Database of Seismic Parameters of Equipment in Substations

Dennis K. Ostrom, Consultant

PEER Lifelines Task 413 Final Report Pacific Earthquake Engineering Research Center College of Engineering University of California, Berkeley

July 2004

ABSTRACT

This report documents a modular GIS-based risk/reliability modeling capability. This report identifies the needed parameters for a seismic vulnerability assessment of electric substation equipment and develops and documents a comprehensive procedure for compiling seismic performance parameters. The procedure addresses substation layout and substation components, photo taking, slack estimation, and parameter recording and documentation. Finally, this report conducts a pilot integration of data from a number of hypothetical substations resulting in a network performance assessment as an illustration of how data collected are used to conduct and System Earthquake Risk Assessment (SERA).

ACKNOWLEDGMENTS

This work was supported primarily by the Earthquake Engineering Research Centers Program of the National Science Foundation under award number EEC-9701568 through the Pacific Earthquake Engineering Research Center (PEER).

Any opinions, findings, and conclusion or recommendations expressed in this material are those of the author(s) and do not necessarily reflect those of the National Science Foundation.

The author would like to acknowledge the important contributors who along with the author really developed, provided information, insight and collaboration, and broke standard industry barriers in communication to cause, in what was really a grand-team effort, SERA to be able to form and be utilized. These individuals are: Ed Matsuda of Bay Area Rapid Transit, Woody Savage of United States Geological Survey (both formerly with Pacific Gas and Electric), Ron Tognazzini of Los Angeles Department of Water and Power, and Jim Kennedy (now deceased) of Southern California Edison.

CONTENTS

ABSTRACT	iii
ACKNOWLEDGEMENTS	iv
TABLE OF CONTANTS	v
LIST OF FIGURES	vii
LIST OF TABLES	ix
1 - Introduction	3
2 - Procedure for collecting Seismic Parameters of Substation Equipment	5
3 - Characteristics of the Database and defining the Contents of Each Data Field	12
4 - Hypothetical Substation Example	21
5 – Summary and Conclusions	28
Appendix 1 - Conductor Slack Template	29
Appendix 2 - Performance Function Database	39
Appendix 3 - Hypothetical Network Database	45
Appendix 4 - System Function Level Configuration 1 SERA Output	55
Appendix 5 - Component Function Level Configuration #1 SERA	59

LIST OF FIGURES

Fig. 2.1	Common One-line Schemes for Substations9
Fig. 2.2	Blank Template of a Double Bus Double Breaker Position and Breaker and a
	Half Position
Fig. 2.3	Blank Template of a Transformer Bank 11
Fig. 2.4	Blank Template of Miscellaneous 11
Fig. 4-1	Hypothetical System Single Line Drawing29
Fig. A1.1	Horizontal - 15, Vertical - 0, Slack - 0 30
Fig. A1.2	Horizontal – 15, Vertical – 0, slack – 1 inch
Fig. A1.3	Horizontal – 15, Vertical – 0, slack – 2 inches
Fig. A1.4	Horizontal – 15, Vertical – 0, slack – 3 inches
Fig. A1.5	Horizontal – 15, Vertical – 0, slack – 4 inches
Fig. A1.6	Horizontal – 15, Vertical – 0, slack – 5 inches
Fig. A1.7	Horizontal – 15, Vertical – 0, slack – 6 inches
Fig. A1.8	Horizontal – 15, Vertical – 0, slack – 9 inches
Fig. A1.9	Horizontal – ~15, Vertical – 3, slack – 0 inches
Fig. A1.10)– Horizontal – ~15, Vertical – 3, slack – 1 inches
Fig. A1.11	Horizontal – ~15, Vertical – 3, slack – 2 inches
Fig. A1.12	2 Horizontal – ~15, Vertical – 3, slack – 3 inches
Fig. A1.13	3 Horizontal – ~15, Vertical – 3, slack – 4 inches
Fig. A1.14	4 Horizontal – ~15, Vertical – 3, slack – 5 inches
Fig. A1.15	5 Horizontal – ~15, Vertical – 3, slack – 6 inches
Fig. A1.16	5 Horizontal – ~15, Vertical – 3, slack – 9 inches

LIST OF TABLES

Table 2.1	Parameters to be gathered for each equipment ¹ (220kV or greater)	8
Table 3-1	Explanation of Component Performance Function Data	17
Table 3.3	Explanation of Substation Component Parameter Data	19
Table 4.1	Transformer and Line capacities in Hypothetical Electrical System	22
Table 4.2	Substations Latitude and Longitude	22
Table 4.3	Explanation of Appendix 4 data	24
Table 4.4	Explanation of Appendix 5 Data	

1 Introduction

The PEER Lifelines Program is in progress of developing a practical analytical model/process for the seismic risk analysis of large electric transmission systems. The goal of this project is to develop and demonstrate a modular GIS-based risk/reliability modeling capability currently called SERA (for System Earthquake Risk Assessment). SERA has been and can be used to evaluate seismic risks to as-built lifeline systems with no seismic improvements or evaluate seismic risks to modified lifeline systems with physical and/or operational seismic improvements now included. This information can guide decision-makers as they assess then select seismic improvement programs that limit risks to their system to acceptable levels.

Electrical substations consist of many pieces of equipment that are vulnerable to earthquakes. Vulnerability depends on a variety of parameters including equipment type, voltage, manufacturer, seismic design criteria, installation and anchorage details, foundations and soil conditions, and connection to other equipment. In order to be able to make the most accurate and standardized estimates of potential losses in earthquakes and to set priorities for equipment upgrades and replacements, the most accurate database of the relevant seismicperformance parameters of substation equipment is needed. In this project, a comprehensive procedure for compiling seismic performance parameters is described.

A lot of attention is paid toward accuracy of results in developing and evaluating this SERA process. The rationale is that more accurate models can provide more accurate results. Utility personnel, while looking for accuracy, should understand that a SERA, as described in this paper, provides way of integrating the fragmented data and intuitions about a utility system with complex seismicity/attenuation and local effect models. Having done this, they may be better able to obtain a picture of the implications to an electric utility system of some future earthquake. With or without a SERA, as described in this paper, if the risk to a utility is perceived as too high, mitigation programs in response to the utility's earthquake hazard must be made. Therefore, a more realistic way to view a SERA is as a rational way to best assess the system performance in terms of the best information at hand rather than as a way to provide an accurate prediction of the utility's system performance to a future earthquake. This way of

viewing a SERA should lead to a more appropriate appreciation for the results coming from such a study.

This report:

Identifies the needed parameters for a seismic vulnerability assessment of electric substation equipment (Chapter 2)

• Develops and documents a comprehensive procedure for compiling seismic performance parameters. The procedure addresses substation layout and substation components, photo taking, slack estimation, and parameter recording and documentation (**Chapter 3**).

• Conducts a pilot integration of data from a number of hypothetical substations into a network performance model as an illustration of how data collected are used to conduct a System Earthquake Risk Assessment (SERA) (Chapter 4).

This project is unique in that it develops a generic data collection procedure for electric utility substations. The Report builds on experience from similar data collected at Southern California Edison facilities in the early and late 1990's.

2 Procedure for collecting Seismic Parameters of Substation Equipment

Models of the earthquake hazard and the electrical system must be developed when conducting a System Earthquake Risk Assessment (SERA). It was determined earlier during this PEER Task 413 that, for the purposes of this Report, the high voltage (220kV and up) transmission substation equipment will be the equipment represented in the electrical system model. This was decided because of the historic vulnerability of these classes of equipment, the impact of their failure on the system and the length of time it takes to restore them back to service. Table 2.1 shows the equipment that are modeled in a SERA along with the type of data that should be gathered for each equipment. Other equipment data that could have been collected are: telecommunication components, transmission towers, low voltage station control components, civil structures, lower voltage switchgear and lower voltage transformers.

The *electrical system model* does not have the classical engineer meaning such as a finite element model. In a SERA, the *electrical system model* is the sum of the descriptions of the equipment that make up the system. The information in each equipment description (See Table 2.1) includes: the equipment's presence, the type of equipment (column 1), for some equipment types certain aspects of the equipment's installation (column 3 & 5), the conductor slack between adjoining equipment (column 4) and each equipment's location within the substation and ultimately the electrical system (column 2). The three general categories of electrical equipment are Position (corresponding to switchrack positions), Bank (corresponding to transformer banks) and Misc. (everything else, e.g. equipment not in positions or banks). Information about the performance of each equipment during past earthquakes is contained in another data set.

There are 6 general types of station configurations, see Figure 2.1. A station switchyard may contain more than one configuration, e.g. breaker-and-one-half and double-bus-double-breaker. The current SERA can handle breaker-and-one-half, double-bus-double-breaker, and Single-bus configurations.

A critical step in any effort to model a utility system is the gathering of accurate site and component data. Each site is made up of components that are installed in a unique arrangement and separated with conductors having varying amounts of slack. Some data can be obtained in company inventory data sets (power transformer and circuit breaker types and positions), but the majority of the data needs to be collected in the field. Data available in the office may provide component type, location, electrical connectivity and cost (model and serial number for circuit breakers and transformers). The office copy of the dispatcher single line diagram will provide information on system connectivity and completeness of the system represented. Unfortunately, even for this basic information, the office data may not be up-to-date. Details such as equipment anchorage, component interaction (conductor sag and collateral damage potential) information, transformer radiator type and other installation information must be determined in the field along with actual system and component connectivity. Equipment other than disconnect switches, circuit breakers and transformers can be identified in electrical single line diagrams, but is it easier to document them while in the field. Except for transformers, anchorage has not been considered in the risk analysis, although the occasions of poor anchorage for any equipment should be noted for further evaluation. Except for transformers or transformer-like components (reactors, etc.), anchorage has not been an issue.

Data gathering should be systematic and information should be recorded, either with pen or pencil on a note pad or electronically on a Personnel Data Assistant. Station templates, if desired, can be developed from dispatcher single lines. Figure 2.2 "Blank Template of a Double Bus Double Breaker Position and Breaker and a Half Position" is a template for recording data of equipment in station switchyard positions. Figure 2.3 "Blank Template of a Transformer Bank" is a template for recording data of power transformer banks. Figure 5 'Blank Template of MISC Equipment" is a template for recording data of all other equipment. Generally, equipment types and slack (or available relative displacement capacity) need to be recorded. The order in which the component data is recorded and the location of the recording in the data file determine the component's location in the electrical system. System or dispatcher single line diagrams may not include all equipment that are present. Generally only disconnect switches (gate), circuit breaker (box) and transformers are shown. The data gatherer must therefore add those components that are not included in these single line diagrams to the data recorder while in the field with special care given to connectivity.

Positions should be documented by first recording all equipment/components and slack in their serial order (moving north to south while recording the data on the west side of the position, for example). This is aided by following the template. Having traversed the position, the data recorder reviews the same position while moving in the opposite direction, e.g. noting anchorages or other observations and verifying slack (moving south to north on the east side of the position). Phasing should be consistent with the direction positions are documented, starting with lowest position number and progressing to the highest position number or with the system scheme if noted in the field. Phasing can usually be determined in the field, e.g. where there are single-phase transformers or line taps and their phases are identified. Based on inspection of the station one-line drawing templates are developed for each position. Developing templates in the office saves time and minimizes data recording in the field. Templates are not absolutely necessary for data collection as data can be taken "on the fly" in the field. In this case, as with templates, time will be saved if data is taken in a consistent manner and in the format of the assessment software to be used.

