overturn-

ing of blocks occurs due to the 3.2 s duration type-B pulse of the record, and the overturing veloc-

ity spectrum correlates with the overturning velocity spectrum of a type-B pulse which is plotted 

ωp

p
------ 6

µ
ap

αg
------- 1– 

 

k
-------------------------≤

ωp

p
------ 4

ap

αg
------- 1– 

 ≤

k 6≈ µ 2≈ ωp p⁄

ωp p⁄ 2>

ωp ωp
B

2π 3.2⁄= = ωp p⁄ 0.91=

ωp p⁄ ωp 2π 3.2⁄=

ωp p⁄ 2≈

ωp p⁄ 2<

ωp p⁄ 2>

ωp p⁄ ωp 2π 3.2⁄= ωp p⁄ 2>









with stars. For values of  overturning of blocks occurs due to the 0.4 s  duration type-C1

pulse of the record This explains the lack of correlation between the circles and the stars for

.

Figure 27 plots the first 10 seconds of the Sylmar station record shown in Figure 10. Because

the ground displacement undergoes nearly 2.5 cycles, this motion was approximated with a type-

C2 pulse with period Tp=2.3s. Figure 27, however, shows that, just prior to the 4th second of the

time history, there is a distinct fluctuation BCDEF that resembles a pulse type-B motion with

duration   and an acceleration amplitude, ,

which is three times the acceleration amplitude , of the long duration

pulse, AIZ. Consider again a set of geometrically similar blocks with slenderness α and various

sizes R, subjected to the Sylmar record. Within the limitations of the proposed approximate anal-

ysis, equation (6.1) indicates that any block with p that satisfies (9.4) will overturn due to the short

duration type-B pulse BCDEF. Larger blocks will survive the type-B pulse, BCDEF, and will be

subjected to the long duration type-C2 pulse, AIZ. Blocks with p such that 

(9.9)

will overturn due to this pulse.

The substitution of 

(9.10)

and

(9.11)

into equation (9.4) gives
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(9.12)

Consequently, blocks which are small enough that satisfy inequality (9.12) will overturn due to

the short period type-B pulse, whereas blocks with sizes that satisfy the inverse of (9.2)

(9.13)

will overturn due to the long period type-C pulse. The cut-off frequency is the intersection of the

two lines defined by (9.12) and (9.13) when the equality sign is considered. For the Sylmar

record,  and . Figure 28 shows that blocks with  less than 2.2 will overturn due

to the short duration type-B pules, whereas blocks with  will overturn due to the long

duration type-C2 pulse. As an example, from Figure 27 one concludes that the 0.5m x 1.5m block

with p=2.157rad/s will overturn due to the short duration type-B pulse of the Sylmar record, since

 rad/s and therefore , which is less than 2.2. 

The approximate analysis presented herein is implemented to provide an estimate of the level

of the Sylmar record that is needed to overturn the 0.5m x 1.5m block. In this case, where a short

duration pulse overrides a longer duration pulse, the situation is more complex. For instance, the

approximate equation (6.2) that provides the minimum overturning velocity cannot provide a

dependable estimate since the block has most likely a non-zero velocity when the BCDE type-B

pulse strikes. Accordingly, we can only use the approximate expressions for the overturning accel-

eration. The duration of the type-B pulse is  , and therefore, for the

0.5m x 1.5m block (p=2.157), . Equation (6.1) indicates that the overturning accel-

eration of a type-B pulse is . On the other hand, the accelera-

tion associated with the type-B pulse in the Sylmar record is .