Position and Misc. equipment are documented by recording, first their proper acronym symbol, for example, CB is for circuit breakers, DS is for disconnect switches, etc. The equipment type is then recorded as a number that is consistent with that same equipment type in the performance data file and lastly, the equipment slack (with the next to be documented equipment) information is recorded. If the equipment is a 230kV disconnect switch with no seismic design (type) and has 6 inches of slack in each phase with the next component it will be recorded as DS1333 (see Chapter 3 for a detailed explanation).

There are more issues to consider for a transformer than for any other equipment. This is due to the many vulnerable components and appendages that are mounted on or near-by a transformer that can, upon failure, cause the transformer to malfunction.

Blank Bank templates should be brought to the substation. One template is used for each transformer tank. That is, one template is used for a three phase transformer bank and three templates are used for a bank made up of three single-phase transformers.

Surge Arresters (SA) can be mounted on either a transformer or civil structure. If the SA

is mounted over the transformer, collateral damage to the transformer resulting from SA failure must be considered. To do this, visualize a pie with SA at center then visualize what portion of the pie represents the SA impacting the transformer. This portion relative to the whole circle is an estimate of the ratio of fail paths hitting transformer to total. Limited training can help the data gatherer include the pull effect of the conductor in this estimate.

Radiators are another type of attached component of the transformer that have failed in previous earthquakes. Transformer radiators that have failed in past earthquakes have generally not had any seismic or shipping bracing. After it has been determined that there is no seismic or shipping bracing/supports in the horizontal or vertical direction, the data gatherer must estimate radiator strength. He does this by first determining whether the radiators are manifold or directly attached to the transformer tank and how flexible (low frequency) the radiator is. Radiators directly attached to the transformer tank and radiators with frequencies below 3 Hz. should be considered most vulnerable.

Components in the MISC category are the components that cannot be assigned a unique position or Bank. Capacitors, reactors and potential transformers are included in this category. For these equipment, it is only necessary to identify the components station designation (e.g. 'north bus potential transformer"), component type and slack. MISC equipment are recorded in the same manner as POSITION equipment.

There is no easy way to precisely measure flexible or rigid conductor slack (excess conductor). This is particularly true if the system is energized. Conductor slack can be estimated. Estimations can be greatly enhanced with the aid of templates. Appendix 1 – "Conductor Slack Template (15ft)" provides a flexible conductor slack estimation template for 15-ft equipment separation and two different equipment relative elevations (0 ft and 3 ft). Rigid bus can be estimated in a similar manner as flexible bus, which is by using templates. The data gatherer can estimate slack values, in a timely manner, using slack templates.

When practical, pictures of all components and notable details should be taken. Additional equipment documentation including station location and example photos should be developed. Station location of components can be documented via a station plot plan or photo from the air. Photos taken during data collection should include a panoramic photo(s) of the substation. A minimum of two photos (different angles) and anchorage detail should be taken for each transformer as well as two photos for each typical type of circuit breaker and disconnect switch (one to show the component and the other to show the anchorage).

Finally, a 30-40 minute digital video walk through of each substation should be developed. This video should trace the data-gathering route through the substation viewing each component during the walk through. An audio description of each component should be included.

Example data sets are described in Chapters 3 and 4. Station data, when formatted properly, can be entered directly into a computer program (e.g. SERA – as last used by Southern California Edison). Once in a SERA program, the system data will be integrated with each station's shaking amplitude (for each scenario) and the past earthquake performance of the components using a Monte Carlo simulation approach.

<u>Component</u>	Location	<u>Anch².</u>	Slack ³	other
Transformer (TR)	BANK	YES	YES	surge arrester, collateral damage,
Circuit breaker (CB)	POSITION	NO, note ⁴	YES	radiator strength
Surge arrester (SA)	POSITION	ŇO	YES	component or
	or BANK	No	V/50	structural mounted°
Disconnect switch (DS)	POSITION	NO	YES	structure elevation &
Coupling capacitor voltage transformer (CCVT)	POSITION	NO	YES	structure mounted, or suspended ⁶
Current transformer (CT)	POSITION	NO	YES	
Potential transformer (PT)	MISC	NO	YES	structure mounted or suspended ⁶
Wave trap (WT)	POSITION	NO	YES	structure mounted or suspended ⁶
Capacitors (CAP)	MISC	NO	YES	
Reactors (RTR)	BANK	YES	YES	power only
Bus (BS)	MISC	NO	YES	rigid only
Post insulator (PI)	POSITION	NO	YES	
Motor disconnect switch (MDS)	POSITION	NO	YES	
Jack bus (JB)	MISC	NO	NO	post insulators only

Table 2.1 – parameters to be gathered for each equipment¹ (220kV or greater).

1 – [when possible] Picture, Manufacturer, Serial #, Station ID

2 – if yes, estimate capacity, take picture and draw a sketch

3 – if yes, estimate slack for each phase
4 – take photo or sketch if seems deficient.

5 - same Performance Function (see Chapter 3)

6 – a different Performance Function for each configuration (see Chapter 3)

Figure 2.1 – Common One-line Schemes for Substations

SUBSTA	TION (date_)
(Double Bus Double Breaker #,POSITION,220,#;	<u>position)</u>		
P,CB_Station ID,BS#	,DS#	,CB#	,DS#;
L,line Destination,CC#	,WT#	,DS#	_,DS#;
P,CB_Station ID,DS#	,CB#	,DS#	,BS#;
(Breaker and a half Position) #,POSITION,220,#	.>		
P,CB_Station ID,BS#	,DS#	,CB#	,DS#;
L, line Destination,CC#	,WT#	,DS#	,DS#;
P,CB_Station ID,DS#	,CB#	,DS#;	
L, line Destination,CC#	,WT#	,DS#	_,DS#;
P,CB Station ID,DS#	,CB#	,DS#	,BS#;

Figure 2.2 - Blank Template of a Double Bus Double Breaker Position and Breaker and a Half Position

Bank				
Substation	_ Date			
Manuf	_Serial#		WT	
Bank#PHH	PH (if single)	Hi side	Lo	side
Anchorage Notes				
Radiator - EQ Bracing - None	Vert	Horz		
Notes				
Surge Arrester notes				
High Side (X) – Trans Mount_	Pole Mount	Frame M	lount	Dist
Low Site (X) - Trans Mount	Pole Mount	Frame M	ount	Dist
Tertiery SA	_Jack Bus			
Ratings				
Transformer Anchorage	Radiator Brac	cing 12	3	45
High Side Fail Path A	_BC	_		
Low Side Fail Path A	_BC	_		
High Side Slack w/SA A	_BC	w/Bush A	B	_C
Low Side Slack W/SA A	_BC	w/Bush A	B	_C
Tertiary Bush slack w/frame A-	B-	Ċ-		

Figure 2.3 - Blank Template of a Transformer Bank

MISC

Station ID, PT#	
Line Destination, CP#	
Line Destination, RE#	

Figure 2.4 – Blank Template of Miscellaneous Equipment

3 Characteristics of the Database and defining the Contents of Each Data Field

Models of the earthquake hazard and the electrical system must be developed when conducting a System Earthquake Risk Assessment (SERA). It has been determined earlier during this PEER Task 413 that, for the purposes of this report, the high voltage (220kV and up) transmission substation equipment will be the equipment represented in the electrical system model. This chapter provides the characteristics of the database and defines the contents of each data field. The database consists of two files. The first file (Appendix 2) contains the data that reflects the author's best assessment of the performance (Performance Functions) of each component type during past earthquakes and the second file contains the data that describes each component in a hypothetical substation. An explanation of both data sets is given in this chapter. The example in Chapter 4 uses the two files presented in this chapter.

Performance Functions are used in a SERA analysis to provide the information needed for forecasting a component's performance during an earthquake. The type of function used is of a statistical nature and was first used because it allowed the easiest interpretation of experts' experience. The relationship is in the form of an asymmetric bell curve with a lower "g" cut-off.

In these performance functions, several failure modes can be considered. The performance functions are documented using two variables, the likelihood/history of failure and ground motion intensity.

Each failure mode is expressed as a continuous relationship of probability of failure vs. earthquake shaking intensity (peak ground acceleration in units of "g"). Estimates of failure outside of experience are extrapolated by means of "normal curve relationship" beyond experienced shaking intensity levels. Experience data on each component varies in terms of quantity and quality. Usually the more data there are (earthquakes, utilities, multiple locations, and shaking amplitudes and duration) the more confidence one can have with the resulting performance function. Table 3.1 shows the different means by which failure performance

functions are determined along with Pros and Cons. No attempt has been made to rate the absolute or relative confidence of each component performance function or failure mode.

The determination of each performance function relationship curve is simple. First an acceleration is determined/judged for a 16% failure rate (16% fail and 84% don't fail). Next, the acceleration for a 50% failure rate (half fail and half don't fail) is determined/judged. Next, the acceleration for an 84% failure rate (84% fail and 16% don't fail) is determined/judged. Lastly, the acceleration for a zero failure rate is determined/judged. A bell shaped curve (not necessarily symmetrical) is used to connect the four acceleration amplitudes.

There are two types of failure modes, dependent and independent. For the transformer, each known failure mode is assumed independent of the others and has a set of parameters that are used to forecast the component's performance. For all other equipment, the failure modes are dependent. That is, at the first failure mode occurring, the balance of the failure modes is assumed to occur also (because of the ordering of the failure modes, the occurrence of a given failure mode automatically leads to the occurrence of the succeeding modes). For example, if the first failure mode does not occur, but the second does, then the second as well as the succeeding (3rd, 4th, etc) modes are assumed to occur. The performance function of transformers for certain failure modes are similar across all transformers and those are contained in the Performance Functions data file (e.g. porcelain failures). These failure modes are based on the transformer's type. Others parameters upon which failure modes are based and that are unique to each transformer are generally based on the transformer's installation details that are recorded in the substation component data file (e.g. anchorage and radiator details and strength). Performance function failure modes are listed in the order of severity, with the most severe failure modes listed first (e.g. (2 insulators fail, 1 insulator failures, contacts burn).

There is no provision for "common cause" types or causes of failure That is, at one extreme, the data may represent situations where all components failed at a certain location experiencing an acceleration level and at another location no components failed at the same acceleration level. In the current failure functions these two experiences would have been placed in the data and the performance averaged. Common causes that may arise that may bias a component to perform differently from one location to another are, installation practices, soil differences between substations, differences in earthquakes, and differences in equipment that

aren't considered in this evaluation. There are cases in the data set where equipment types within an equipment class (e.g. disconnect switches and /or maker and mechanism or other significant differences are ambiguous. The implication of all this is that identical equipment may be represented differently and very different equipment may be represented as the same. It is the purpose of the current work by PEER on performance functions to sort out causes of failure that are not due to component vulnerabilities and include differences between components that are significant.

Table 3-2 provides a description of the data in the Component Performance Functions file. Table 3.2 provides an excerpt and accompanying explanation from the Component Performance Data Base file, Appendix 2. The line numbers on the left have been inserted to help in the referencing. Refer to the numbered lines when reading explanations of the file lines.

This report presents an inventory recording scheme that matches the actual physical installation. The substation single line diagram location and identification scheme is central to the data documentation. One beneficial byproduct of this approach is that it is intuitive to utility personnel that will be brought in to aid in the risk evaluation process. The data of a typical (large) bulk power switching station can be developed within a day or two on site.

The recording of a hypothetical "double breaker" and a "breaker and a half" position, transformer banks and Potential Transformer shown in Figure 3.1 is given with detailed explanation in Table 3.3. The line numbers on the left have been inserted to help in the referencing.

Table 3-1 – Methods to Determine Equipment Performance Function	IS
---	----

Method	More detailed	Pros	Cons
	description.		
	Component fragility		
	is based on:	1 11	
Estimate	judgement with little	1. much better than nothing	1. low to high confidence,
	or no experience data	3. inexpensive	2. may miss failure mode
Informed	Judgement with a lot	1. relatively accurate,	1. data doesn't exist for most
Estimates	of experience data,	2. high user confidence,	equipment,
	but data still has	3. mounting conditions are	2. user may apply
	significant gaps	<i>A</i> relatively inexpensive	a low math confidence
		4. relatively mexpensive	5. low main confidence
Statistics	statistics of	1. accurate	1. sufficient data doesn't exist
	components	2. high user and math	for any equipment
	performances to	confidence	
	many earthquakes of	3. mounting conditions	
	installation details	4 relatively inexpensive	
Analysis	detailed analysis of	1. flexible. can evaluate to	1. model may be inaccurate or
j	component with	many loading and	incomplete
	various mountings to	installation and mounting	2. low to high confidence
	various motions	conditions	
		2. can be relatively	
<u> </u>	1 1 1	inexpensive	
Shipping	loading that	1. shipping loads may	1. some equipment may be
	while being shipped	2 actual test of equipment	nackaged for shipment
	while being shipped	3 inexpensive	2 there is little or no shaking
		4. high confidence	data
			3. problems duplicating
			installation and mounting
			conditions
			4. loading not controllable
			5. insufficient data for any one
			component to provide high math
			6 component not taken to
			failure
			underestimates fragility.
			······································

Table 3-1 – Methods to	Determine Equipment	Performance	Functions	(continued)
------------------------	---------------------	-------------	-----------	-------------

Qualificati on testing	qualification testing of component to IEEE 693 or other standard	 lots of data exists (many components tested) and more being generated, actual shaking of component and all failure modes considered. high user confidence 	 inadequate low frequency content in table motion, some equipment can't be tested, problems duplicating installation and mounting conditions. expensive, insufficient data for any one component to provide high math confidence, component not taken to failure, underestimates fragility
Fragility testing	testing of one our more components to failure	 component shaken to failure, actual shaking of component, all failure modes considered, high user confidence 	 inadequate low frequency content in motion, some equipment can't be tested, problems duplicating installation and mounting conditions, very expensive insufficient data for any one component to provide high math confidence very little data exists

Table 3.2 – Explanation of Component Performance Function Data

1	NEWEQUIP98.DAT 8/31/99
2	DATA SET 1ST CARD - # TR, # LA, # CB, #CT, #DS, #CC, #PT, #PI, #WT, #PH
3	COMPONENT FAILURE MODES
4	1ST CARD - TYPE, #, DESCRIPTION, # FAIL MODES, SFREQ (HZ), STAU, SCREWT(HOURS)
5	REMAINING - FAILURE MODE DESCRIPTION, \$, MEAN G, -1 SIG, +1 SIG
6	DURATION SUSEPTABILITY, LOWEST G/1000 FOR DAMAGE,
7	FREQUENCY CPS, SSI VULNERABILITY, AND CREW TIME (DAYS)
8	8 8 16 8 8 8 8 8 2 1
9	TR 1 220kV TR 1 Phi 2 8 1.5 24
10	1 MAIN PORCELAIN BREAK 100 850 200 300 0 500 24 48
11	1 MAIN PORCLN GASKET LEAK 10 500 250 250 0 250 15 36
12	TR 2 220kV TR 3 Phi 6 8 1.5 24
13	3 MAIN PORCELAIN BREAKS 220 850 100 500 0 500 15 96
14	2 MAIN PORCELAIN BREAKS 160 850 200 400 0 350 15 72
15	1 MAIN PORCELAIN BREAK 100 850 300 300 0 200 15 48
16	3 MAIN PORCLN GASKET LEAKS 30 500 100 450 0 200 15 72
17	2 MAIN PORCLN GASKET LEAKS 20 500 200 350 0 200 15 54
18	1 MAIN PORCLN GASKET LEAK 10 500 300 250 0 200 15 36
19	CB 4 220KV GE ATB 4-6 3 4 1 72
20	2 PORCELAIN COLUMNS FAIL 250 350 150 150 2 100 5 80
21	1 PORCELAIN COLUMN FAILS 125 300 150 150 2 100 5 65
22	COLUMN BASE GASKET LEAK 30 250 150 100 2 75 5 30

Explanation

First 7 lines (1 - 7) are an explanation of the data to follow

line 1 - Data file name and last update

line 2 - list of components (explains that line 8 shows number of types for each component shown)

	TR - transformer	LA	- lightening (surge) arrester		
	CB - circuit breaker	СТ	- current transformer		
	DS - disconnect switch	CA -	Capacitors		
	CC - coupling capacitor voltage transformer				
	PT - potential transformer	ΡI	- post insulator		
	RE - reactor	WT	- wave trap		
	PH - pothead		1		
line 4 -	Explains what is shown in lines 9, 12, 19,				
	TYPE – component type, see above				
	# - sub component number				
	Description – verbal picture of component				
	# FAILURE MODES - number of failure modes				
	SFREQ – frequency of the mode most responsible for conductor point				
	movement (component swaying mode) For slack calculation.				
	STAU – ratio of height of component to conductor lead to height to component				
	center of gravity. For slack calculation.				
	SCREWT(HOURS) – time f hours.	for crev	v to repair damage due to insufficient slack in		
Line 5 -	Explains what is shown in li	nes 10.	11, 13		

FAILURE MODE DESCRIPTION – verbal picture of failure

Table 3.2 – Explanation of Component Performance Function Data (con't)

	 \$ - cost to repair failure MEAN G – peak accel. in gals at which 50% of like components fail 1 SIG – gals off of mean at which 16% of like components fail
Line 6	+ 1 SIG – gals plus mean at which 84% of like components fail
	DURATION SUSEPTABILITY – total elastic = 1.0 plastic > 1.0
	LOWEST G/1000 FOR DAMAGE – gal cutoff, below there is no damage
Line 7	continues from line 6
	FREQUENCY CPS – major frequency of failure mode
	SSI VULNERABILITY – factor showing additional susceptibility to damage due
	to soil structure interaction (not used)
	Crew Time(hours) – crew time in hours for repairing failure mode damage
Line 8	number of components of each component type shown in line 2
line 9 through	line 11 - performance data on first equipment
line 9	"TR" - equipment type
	"1" - sub component number designation (type of transformer)
" 220K	V TR 1 Phi" – equipment description (220kV" single phase transformer)
	"2" - number of failure modes
	"8" - component frequency when determining deflection in SAG
	"1 5" participation factor. Datio of conductor location motion to conter
	of mass motion
	"24" - time (hours) for crew to repair interaction damage
	24 time (nours) for erew to repair interaction damage
line 10 throu	gh line 11 – (one line and set of parameters for each failure mode)
"1 MA	IN PORCELAIN BREAK" - description of failure
"100" -	cost to repair failure in thousands of dollars
<u>"850" -</u>	mean failure rate in thousandths of g
"200" -	minus one standard deviation in thousandths of g
"300" -	· plus one standard deviation in thousandths of g
"0" -	- duration susceptibility ($0 = not$ susceptible)
"500" -	lowest g for onset of failure mode in thousandths of g
"15" -	predominant frequency for failure mode
"blank'	' - soil structure interaction vulnerability, not used
"24" -	crew hours to repair
line 12 through	1 = 18 - performance function for a three phase transformer.

Line 19 through line 22 – performance function for a live tank circuit breaker

New information can be added to the data file by simply editing the file making sure that when new equipment are added, line "8" is updated also.

Table 3.3 Explanation of Substation Component Parameter Data

- 0 @,Hypothetical Substation,3-16-02
- 1 #,POSITION,220,5;
- 2 P,5N-452N,BS1999,DS1333,CB01333,DS1;
- 3 L,Line 1-Bank 1A,DS1333,DS1333,CC1333;
- 4 P,5S-652S,DS1333,CB01333,DS1999,BS1;
- 5 #,POSITION,220,6;
- 6 P,6N-462N,BS1999,DS1333,CB01333,DS1;
- 7 L,Line 2-Sub B,DS1333,DS1333,CC1333,WT1SXX;
- 8 P,5T-562T,DS1333,CB01333,DS1;
- 9 L,Line 3-Sub A,DS1333,DS1333,SA1333;
- 10 P,4S-662S,DS1333,CB01333,DS1999,BS1;
- 11 #,BANK,1A,ID2,AN9,RAD4,RAD4;
- 12 A,DCSAH140,SABSH4;
- 13 B,DCSAH140,SABSH4;
- 14 C,DCSAH140,SABSH4;
- 15 #,MISC;
- 16 PTN1333,PTS1333;

Explanation

Line 0 - Generally, the "@" signals the substation whose data follows on the next line. The name of the Substation follows immediately after the "@". The substation name is followed by the date that the facility was investigated. Commas are used to separates all component information.

Lines 1 & 5 - After the line that starts with a "#,POSITION"..... information follows that describes the position components and station/system connectivity. The "#" signals that a new station function will be modeled. The switching positions models the circuit breakers and line taps. Also modeled are estimates of excess conductor between the components. After #POSITION is the position voltage in kilovolts and the position number.

Lines 2,4 & 6,8 &10 - If the line starts with a P, the second group of letters and numbers between commas describe the circuit breaker position, e.g. (see example line 2) 5N, or in dispatcher terminology 652 [6 – sub-position, 5 – position, 2 – sub-sub-position]¹. The balance of the line describes the components between the bus, BS and line tap and in the case of a breaker and a half position (Position 6), the line may also describe the components between two line taps. The components listed after a "P" are connected in series in the order of listing. The component ID number is the number in the third position, except in the case of a circuit breaker. In the case of the circuit breaker the ID number occupies the third and fourth position. The next three numbers represent slack (0 means no slack, 1 means 0+ to 2 inches of slack, 2 means 2+ inches to 4 inches of slack......). If there is an "X" that means there was no component in that phase.

¹ Looking at Figure 3.1 the Position is made up of the lines and components connecting the Buses. The Positions are numbered 5 & 6. The sub-positions are the two or three clusters of disconnect switches and circuit breakers and are numbered 6, 5 & 4. 5 is often referred to as the "tie position" [sub-position]. The sub-sub-positions are the disconnect switches and circuit breakers themselves and are numbered 1, 2, &3 [the circuit breaker is always #2].

Table 3.3 Substation Component Parameter Data Gathering and Recording (con't)

Lines 3, 7 & 9 - If the line starts with an L, the line describes the line tap and its connections. The second group of letters and numbers describes the destination of the power transmission line. The balance of the line describes the components that are either suspended form the line tap or are connected to the line tap. For those components listed, the component ID (identification) number is in the third position. If the spaces 4 through 6 are "S" or "X" then the component is suspended on the line tap, when an "S" is present there is a component on that phase and when there is an "X" is present there is no component on that phase. If spaces 4 through 6 are numbers, these numbers represent slack. If there is an "X", that means there was no component in that phase.