Consequently, the estimated level of the Sylmar record that will overturn the 0.5m x 1.5m block is

.
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Figure 29 (left) plots the rocking response of the 0.5m x 1.5m block subjected to 116% level

of the Sylmar record and the block does not overturn, whereas on the right, the block overturns for

a slightly higher acceleration level. The block clearly overturns due to the presence of the short

duration type-B pulse. However, the level of the Sylmar record that is needed to overturn the

block is only 117%, which is less than the 177% predicted with the approximate method. It is

worth noting, however, that the rocking response of the block is strongly nonlinear since at 116%

the maximum rotation of the block is less than half the critical value. Figure 30 (top) plots the

minimum overturning acceleration spectrum of the Sylmar record as a function of , where

 is the pulse frequency of the 2.3 sec duration type-C2 pulse. The spectrum has a dis-

tinct jump at , which is the value of the cut-off frequency predicted by Figure 28. Fig-

ure 30 (bottom) plots the minimum overturning velocity spectrum of the Sylmar record as a

function of  together with the velocity spectrum of a type-C2 pulse (stars). The two spectra

correlate for , since blocks with  overturn due to the type-B pulse and not

the type-C2 pulse. The foregoing analysis shows that the overturning of rigid blocks for strong

ground motions is a problem with several scales. Small blocks overturn from small duration

pulses with high accelerations. Larger blocks overturn from larger duration pulses that might have

smaller acceleration values. The two foregoing examples illustrate that blocks as big as a typical

transformer  overturn due to pulses that have substantially shorter duration than the

duration of the main pulse that generates most of the ground velocity and ground displacements

recorded near the source of strong ground motions.

The developed methodology is now used to estimate the level of the fault parallel component

of the Lucerne Valley record shown in Figure 6 that is needed to overturn the 0.5m x1.5m block

(p=2.157, α=0.3217). Figure 31 zooms into the Lucerne Valley motion between 5 secs and 15

secs. On top of the 7.0 sec duration forward pulse (AZ) one can distinguish a type-C2 pulse that

crosses the AZ forward pulse at points BCDEFG. This type-C2 pulse has an approximate period

of  and a velocity amplitude of . The peak ground acceleration of the

Lucerne Valley record occurs at . This sharp spike is due to a short type-B pulse with 
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duration . The characteristics of these three pulses together with the values of their min-

imum overturning acceleration amplitudes, , that were computed with equations (5.1), (6.1),

and (7.1) are summarized in Table 9.1. According to the approximate equations (5.1), (6.1), and

(7.1), the 0.5m x 1.5m block will overturn due to the long type-A pulse when subjected to 15

times its level; it will overturn due to the medium type-C2 pulse when subjected to 4.5 its level;

and it will overturn due to the short type-B pulse when subjected to 2.99 times its level.

Figure 32 shows that the 0.5m x 1.5 m block that resembles the size of an electrical transformer

(see Table 2.1) overturns at a 2.74 level of the Lucerne Valley record, a value that is remarkably

close to the 2.99 level that was computed with hand calculations.

TABLE 9.1. Characteristics of three distinct pulses of the Lucerne Valley record and their levels needed to 
overturn the 0.5m x 1.5m block (p=2.157, α=0.3217)

Pulse Type\
Pulse Characteristic

Long Pulse Type-A Medium Pulse Type-C2 Short Pulse Type-B

0.50 0.18 0.133

7.0 1.14 0.20

0.90 5.51 31.41

0.032 0.101 0.500

0.417 2.555 14.56

0.071 0.314 1.55

=1.07 =1.426 =4.64

15 4.5 2.99
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9.1  Outline of the Proposed Procedure

The outline of the proposed procedure to estimate the level of a given ground motion that is

needed to overturn a piece of electrical equipment, with a given slenderness, α, and frequency

parameter, p, is offered below:

1. Locate the time, in the record, of the peak ground acceleration, . For instance, in the Luc-

erne Valley record, shown in Figure 31, the maximum acceleration, , occurs at approxi-

mately t=11.5 s.

2. Zoom into the velocity record near the time of the peak ground acceleration, , and identify 

the type and period, Tp, of the local pulse that results into the peak ground acceleration. Esti-
mate the velocity amplitude, vp, of the local pulse. The estimated values of Tp and vp should 

satisfy  (for instance, in the Lucerne Valley record, shown in Figure 31, the 

local pulse is of type-B, and its period is approximately ).