Line 11 - #BANK - transformer bank The bank position models the transformer, surge arrester and its connectivity. After #BANK is the bank position number. ID precedes the number designation of the transformer. PH precedes the number of phases in the transformer. AN precedes the estimated mean strength of the anchorage in g units times 10. RAD precedes the estimated mean threshold of damage in g units times 10 of each radiator.

Lines 12, 13 & 14 describe each transformer's phase's tap connectivity. The first letter is the phase or an "S" for spare. Then might follow:

DCSAH123 - which stands for Down Comer Surge Arrester High (220KV on a 220KV TR), Type - 1, Sag (between down comer and surge arrester) - 2 and likelihood of collateral damage if SA fails - 3 (divided by 10 or 30%). DCSAL123 - L stands for Low side (or 220KV on a 500KV TR) and the other numbers are as in above. SABSH1 - Surge Arrester Bushing High side, sage between SA and bushing - 1. SABSL1 - L stands for Low side TERT1 - Tertiary bus slack is 1

Line 15 - #MISC - misc. positions. The MISC position models everything else.

Line 16 - describes the M:ISC equipment installations. The first letters "PT" stands for Potential Transformer, N – north bus, 5 - ID number 6 - phase 1 slack (10 to 12 inches), 6 - phase 2 slack, and 6 - phase 3 slack

This data recording scheme is easily updated and can be field verified. The data identifies exactly where, in the substation, the data is representing and can be verified in the field by inspection and updated directly. This data set is also adaptable to the use of a PDA for data taking and verification.

4 Hypothetical Substation Example

This chapter presents an example of the current output of a SERA. Chapter 2 dealt with the details of data collected at a substation when conducting a SERA and Chapter 3 addressed the data sets that are necessary when documenting an electrical system and electrical component performance to past earthquakes. This Chapter integrates these two data sets into a SERA process and provides the reader with a sample output. It is important to distinguish between a SERA process, which is what the acronym suggests, i.e. System Earthquake Risk Assessment and SERA, the software. SERA the software conducts a SERA process. SERA, the software, was created and used at Southern California Edison and is free for the asking (from the author of this report), the potential user is cautioned however, in that considerable expertise is required in the use of SERA. SERA is not owned, managed, or licensed by Southern California Edison.

So far, in Chapters 2 and 3, we have addressed only aspects of an electrical system model. When a SERA is conducted, it is assumed that there is also a Hazard model and an electrical system to be evaluated. In this chapter, and for simplicity, the hazard will be assumed. The system will be a hypothetical electric system that contains issues of most real systems.

It was decided by PEER in conducting Project 413 that there existed a need to develop a hypothetical electrical system. Concerns about security and the current terrorist threats contributed to this. At the same time there existed a need for an electrical system to demonstrate technical tools for expressing system risk and for researchers to have a common system to compare results. The hypothetical layout was simplified geometrically by having a simple grid layout and a regular interconnection pattern. The system is large enough that motion attenuation is significant.

The first step in creating the hypothetical electrical system is to compile and document the attributes of equipment for all the substations of the hypothetical system. The transformer and Line capacities of the Hypothetical Electrical System are shown in Table 4.1. Table 4.2 shows the Hypothetical Systems substation geometrical layout. Figure 4.1 shows the hypothetical system single line diagram. Appendix 3 – System Physical Data is a data set

documenting each substation and substation equipment. The attributes used to describe each equipment are shown in Chapter 2. The equipment performance functions were presented in Chapter 3 along with the documentation scheme used.

Transformer Capacities

All 500kV, 1000mva All 230kV in Substations A and B, 250mva All 230kV in Substations C and D, 150mva

Line Capacities

All 500kV, 4000 amp continuous All 230kV to Substations A and B, 1000 amp continuous All 230kV other, 500 amp continuous

Table 4.1 – Transformer and Line capacities in Hypothetical Electrical System

Substation	latitude	longitude
Substation	latitude	Iongitude
SA1/SAA1	36	122
SA4/SAA4	36	121
SB1	35.6	121.8
SB2	35.6	121.6
SB3	35.6	121.4
SB4	35.6	121.2
SC1	35.3	121.8
SC2	35.3	121.6
SC3	35.3	121.4
SC4	35.3	121.2
SD1	35	121.8
SD2	35	121.6
SD3	35	121.4
SD4	35	121.2

Table 4.2 – Substations Latitude and Longitude

Two system configurations were run. One system configuration, Conf-#1, consisted of all components having generous amounts of slack and only live tank circuit breakers were considered. Configuration #2, Conf-#2, had a live tank circuit breaker in Substation A1, 230kV

yard at 412. In addition, Conf-#2 had insufficient slack in Substation A4 between Circuit breaker 412 and DS413. In both cases, substations A, B, C and D were shaken at .35g, .25g, .15g and .05g respectively. This represents a hypothetical earthquake north of the electrical system with the causative hypothetical fault running parallel to the system latitudes.

The results of a single run on SERA software to Conf-#1 are given in this report in Appendix 4 and 5. Appendix 4 shows the system function results of the single SERA run (see detailed explanation below) and Appendix 5 shows the component and system level results of the single SERA run (see detailed explanation below). The data of Appendix 4 and Appendix 5 are explained in Tables 4-3 and Table 4-4 respectively. The results in both Appendices are shown for each substation. Those that are intimately familiar with the system must make system operation interpretation. Load-flow analyses based on the results of the SERA runs could be made, however more information on system operation would be required. This information includes importance of various customers to utility and load and source profiles/potential at the time of earthquake and all times thereafter.

Both Appendices illustrate the disposition of the system after a single run on a single scenario. In order to use the evaluation with some confidence, as a minimum, multiple, at least 5 - 10, runs on the same earthquake should be conducted and reduced to a representative disposition. Conclusions about the system's performance to that one earthquake can be made. For example, approximate amounts of damage, to what types of components at what substations can be forecast for the earthquake used in the analyses. Also, after persons familiar with the operation of the system can review the system single-line with the open lines and transformation damage, assessments of system stability and of customer impact can be made. With this, the components that are needed for repair and the time to repair in order to return to desired levels of service can be compared to previous set goals of system performance to see whether those goals will likely be achieved.

Mitigation programs can benefit from this information in that those components that consistently fail and block achievement of system goals can be identified and a rational for their replacement or a strategy for the mitigation of the effects of their failure can be developed. Where some specific component failures cannot be demonstrated but significant numbers of

failures are shown to occur, estimates of repair times and spare part needs as well as vendor needs can be made. Generally hard position or bank strategies are necessary where there are certain lines or banks that must remain operational.

Table 4.3 Explanation of Appendix 4 data

1- TEST.OUT 2- -----15.00 0.30 0.40 2.00 3- *A1-AA1 4- POSITION 1, 220KV, IPOS = 3 7 0 0 5- POSITION 2, 220KV, IPOS = 3 7 0 33 6- SUBSTATION B1 LOST TO A1-AA1 7- POSITION 3, 220KV, IPOS = 3 33 0 0 8- POSITION 4, 220KV, IPOS = 3 0 0 7 9- POSITION 5, 220KV, IPOS = 5 40 7 1 0 0 10- BANK 1AA LOST TO A1-AA1 11- POSITION 1, 500KV, IPOS = 5 49 14 1 7 0 12- BANK 1AA LOST TO A1-AA1 13- BANK 2AA LOST TO A1-AA1 14- POSITION 2, 500KV, IPOS = 3 67 14 37 15- SOURCE 2 LOST TO A1-AA1 16- POSITION 3, 500KV, IPOS = 5 9 14 46 21 18 15- SOURCE 2 LOST TO A1-AA1 17- SOURCE 1 LOST TO A1-AA1 18- SUBSTATION AA4 LOST TO A1-AA1 19- BANK 2AA SA FAIL 20- BANK 2AA SA FAIL 21- BANK 2AA SA FAIL 22- -----23- *A4-AA4 15.00 0.30 0.40 2.00

Each line has been given a number, e.g. lines 1 - 23 will be addressed.

Line 1 – name of data set

Line 2 & 22 - line of dashes to set off each substation evaluated

Line 3 & 23 – Following the "*" is the Substation name. The four numbers that follow provide; distance from fault in KM, mean peak acceleration in g, mean plus one standard deviation peak acceleration in g, and the site coefficient for site amplification information(in the current version Table 4-1 Explanation of Appendix 4 data (continued)

of SERA, SCOEF is the UBC soil type designation).

- Lines 4, 5, 7, & 8 show that for 220kV switchyard positions 1, 2, 3 & 4 all have 3 sub-positions (switching or line tap) and the three following numbers show the crew hours needed for each sub-position to be returned to service. These positions are double breaker positions and consist of a disconnect, circuit breaker and another disconnect for sub-positions 1 and 3 and a line tap for sub-position 2.
- Line 6 reports that substation B1 is lost to Substation A1-AA1. This can be deduced from reviewing Line 5 where sub-position 1 has damage that requires 7 crew hours and

sub-position requires 33 crew hours to be returned to service. The line tap leading to Substation B1 from Substation A1-AA1 is therefore isolated. Restoration to an emergency level of service goal will likely take the route through sub-position 1 (if hours are the critical parameter).

- Line 9 shows that for 220kV switchyard position 5 has 5 sub-positions (switching or line tap) and the five following numbers show the crew hours needed for each sub-position to be returned to service. This position is a breaker and a half position and consists of a disconnect, circuit breaker, disconnect, for sub-positions 1, 3 and 5, a line tap for sub-positions 2 and 4.
- Line 10 reports that Bank 1AA is lost to Substation A1-AA1. Note this would have been the result of damage to sub-position 2 or sub-positions 1 and 3 [or higher].
- Lines 11 & 16 show that for 500kV switchyard positions 1 and 3 both have 5 sub-positions (switching or line tap) and the five following numbers show the crew hours needed for each sub-position to be returned to service. These positions are breaker and a half positions and consist of a disconnect switch, circuit breaker, disconnect switch, for sub-positions 1, 3 and 5, a line tap for sub-positions 2 and 4.
- Lines 12, 13, 17 & 18 report losses to 500kV switchyard positions 1 and 3 and provide information that can be used to estimate the number of crew hours needed for their return to service.
- Line 14 show that 500kV switchyard positions 2 has 3 sub-positions (switching or line tap) and the three following numbers show the crew hours needed for each sub-position to be returned to service. This position is a double breaker position and consist of a disconnect switch, circuit breaker and another disconnect switch for sub-positions 1 and 3 and a line tap for sub-position 2.
- Line 15 reports that Source 2 is lost to Substation A1-AA1. Note this would have been the result of damage to sub-position 2 or sub-positions 1 and 3
- Lines 19, 20 & 21 report that Surge arrester failure occurred on each of three phase transformer.

Table 4.4 Explanation of Appendix 5 Data

D(KM) M G M+1 SCOEF 1- SITE 2- -----3- *A1-AA1 15.00 0.30 0.40 2.00 GEFF MN % RNUM 4- *F 1N-412 DS 1 CONTACTS BURN/A 220 1 PH- 2 315 400 0.20 0.18 4 5- TEST FOR POSITION 1 FUNCTION AT 220kV --> , IPOS = 3 7 0 0 6- *F 2N-422 DS 1 CONTACTS BURN/A 220 2 PH- 3 315 400 0.20 0.10 6 7- *F 2S-622 DS 1 2 PORCELAIN COL 220 2 PH- 2 315 650 0.05 0.03 5 8- TEST FOR POSITION 2 FUNCTION AT 220kV --> , IPOS = 3 7 0 33 9- SUBSTATION B1 LOST TO A1-AA1 10- *F 3N-432 DS 1 2 PORCELAIN COL 220 3 PH- 1 315 650 0.05 0.04 4 11- TEST FOR POSITION 3 FUNCTION AT 220kV --> , IPOS = 3 33 0 0 12- *F 4S-642 DS 1 CONTACTS BURN/A 220 4 PH- 1 315 400 0.20 0.13 3 13- TEST FOR POSITION 4 FUNCTION AT 220kV --> , IPOS = 3 0 0 7 14- *F 5N-452 DS 1 2 PORCELAIN COL 220 5 PH- 2 315 650 0.05 0.03 4 15- *F 5N-452 DS 1 CONTACTS BURN/A 220 5 PH- 3 315 400 0.20 0.17 6 16- *F BANK 1AA SA 1 FAILURE OF PORC 220 5 PH- 2 315 550 0.12 0.11 4 17- TEST FOR POSITION 5 FUNCTION AT 220kV --> , IPOS = 5 40 7 1 0 0 18- BANK 1AA LOST TO A1-AA1 19- *F 1N-711 DS 6 2 PORCELAIN COL 500 1 PH- 1 315 550 0.06 0.02 4 20- *F BANK 1AA SA 5 FAILURE OF PORC 500 1 PH- 1 315 250 0.60 0.05 4 21- *F BANK 1AA SA 5 FAILURE OF PORC 500 1 PH- 2 315 250 0.60 0.29 4 22- *F BANK 2AA SA 5 FAILURE OF PORC 500 1 PH- 3 315 250 0.60 0.46 4 23- 1S-913 DS1333/DS/BS PH 1 3 allow 7.8 actual 7.9 4 1S-913 DS1333/DS/BS PH 2 3 allow 7.8 actual 7.9 4 24-25- 1S-913 DS1333/DS/BS PH 3 3 allow 7.8 actual 7.9 4 26- TEST FOR POSITION 1 FUNCTION AT 500kV -->, IPOS = 5 49 14 1 7 0 27- BANK 1AA LOST TO A1-AA1 28- BANK 2AA LOST TO A1-AA1 29- *F 2N-722 DS 6 CONTACTS BURN/A 500 2 PH- 2 315 350 0.41 0.32 4 30- *F 2N-722 DS 6 2 PORCELAIN COL 500 2 PH- 1 315 550 0.06 0.03 6 31- *F 2N-722 DS 6 CONTACTS BURN/A 500 2 PH- 3 315 350 0.41 0.32 6 32- *F SOURCE 2 SA 5 FAILURE OF PORC 500 2 PH- 1 315 250 0.60 0.28 33- *F SOURCE 2 SA 5 FAILURE OF PORC 500 2 PH- 2 315 250 0.60 0.25 5 34- *F 2S-922 DS 6 1 PORCELAIN COL 500 2 PH- 3 315 450 0.18 0.13 5 35- TEST FOR POSITION 2 FUNCTION AT 500kV --> , IPOS = 3 67 14 37 36- SOURCE 2 LOST TO A1-AA1 37- *F 3N-732 DS 6 CONTACTS BURN/A 500 3 PH- 3 315 350 0.41 0.26 6 38- *F SOURCE 1 SA 5 FAILURE OF PORC 500 3 PH- 1 315 250 0.60 0.22 5 39- *F SOURCE 1 SA 5 FAILURE OF PORC 500 3 PH- 2 315 250 0.60 0.37 5 40- *F 3T-832 DS 6 1 PORCELAIN COL 500 3 PH- 3 315 450 0.18 0.13 3 41- *F 3T-832 DS 6 CONTACTS BURN/A 500 3 PH- 1 315 350 0.41 0.40 5 42- *F SUBSTATION AA4 SA 5 FAILURE OF PORC 500 3 PH- 1 315 250 0.60 0.21 5 43- *F SUBSTATION AA4 SA 5 FAILURE OF PORC 500 3 PH- 2 315 250 0.60 0.56 5 44- *F SUBSTATION AA4 SA 5 FAILURE OF PORC 500 3 PH- 3 315 250 0.60 0.46 5 45- *F 3S-932 DS 6 CONTACTS BURN/A 500 3 PH- 2 315 350 0.41 0.32 3 46- *F 3S-932 DS 6 CONTACTS BURN/A 500 3 PH- 1 315 350 0.41 0.21 5 47- TEST FOR POSITION 3 FUNCTION AT 500kV -->, IPOS = 5 9 14 46 21 18 48- SOURCE 1 LOST TO A1-AA1 49- SUBSTATION AA4 LOST TO A1-AA1 50- *F BANK A SA FAIL 500 2AA 315 250 0.603 0.131 51- *F BANK B SA FAIL 500 2AA 315 250 0.603 0.509 52- *F BANK C SA FAIL 500 2AA 315 250 0.603 0.306 53- *F PT 5 N COLUMN FAILURE PH- 1 315 300 0.53 0.44
Table 4-2 Explanation of Appendix 5 Data (continued)

Each line has been given a number, e.g. lines 1 - 58 will be addressed.

Line 1 – Header

Line 2 and 57, see Line 2 & 22 above

Line 3 – see line 3 & 23 above

Line 4 - "*F" means that a failure has occurred

"1N-412" – sub-position identification

"DS 1" – type of component and component performance function number

"CONTACT BURN/A" - partial description of failure

"220" – volts of component in kilo volts

"1" – Position number

"PH -2" – phase number

"315" – effective acceleration loading the component

"400" – mean failure acceleration

".20" – Monte Carlo switch, number between 0 and 1 and below which failure occurs

".18" – random number determined for this component and this failure mode

"4" – detailed location of component in sub-position

Lines 5, 8, 11, 13,17, 26, 35 & 47 – This is where the position is tested for functionality with respect to line continuity of current substation with other substations and switchrack to power transformers. See Line 6 explanation of Appendix 4 data output. The numbers, 3 for double breaker and 5 for breaker and a half positions represent crew hours needed to regain functionality of that sub-position.

Lines 6, 7, 10, 12, 14 – 16, 19 – 22, 29 – 34, & 37 – 46 see Line 4 explanation.

Line 9 – See explanation for Appendix 4 Line 6.

Line 18 – See explanation for Appendix 4 Line 10.

Lines 23 - 25 – this is the slack exceedance report, even though the conclusion is that there is no damage. If there had been damage an "*S" would have appeared at the start of the line.

"1S-913" sub-position where slack issue is located

"DS1333/DS/BS" – components involved and amount of reported slack. The inadequate slack is between a disconnect switch and a bus.

"PH 1" – identifies the phase as 1

"3" – field recorded sag

"allow 7.8" is the amount of slack available

"actual 7.9" is the amount of slack demand, in this case the demand is greater than the allowed, but the algorithm determined that there was no damage.

"4" – detailed location of component in sub-position

5 Summary and Conclusions

An electric utility system is made up of electrical components connected in a way that reflects needs at multiple previous times, and installed in a way that reflects electrical function during normal times over structural function during an earthquake. To conduct a SERA requires multiple disciplines; those of structural, seismological, earthquake and electrical professions. Even when the proper professional talent is assembled, the problem is complex, due to the complex nature of the system and lack of data. A means of assembling all the necessary ingredients of the SERA process is necessary. This report has attempted to bring order and standardization to the documentation of the electrical components that make up an electrical utility model for the SERA. This was done by suggesting what electrical system data is needed, how to collect it and document it. In addition, this report presents a tabulation of key electrical equipment performance during past earthquakes.

The SERA approach presented in this report is far more advanced than what is normally conducted by an electric utility. This SERA approach should only be conducted by a utility that knows it has a significant natural hazard risk and complexities in its system including size, spatial layout etc. such that some systematic means of integrating all this information is needed to aid in developing risk mitigation strategies.

This approach for a SERA is relatively new in implementation even though the Monte Carlo simulation approach has been in use for decades for other types of problems. More work needs to be done to improve component performance functions and to determine and describe the function of the utility system given a detailed understanding of system component damage. In addition, more work needs to be done in the integration process and problem set-up so that classical probabilistic SERAs which include probabilistic measures of results can be conducted.