3. Compute the minimum overturning acceleration  where  

for type A or Cn pulses, and  for a type B pulse.

4. Compute the ratio . This ratio gives the approximate level of the ground motion that 

will overturn a block with slenderness α and frequency parameter p. In the Lucerne Valley 
record shown in Figure 31 .

5. In case that the velocity or displacement history exhibit a distinguishable long duration pulse, 
identify the velocity amplitude, vp, and the duration Tp, of this pulse. Then, compute the corre-

sponding acceleration of this pulse as .

6. Compute the minimum overturning acceleration, , of this pulse as in step 3.

7. Repeat step 4 using the value  estimated in step 5 and the value of  computed in step 6. 

If the ratio  that was computed in step 7 is larger than the ratio computed in step 4, the 

block overturns due to the short duration pulse for the level of the ground motion computed in 
step 4. In contrast, if the ratio  computed in step 7 is smaller than the one computed in 

step 4, the block overturns due to the long duration pulse and for the level of the ground motion 
computed in step 7.

This study indicates that electrical transformers with approximate values of slenderness α, and

frequency parameter p, like those shown in Table 2.1, will most likely overturn due to the short

duration pulse. Accordingly, only steps 1 through 4 are needed to estimate the level of the ground
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motion that will overturn a typical electrical transformer. Only very large objects, such as nuclear

heat-exchange boilers, that their frequency parameter value is less than one , may overturn

due to the presence of the long duration pulses. Thus, steps 5 to 7 should also be included in the

procedure.

p 1≤( )



CHAPTER 10

CONCLUSIONS

The transient rocking response of electrical transformers subjected to horizontal trigonometric

pulses and near source ground motion has been investigated in depth. First it was shown that the

solution presented by Housner (1963) for the minimum acceleration amplitude of a half-sine pulse

that is needed to overturn a rigid block is unconservative. In reality, under a half-sine pulse a block

overturns during its free-vibration regime and not at the instant that the pulse expires. Within the

limits of the linear approximation, the correct expression that yields the minimum acceleration

required to overturn a block was derived.

Physically realizable trigonometric pulses have been introduced, and their resemblance to

select recorded near-source ground motions was illustrated. The overturning potential of forward

pulses, forward-and-back pulses, and pulses that result in displacement histories with one or two

main cycles was examined. Under horizontal excitation, the three parameters that control over-

turning are the normalized pulse acceleration , the frequency ratio , and the slender-

ness α. It was found that, at the low frequency limit , the normalized overturning

acceleration amplitude of the pulse, , is larger than one and increases linearly with

. For values of , the normalized overturning acceleration amplitude increases

non-linearly with , exhibiting a stiffening effect. Accordingly, the static solution (West’s

formula) is increasingly over-conservative as  increases.

The toppling of smaller blocks is more sensitive to the peak ground acceleration, whereas the

toppling of larger blocks depends on the incremental ground velocity. A simple method that

involves hand calculations was developed to estimate the level of a recorded ground motion that is

needed to overturn a given block. It was found that blocks as big as typical electric transformers

 overturn due to short-duration, high-acceleration pulses that often override the main long-

duration pulse that generates most of the ground velocity and ground displacement recorded near

the source of strong ground motions. Accordingly, near source ground motions do not bear any

exceptional overturning potential for electrical transformers. In contrast, larger objects such as
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nuclear heat-exchange boilers  will overturn due to the long duration pulse. For these

larger objects, long-period ground motions might be particularly destructive.

Under realistic conditions, the rocking response of a rigid block is affected by additional fac-

tors such as the vertical component of the ground acceleration and the additional energy loss due

to plastic deformations at the pivot points. The effects of these factors are the subject of a future

study. This study shows that the overturning potential of a recorded ground motion depends both

on the duration and the acceleration level of its pulses.

The presented approximate method, although restricted to horizontal seismic excitations, elu-

cidates the rocking response of electrical equipment which is found to be quite ordered and pre-

dictable.
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