Appendix 1: Conductor Slack Templates

Figure A1.1 – Horizontal = 15, Vertical = 0, Slack = 0

Figure A1.2 – Horizontal – 15, Vertical – 0, slack – 1 inch

Figure A1.3 – Horizontal – 15, Vertical – 0, slack – 2 inches

Figure A1.4 – Horizontal – 15, Vertical – 0, slack – 3 inches

Figure A1.5 – Horizontal – 15, Vertical – 0, slack – 4 inches

Figure A1.6 – Horizontal – 15, Vertical – 0, slack – 5 inches

Figure A1.7 – Horizontal – 15, Vertical – 0, slack – 6 inches

Figure A1.8 – Horizontal – 15, Vertical – 0, slack – 9 inches

Figure A1.9 – Horizontal – ~15, Vertical – 3, slack – 0 inches

Figure A1.10 – Horizontal – ~15, Vertical – 3, slack – 1 inches

Figure A1.11 – Horizontal – ~15, Vertical – 3, slack – 2 inches

Figure A1.12 – Horizontal – ~15, Vertical – 3, slack – 3 inches

Figure A1.13 – Horizontal – ~15, Vertical – 3, slack – 4 inches

Figure A1.14 – Horizontal – ~15, Vertical – 3, slack – 5 inches

Figure A1.15 – Horizontal – ~15, Vertical – 3, slack – 6 inches

Figure A1.16 – Horizontal – ~15, Vertical – 3, slack – 9 inches

Appendix 2: Performance Function Database

DATA SET 1ST CARD - # TR, # LA, # CB, #CT, #DS, #CC, #PT, #PI, #WT, #PH COMPONENT 1ST CARD - TYEE, #, DESCRIPTION, # FAIL MODES,SFREQ (H2),STAU,SCREWT (HOURS) REMAINING - FALURE MODE DESCRIPTION, \$, MEAN G, - 1 SIG, + 1 SIG DURATION SUSEPTABLITY, LOWEST G/100 FOR DAMACE, FREQUENCY CPS, SSI VULNERABLILTY, AND CREW TIME (HOURS) 8 8 16 8 8 8 8 2 1 TR 1 220KV TR 1 Phi 2 8 1.5 24 1 MAIN BUSHING BREAK 100 850 200 300 0 500 15 48 1 MAIN BUSHING BREAK 220 850 100 500 0 500 15 96 2 MAIN BUSHING BREAK 220 850 100 500 0 500 15 96 2 MAIN BUSHING BREAK 100 850 300 300 0 200 15 48 3 MAIN BUSHING BREAK 100 850 300 300 0 200 15 48 3 MAIN BUSHING BREAK 100 850 300 300 0 200 15 48 3 MAIN BUSHING GASKET LEAK 30 500 100 450 0 200 15 44 1 MAIN BUSHING GASKET LEAK 30 500 100 450 0 200 15 44 1 MAIN BUSHING GASKET LEAK 30 500 100 450 0 200 15 44 1 MAIN BUSHING GASKET LEAK 10 100 250 250 0 200 15 44 1 MAIN BUSHING GASKET LEAK 10 100 250 250 0 200 15 48 3 MAIN BUSHING GASKET LEAK 100 100 250 250 0 200 15 48 1 MAIN BUSHING GASKET LEAK 10 100 200 300 0 500 15 96 2 MAIN BUSHING GASKET LEAK 10 100 200 300 0 500 15 96 2 MAIN BUSHING GASKET LEAK 10 100 200 300 0 500 15 72 1 MAIN BUSHING GASKET LEAK 10 100 200 300 0 200 15 48 3 MAIN BUSHING GASKET LEAK 10 100 200 300 0 200 15 48 3 MAIN BUSHING GASKET LEAK 10 100 200 300 0 200 15 48 3 MAIN BUSHING GASKET LEAK 10 1250 300 300 0 200 15 54 1 MAIN BUSHING GASKET LEAK 10 1250 300 300 0 200 15 54 1 MAIN BUSHING GASKET LEAK 10 100 200 350 0 200 15 54 1 MAIN BUSHING GASKET LEAK 10 100 300 250 0 200 15 54 1 MAIN BUSHING GASKET LEAK 10 100 200 350 0 200 15 72 MAIN BUSHING GASKET LEAK 10 100 250 250 0 100 15 72 MAIN BUSHING GASKET LEAK 10 100 250 250 0 100 15 72 MAIN BUSHING GASKET LEAK 260 750 250 300 0 100 15 72 MAIN BUSHING GASKET LEAK 20 100 500 0 100 15 72 MAIN BUSHING GASKET LEAK 20 100 500 0 100 15 144 2 MAIN BUSHING GASKET LEAK 20 100 250 250 0 100 15 74 MAIN BUSHING GASKET LEAK 20 100 250 250 0 100 15 74 MAIN BUSHING GASKET LEAK 20 100 250 250 0 100 15 74 MAI	EQUIP	99.DAT 8/31/99							
COMPONENT IST CARD - TYPE, #, DESCRIPTION, # FAIL MODES, SFREQ (H2), STAU, SCREWT (HOURS) REMAINING - FAILURE MODE DESCRIPTION, \$, MEAN G, - 1 SIG, + 1 SIG DURATION SUSEPTABILITY, LOWEST G/1000 FOR DAMAGE, FREQUENCY CSS, SSI VULNERABILITY, AND CREW TIME (HOURS) 8 8 16 6 8 8 8 8 2 1 TR 1 220KV TR 1 Ph1 2 8 1.5 24 1 MAIN BUSHING BREAK 100 850 200 300 0 500 15 48 1 NAIN BUSHING GREET LEAK 10 500 250 250 0 250 15 36 7 2 20KV TR 3 Ph1 6 8 1.5 24 3 MAIN BUSHING BREAK 160 850 200 400 0 350 15 72 2 MAIN BUSHING GREET LEAK 10 0850 300 300 0 200 15 48 3 MAIN BUSHING BREAK 160 850 300 300 0 200 15 72 2 MAIN BUSHING GREET LEAK 10 500 300 300 0 200 15 48 3 MAIN BUSHING GREET LEAK 10 500 300 250 0 200 15 48 3 MAIN BUSHING GREET LEAK 10 500 300 250 0 200 15 48 1 MAIN BUSHING GREET LEAK 10 500 300 250 0 200 15 48 1 MAIN BUSHING GREET LEAK 10 500 300 250 0 200 15 48 1 MAIN BUSHING GREET LEAK 10 500 300 250 0 200 15 48 1 MAIN BUSHING GREET LEAK 10 1000 250 250 15 36 TR 4 220KV TR 3 Ph1 COMP BUSH 2 8 1.5 24 1 MAIN BUSHING GREET LEAK 10 1000 250 0 0 500 15 72 2 MAIN BUSHING GREET LEAK 10 1000 250 0 0 200 15 48 3 MAIN BUSHING GREET LEAK 10 1000 200 350 0 200 15 72 1 MAIN BUSHING GREET LEAK 10 1000 200 350 0 200 15 72 2 MAIN BUSHING GREET LEAK 10 1000 200 350 0 200 15 72 2 MAIN BUSHING GREET LEAK 10 1000 300 0 200 15 72 2 MAIN BUSHING GREET LEAK 10 1000 300 0 200 15 74 MAIN BUSHING GREET LEAK 10 1000 300 250 0 200 15 74 1 MAIN BUSHING GREET LEAK 10 1000 300 0 200 15 74 MAIN BUSHING GREET LEAK 10 1000 300 250 0 100 15 74 MAIN BUSHING GREET LEAK 10 400 250 20 0 100 15 144 2 MAIN BUSHING GREET LEAK 10 400 250 20 0 100 15 144 2 MAIN BUSHING GREET LEAK 10 400 250 20 0 100 15 144 2 MAIN BUSHING GREET LEAK 10 400 250 20 0 100 15 144 2 MAIN BUSHING GREET LEAK 10 400 250 20 0 100 15 144 2 MAIN BUSHING GREET LEAK 10 400 250 20 0 100 15 144 2 MAIN BUSHING GREET LEAK 20 400 200 350 0 100 15 144 2 MAIN BUSHING GREET LEAK 20 400 200 350 0 100 15 144 2 MAIN BUSHING GREET LEAK 20 400 200 350 0 100 15 144 2 MAIN BUSHING GREET LEAK 20 400 200 350 0 1	DATA	SET 1ST CARD - # TR, # LA, # CB,	#СТ,	#DS,	#CC, #	PT,	#PI,	#WT,	#PH
<pre>1ST CARD - TYPE, #, DESCRIPTION, # FAIL MODES, SFREQ (HZ), STAU, SCREWT (HOURS) REMAINING - FAILURE MODE DESCRIPTION, \$, MEAN G, - 1 SIG, + 1 SIG DURATION SUSEPTABILITY, LOWEST G/100 FOR DAMAGE, FREQUENCY CPS, SSI VULNERABILITY, AND CREW TIME (HOURS) 8 8 16 8 8 8 8 8 2 1 TR 1 220KV TR 1 Phi 2 2 8 1.5 24 1 MAIN BUSHING BREAK 100 850 200 300 0 500 15 48 1 MAIN BUSHING BREAK 100 850 200 300 0 500 15 96 2 MAIN BUSHING BREAKS 220 850 100 0500 15 96 2 MAIN BUSHING BREAKS 120 850 100 0500 15 72 1 MAIN BUSHING BREAKS 100 850 300 300 0 200 15 72 2 MAIN BUSHING BREAKS 100 850 300 300 0 200 15 72 2 MAIN BUSHING GASKET LEAK 10 500 300 250 0 200 15 72 2 MAIN BUSHING GASKET LEAK 20 500 200 200 15 72 2 MAIN BUSHING GASKET LEAK 20 500 200 200 15 36 TR 3 220KV TR 1 Phi COMP BUSH 2 8 1.5 24 1 MAIN BUSHING BREAKS 120 1200 200 300 0 500 15 48 1 MAIN BUSHING BREAK 100 1200 200 300 0 500 15 48 1 MAIN BUSHING GASKET LEAK 20 120 200 400 0 350 15 72 2 MAIN BUSHING BREAKS 120 1200 200 400 0 350 15 72 1 MAIN BUSHING BREAK 100 1200 200 400 0 350 15 72 1 MAIN BUSHING BREAK 100 1200 200 400 0 350 15 72 1 MAIN BUSHING BREAKS 160 1250 200 400 0 350 15 72 1 MAIN BUSHING BREAKS 160 1250 300 0 200 15 72 1 MAIN BUSHING BREAKS 160 1250 300 0 200 15 72 1 MAIN BUSHING BREAKS 160 1250 300 0 100 15 72 1 MAIN BUSHING BREAKS 160 1250 300 0 100 15 72 1 MAIN BUSHING BREAKS 160 1250 300 0 100 15 72 1 MAIN BUSHING BREAKS 160 1250 300 0 100 15 72 1 MAIN BUSHING BREAKS 128A 100 1200 500 0 100 15 72 1 MAIN BUSHING BREAKS 200 750 250 0 100 15 74 1 MAIN BUSHING GASKET LEAKS 20 100 200 100 15 74 1 MAIN BUSHING GASKET LEAKS 20 100 200 100 15 74 1 MAIN BUSHING BREAKS 530 650 200 0 100 15 74 1 MAIN BUSHING BREAK 260 750 250 300 0 100 15 74 1 MAIN BUSHING BREAKS 530 400 100 450 0 100 15 74 1 MAIN BUSHING BREAKS 530 400 100 250 0 100 15 74 1 MAIN BUSHING BREAKS 530 400 100 450 0 100 15 74 1 MAIN BUSHING BREAKS 530 100 500 0 100 15 74 1 MAIN BUSHING BREAKS 530 100 500 0 100 15 74 1 MAIN BUSHING BREAKS 530 1250 200 0 100 15 74 1 MAIN BUSHING BREAKS 530 1250 100 500</pre>	COMPO	NENT							
REMAINING - FAILURE MODE DESCRIPTION, S, MEAN G, - 1 SIG, + 1 SIG DURATION SUSEFTABILITY, LOWEST G/1000 FOR DAMAGE, FREQUENCY CPS, SSI VULNERABILITY, AND CREW TIME (HOURS) 8 8 16 8 8 8 8 2 1 T 1 220KV TR 1 Phi 2 8 1.5 24 1 MAIN BUSHING GREAK 100 850 200 300 0 500 15 48 1 MAIN BUSHING GREAK 100 850 200 300 0 500 15 96 2 MAIN BUSHING BREAK 100 850 200 400 0 350 15 72 1 MAIN BUSHING BREAK 100 850 200 400 0 350 15 72 1 MAIN BUSHING BREAK 100 850 200 400 0 350 15 72 1 MAIN BUSHING GREAK 100 850 200 300 0 200 15 72 2 MAIN BUSHING GREAK 100 850 200 300 0 200 15 74 1 MAIN BUSHING GREAK 100 850 200 300 0 200 15 74 1 MAIN BUSHING GREAK 100 850 200 300 0 200 15 74 1 MAIN BUSHING GREAK 100 800 200 350 0 200 15 74 1 MAIN BUSHING GREAK 122 8 1.5 24 1 MAIN BUSHING GREAK 122 8 1.5 24 1 MAIN BUSHING GREAK 122 8 1.5 24 1 MAIN BUSHING GREAK 100 1200 200 300 0 500 15 48 1 MAIN BUSHING GREAK 120 100 200 300 0 500 15 48 1 MAIN BUSHING GREAK 120 100 200 300 0 500 15 48 1 MAIN BUSHING GREAK 100 1200 200 300 0 500 15 96 2 MAIN BUSHING GREAK 100 1200 200 350 0 200 15 72 1 MAIN BUSHING GREAK 122 1250 100 500 0 500 15 72 1 MAIN BUSHING GREAK 100 1250 200 10 500 15 72 2 MAIN BUSHING GREAK 122 1250 100 100 15 72 2 MAIN BUSHING GREAK 122 200 300 0 0 200 15 72 2 MAIN BUSHING GREAK 128 30 1000 100 450 0 200 15 74 MAIN BUSHING GREAK 128 20 1000 200 350 0 200 15 74 MAIN BUSHING GREAK 128 20 1000 200 350 0 100 15 74 MAIN BUSHING GREAK 128 20 1000 200 300 0 100 15 74 MAIN BUSHING GREAK 128 20 1000 200 300 0 100 15 74 MAIN BUSHING GREAK 128 20 1000 200 300 0 100 15 74 MAIN BUSHING GREAK 128 20 400 200 300 0 100 15 74 MAIN BUSHING GREAK 128 20 400 200 300 0 100 15 108 1 MAIN BUSHING GREAK 128 20 400 200 300 0 100 15 108 1 MAIN BUSHING GREAK 780 650 100 500 0 100 15 108 1 MAIN BUSHING GREAK 128 20 400 200 300 0 100 15 108 1 MAIN BUSHING GREAK 128 20 400 200 300 0 100 15 108 1 MAIN BUSHING GREAK 128 20 400 200 300 0 100 15 108 1 MAIN BUSHING GREAK 128 20 1000 200 300 0 100 15 108 1 MAIN BUSHING GREAK 128 20 100	1ST C	ARD - TYPE, #, DESCRIPTION, # FA	AIL MOI	DES,SI	FREQ (H	IZ),	STAU,	SCREWT	(HOURS)
DURATION SUSEPTABLIFY, LOWEST G/1000 FOR DAMAGE, 8 8 16 8 8 8 2 1 1 220KV TR 1 Phi 2 8 1.5 24 1 MAIN BUSHING BREAK 100 500 250 250 15 36 1 MAIN BUSHING BREAK 100 500 250 15 24 3 MAIN BUSHING BREAKS 120 850 100 500 15 72 1 MAIN BUSHING BREAKS 160 850 200 350 15 72 2 MAIN BUSHING GASKET LEAKS 20 500 200 15 74 1 MAIN BUSHING GASKET LEAKS 20 300 200 15 48 1 MAIN BUSHING GASKET LEAKS 20 8 1.5 24 16 2 MAIN BUSHING GASKET LEAKS 20 1000 200 500 15 72 1 MAIN BUSHING GASKET LEAKS 20	REMAI	NING - FAILURE MODE DESCRIPTION,	\$, MH	EAN G	, – 1 S	SIG,	+ 1	SIG	
FFEQUENCY CPS, SSI VULNERABILITY, AND CREW TIME (HOURS) 8 8 16 8 8 8 2 1 TR 1 220KV TR 1 Phi 2 8 1.5 24 TR 1 MAIN BUSHING BREAK 100 850 200 300 0 500 15 48 1 MAIN BUSHING BREAK 100 850 200 400 0 500 15 72 3 MAIN BUSHING BREAK 100 850 300 300 200 15 48 3 MAIN BUSHING GASKET LEAKS 100 850 200 300 200 15 72 1 MAIN BUSHING GASKET LEAKS 100 200 300 200 15 74 1 MAIN BUSHING GASKET LEAK 100 200 250 200 15 74 1 MAIN BUSHING GASKET LEAK 101 1000 250 250 15 72 1 MAIN BUSHING GAS		DURATION SUSEPTABILITY, LO	WEST (G/1000) FOR D	AMA	AGE,		
8 8 1 1 220KV TR 1 Phi 2 8 1.5 24 1 MAIN BUSHING BREAK 100 850 200 300 0 500 15 48 1 MAIN BUSHING BREAK 100 500 250 250 0 250 15 36 1 MAIN BUSHING BREAKS 220 850 100 500 0 300 15 72 1 MAIN BUSHING BREAK 160 850 200 400 0 350 15 72 2 MAIN BUSHING BREAK 160 850 300 300 200 15 44 1 MAIN BUSHING GREAKT LEAK 10 200 350 200 15 48 1 MAIN BUSHING BREAK 100 100 200 15 48 1 MAIN BUSHING BREAK 100 100 300 200 15 74 1 MAIN BUSHING BREAK		FREQUENCY CPS, SSI VULNERA	BILITY	Z, ANI	D CREW	TIN	1E (HC)URS)	
TR 1 22 8 1.5 24 1 MAIN BUSHING BREAK 100 850 200 300 0 500 15 48 1 MAIN BUSHING BREAK 100 850 200 300 0 500 15 36 1 MAIN BUSHING BREAKS 100 850 200 400 0 350 15 72 1 MAIN BUSHING BREAKS 100 850 300 300 0 200 15 74 1 MAIN BUSHING GASKET LEAKS 100 850 300 300 0 200 15 72 1 MAIN BUSHING GASKET LEAKS 100 300 250 0 200 15 74 1 MAIN BUSHING GASKET LEAK 10 1000 250 0 200 15 36 TR 2 20KV TR T Phi CMP BUSH 2 8 1.5 24 T MAIN BUSHING GASKET LEAK 10 100 250 200 15 36	8	8 1 6 8 8 8 8 8 2 1							
1 MAIN BUSHING BREAK 100 850 200 300 0 500 15 36 TR 2 220KV TR 3 Phi 6 8 1.5 24 3 MAIN BUSHING BREAKS 220 850 100 500 0 15 96 2 MAIN BUSHING BREAKS 100 850 300 300 0 200 15 48 3 MAIN BUSHING GASKET LEAKS 20 500 200 350 0 200 15 54 MAIN BUSHING GASKET LEAKS 20 500 200 350 0 200 15 48 1 MAIN BUSHING GASKET LEAK 10 1000 250 250 0 250 15 36 TR 4 220KV TR 3 Phi COMP BUSH 6 8 1.5 24 15 36 72 MAIN BUSHING BREAKS 120 100 200 350 0 15 72	TR 1	220KV TR 1 Phi	2	8	1.5	24			
1 MAIN BUSHING GASKET LEAK 10 500 250 250 0 250 15 36 TR 2 220KV TR 3 Phi 6 8 1.5 24 3 MAIN BUSHING BREAKS 120 850 100 500 15 96 2 MAIN BUSHING BREAK 160 850 200 400 0 350 15 72 1 MAIN BUSHING GASKET LEAK 10 500 100 450 0 200 15 74 2 MAIN BUSHING GASKET LEAK 10 500 100 450 0 200 15 36 TR 3 220KV TR 1 Phi COMP BUSH 2 8 1.5 24 15 36 TR 4 220KV TR 3 Phi COMP BUSH 20 8 1.5 24 15 36 TR 4 220KV TR 3 Phi COMP BUSH 20 100 0 300 0 200 15 72 MAIN BUSHING BREAK 100 1250<		1 MAIN BUSHING BREAK 100	850	200	300	0	500	15	48
TR 2 220kv TR 3 Phi 6 8 1.5 24 3 MAIN BUSHING BREAKS 220 850 100 500 0 500 15 72 1 MAIN BUSHING BREAK 100 850 300 300 0 200 15 78 3 MAIN BUSHING GASKET LEAKS 20 500 200 350 0 200 15 74 1 MAIN BUSHING GASKET LEAKS 20 500 200 350 0 200 15 54 1 MAIN BUSHING GASKET LEAK 20 500 250 0 250 15 36 1 MAIN BUSHING BREAK 200 100 1200 200 300 0 500 15 48 1 MAIN BUSHING BREAKS 220 1250 100 500 500 15 72 1 MAIN BUSHING BREAKS 220 1250 100 500 0 200 15 72 1 MAIN BUSHING BREAK 100 100 100 0 0 0 0 15 72 1 MAIN BUSHING		1 MAIN BUSHING GASKET LEAK 10	500	250	250	0	250	15	36
3 MAIN BUSHING BREAKS 220 850 100 500 0 500 15 96 2 MAIN BUSHING BREAKS 160 850 200 400 0 350 15 72 1 MAIN BUSHING BREAK 160 850 300 300 0 200 15 72 2 MAIN BUSHING GASKET LEAK 10 500 200 350 0 200 15 74 1 MAIN BUSHING GASKET LEAK 1000 1200 200 300 0 500 15 36 TR 3 220KV TR 1 Phi COMP BUSH 2 8 1.5 24	TR 2	220KV TR 3 Phi	6	8	1.5	24			
2 MAIN BUSHING BREAKS 160 850 200 400 0 350 15 72 1 MAIN BUSHING GASKET LEAKS 100 850 300 300 0 200 15 72 2 MAIN BUSHING GASKET LEAKS 20 500 200 350 0 200 15 74 1 MAIN BUSHING GASKET LEAKS 20 500 200 350 0 200 15 36 TR 3 220KV TR 1 Phi COMP BUSH 2 8 1.5 24 T 4 220KV TR 3 Phi COMP BUSH 6 8 1.5 24 3 3 3 0 0 0 3 3 0 0 15 72 MAIN BUSHING BREAK 100 100 100 350 15 72 MAIN BUSHING GASKET LEAK 100 100 100 15 72 MAIN BUSHING GASKET LEAK		3 MAIN BUSHING BREAKS 220	850	100	500	0	500	15	96
1 MAIN BUSHING BREAK 100 850 300 00 0 200 15 72 2 MAIN BUSHING GASKET LEAKS 30 500 100 450 0 200 15 72 1 MAIN BUSHING GASKET LEAK 10 500 300 250 0 200 15 36 TR 3 20CKV TR 1 Phi COMP BUSH 2 8 1.5 24 1 MAIN BUSHING GASKET LEAK 10 1000 250 250 0 250 15 36 TR 4 20CKV TR 3 Phi COMP BUSH 6 8 1.5 24		2 MAIN BUSHING BREAKS 160	850	200	400	0	350	15	72
3 MAIN BUSHING GASKET LEAKS 30 500 100 450 0 200 15 72 2 MAIN BUSHING GASKET LEAKS 20 500 200 350 0 200 15 54 1 MAIN BUSHING GASKET LEAK 10 500 300 250 0 200 15 36 TR 3 220KV TR 1 Phi COMP BUSH 2 8 1.5 24 1 100 200 300 0 500 15 36 TR 4 220KV TR 3 Phi COMP BUSH 6 8 1.5 24 1 1000 200 300 0 500 15 72 3 MAIN BUSHING BREAK 100 1250 300 300 0 200 15 72 1 MAIN BUSHING GASKET LEAK 10 1000 300 200 15 72 2 MAIN BUSHING GASKET LEAK 10 1000 300 200 15 74 3 MAIN BUSHING GASKET LEAK 10 1000 300 250 0 100 15 72 4 MAIN BUSHING GASKET LEAK		1 MAIN BUSHING BREAK 100	850	300	300	0	200	15	48
2 MAIN BUSHING GASKET LEAKS 20 500 200 350 0 200 15 34 1 MAIN BUSHING GASKET LEAK 10 500 300 250 0 200 15 36 TR 3 220KV TR 1 Phi COMP BUSH 2 8 1.5 24 24 1 MAIN BUSHING GASKET LEAK 10 1000 250 250 0 250 15 36 TR 4 220KV TR 1 Phi COMP BUSH 6 8 1.5 24 24 3 MAIN BUSHING BREAKS 100 100 100 500 0 500 15 72 MAIN BUSHING BREAK 100 100 100 450 0 200 15 72 2 MAIN BUSHING GASKET LEAKS 10 1000 200 350 0 200 15 54 1 MAIN BUSHING GASKET LEAKS 10 1000 200 350 0 200 15 54 TR 5 500KV TR 1 Phi 2 8 1.5 24 1 MAIN BUSHING BREAK 260 100 <td></td> <td>3 MAIN BUSHING GASKET LEAKS 30</td> <td>500</td> <td>100</td> <td>450</td> <td>0</td> <td>200</td> <td>15</td> <td>72</td>		3 MAIN BUSHING GASKET LEAKS 30	500	100	450	0	200	15	72
1 MAIN BUSHING GASKET LEAK 10 500 300 250 0 200 15 36 TR 3 220KV TR 1 1 PAIN BUSHING BREAK 100 1200 200 300 0 500 15 36 TR 4 220KV TR 3 Phi CMAN 6 8 1.5 24 1 MAIN BUSHING BREAK 1200 200 0 500 15 36 TR 4 220KV TR 3 Phi <comp bush<="" td=""> 6 8 1.5 24 </comp>		2 MAIN BUSHING GASKET LEAKS 20	500	200	350	0	200	15	54
TR 3 220KV TR 1 Phi COMP BUSH 2 8 1.5 24 1 MAIN BUSHING BREAK 100 1200 200 300 0 500 15 48 1 MAIN BUSHING GASKET LEAK 10 1000 250 0 250 15 36 TR 4 220KV TR 3 Phi COMP BUSH 6 8 1.5 24 4 3 MAIN BUSHING BREAKS 220 1250 100 500 0 500 15 72 1 MAIN BUSHING BREAKS 100 1250 300 0 200 15 72 2 MAIN BUSHING GASKET LEAKS 10 1000 300 0 200 15 72 2 MAIN BUSHING GASKET LEAK 10 1000 300 0 100 15 74 MAIN BUSHING GASKET LEAK 10 0 200 15 74 74 MAIN BUSHING GASKET LEAK 10 450 250 250 100 15 72 MAIN BUSHING GASKET LEAK </td <td></td> <td>1 MAIN BUSHING GASKET LEAK 10</td> <td>500</td> <td>300</td> <td>250</td> <td>0</td> <td>200</td> <td>15</td> <td>36</td>		1 MAIN BUSHING GASKET LEAK 10	500	300	250	0	200	15	36
1 MAIN BUSHING BREAK 100 1200 200 300 0 500 15 36 TR 4 220KV TR 3 Phi COMP BUSH 6 8 1.5 24 3 MAIN BUSHING BREAKS 120 1200 100 500 0 500 15 96 2 MAIN BUSHING BREAKS 100 1250 200 400 0 350 15 72 1 MAIN BUSHING BREAK 100 1250 200 400 0 350 15 72 1 MAIN BUSHING GASKET LEAKS 100 100 450 0 200 15 74 1 MAIN BUSHING GASKET LEAK 10 1000 300 250 0 0 105 72 MAIN BUSHING BREAK 260 750 250 300 0 100 15 74 MAIN BUSHING BREAK 780 650 100 50 100 15 144 1 MAIN BUSHING BREAK 780 650 100 100 15 <t< td=""><td>TR 3</td><td>220KV TR 1 Phi COMP BUSH</td><td>2</td><td>8</td><td>1.5</td><td>24</td><td></td><td></td><td></td></t<>	TR 3	220KV TR 1 Phi COMP BUSH	2	8	1.5	24			
1 MAIN BUSHING GASKET LEAK 10 1000 250 250 0 250 15 36 TR 4 220KV TR 3 Phi COMP BUSH 6 8 1.5 24 3 MAIN BUSHING BREAKS 120 1200 500 0 500 15 72 1 MAIN BUSHING BREAKS 160 1250 200 400 0 350 15 72 1 MAIN BUSHING GASKET LEAKS 100 100 450 0 200 15 54 3 MAIN BUSHING GASKET LEAKS 20 1000 300 250 0 200 15 54 TR 5 500KV TR 1 Phi 2 8 1.5 24 72 MAIN BUSHING GASKET LEAK 10 1000 300 250 0 100 15 54 TR 6 500KV TR 3 Phi 6 8 1.5 24 72 MAIN BUSHING GASKET LEAK 10 400 200 300 0 100 15 54		1 MAIN BUSHING BREAK 100	1200	200	300	0	500	15	48
TR 4 220KV TR 3 Phi COMP BUSH 6 8 1.5 24 3 MAIN BUSHING BREAKS 220 1250 100 500 0 500 15 96 2 MAIN BUSHING BREAKS 160 1250 200 400 0 200 15 48 3 MAIN BUSHING GASKET LEAKS 30 1000 100 450 0 200 15 54 1 MAIN BUSHING GASKET LEAKS 20 1000 200 350 0 200 15 54 1 MAIN BUSHING GASKET LEAK 10 1000 300 2 200 15 54 TR 5 50KV TR 3 Phi 2 8 1.5 24 10 100 100 100 15 14 MAIN BUSHING BREAK 260 750 250 30 100 15 14 2 MAIN BUSHING BREAK 260 100 50 100 15 144 2 MAIN BUSHING GASKET LEAK 30 300 0 100		1 MAIN BUSHING GASKET LEAK 10	1000	250	250	0	250	15	36
3 MAIN BUSHING BREAKS 220 1250 100 500 0 500 15 72 2 MAIN BUSHING BREAKS 160 1250 300 300 0 200 15 48 3 MAIN BUSHING GASKET LEAKS 300 1000 100 450 0 200 15 48 3 MAIN BUSHING GASKET LEAKS 10 1000 300 250 0 200 15 54 1 MAIN BUSHING GASKET LEAK 10 1000 300 250 0 200 15 54 1 MAIN BUSHING GASKET LEAK 10 1000 300 250 0 100 15 72 MAIN BUSHING BREAK 260 750 250 300 0 100 15 72 MAIN BUSHING BREAK 780 650 100 500 100 15 144 2 MAIN BUSHING BREAK 780 650 300 0 100 15 108 1 MAIN BUSHING GASKET LEAK 100 250	TR 4	220KV TR 3 Phi COMP BUSH	6	8	1.5	24			
2 MAIN BUSHING BREAKS 160 1250 200 400 0 350 15 72 1 MAIN BUSHING BREAK 100 1250 300 300 0 200 15 48 3 MAIN BUSHING GASKET LEAKS 30 1000 100 450 0 200 15 72 2 MAIN BUSHING GASKET LEAKS 20 1000 300 250 0 200 15 74 1 MAIN BUSHING GASKET LEAK 10 1000 300 250 0 200 15 72 MAIN BUSHING GASKET LEAK 10 1000 300 250 0 100 15 72 MAIN BUSHING BREAK 260 750 250 0 100 15 74 MAIN BUSHING BREAKS 780 650 100 500 0 100 15 108 1 MAIN BUSHING BREAKS 780 650 300 300 0 100 15 108 2 MAIN BUSHING GASKET LEAKS 20 400 200 350 <td></td> <td>3 MAIN BUSHING BREAKS 220</td> <td>1250</td> <td>100</td> <td>500</td> <td>0</td> <td>500</td> <td>15</td> <td>96</td>		3 MAIN BUSHING BREAKS 220	1250	100	500	0	500	15	96
1 MAIN BUSHING BREAK 100 1250 300 300 0 200 15 72 2 MAIN BUSHING GASKET LEAKS 30 1000 100 450 0 200 15 72 2 MAIN BUSHING GASKET LEAKS 20 1000 200 350 0 200 15 54 1 MAIN BUSHING GASKET LEAK 10 1000 300 250 0 200 15 54 MAIN BUSHING BREAK 260 750 250 300 0 100 15 72 MAIN BUSHING BREAK 260 750 250 300 0 100 15 74 3 MAIN BUSHING BREAKS 780 650 100 100 15 108 1 MAIN BUSHING BREAK 530 650 300 300 100 15 108 1 MAIN BUSHING GASKET LEAKS 30 400 100 450 100 15 108 <td></td> <td>2 MAIN BUSHING BREAKS 160</td> <td>1250</td> <td>200</td> <td>400</td> <td>0</td> <td>350</td> <td>15</td> <td>72</td>		2 MAIN BUSHING BREAKS 160	1250	200	400	0	350	15	72
3 MAIN BUSHING GASKET LEAKS 30 1000 100 450 0 200 15 72 2 MAIN BUSHING GASKET LEAKS 20 1000 200 350 0 200 15 54 1 MAIN BUSHING GASKET LEAK 10 1000 300 250 0 200 15 54 TR 5 500KV TR 1 Phi 2 8 1.5 24 10 100 100 15 72 MAIN BUSHING BREAK 260 750 250 0 100 15 72 MAIN BUSHING BREAK 260 750 250 0 100 15 72 MAIN BUSHING BREAKS 780 650 100 500 0 100 15 72 MAIN BUSHING BREAKS 530 650 300 00 100 15 108 2 MAIN BUSHING GASKET LEAK 28 650 300 00 100 15 108 2 MAIN BUSHING GASKET LEAKS 20 400 200 350 0 100 15 72 3 MAIN BUSHING GASKET LEAKS 10 <td></td> <td>1 MAIN BUSHING BREAK 100</td> <td>1250</td> <td>300</td> <td>300</td> <td>0</td> <td>200</td> <td>15</td> <td>48</td>		1 MAIN BUSHING BREAK 100	1250	300	300	0	200	15	48
2 MAIN BUSHING GASKET LEAKS 20 1000 200 350 0 200 15 54 1 MAIN BUSHING GASKET LEAK 10 1000 300 250 0 200 15 36 TR 5 500KV TR 1 Phi 2 8 1.5 24 72 MAIN BUSHING BREAK 260 750 250 300 0 100 15 72 MAIN BUSHING GASKET LEAK 10 450 250 0 100 15 74 MAIN BUSHING GASKET LEAK 10 450 250 0 100 15 144 2 MAIN BUSHING BREAKS 780 650 100 500 0 100 15 108 1 MAIN BUSHING BREAK 280 650 300 300 0 100 15 108 1 MAIN BUSHING GASKET LEAKS 30 400 100 250 250 0 100 15 108 1 MAIN BUSHING GASKET LEAK 10 400 250 250 0 100 15 72 MAIN BUSHING GASKET LEAK		3 MAIN BUSHING GASKET LEAKS 30	1000	100	450	0	200	15	72
1 MAIN BUSHING GASKET LEAK 10 1000 300 250 0 200 15 36 TR 5 500KV TR 1 Phi 2 8 1.5 24 10 100 15 72 MAIN BUSHING BREAK 260 750 250 300 0 100 15 72 MAIN BUSHING BREAK 260 750 250 250 0 100 15 72 MAIN BUSHING BREAK 10 450 250 250 0 100 15 72 MAIN BUSHING BREAKS 780 650 100 500 0 100 15 144 2 MAIN BUSHING BREAK 280 650 300 300 0 100 15 108 1 MAIN BUSHING GASKET LEAKS 20 400 200 350 0 100 15 108 1 MAIN BUSHING GASKET LEAKS 10 400 250 250 0 100 15 14 1 MAIN BUSHING BREAK 260 1250 250 0 100 15 72		2 MAIN BUSHING GASKET LEAKS 20	1000	200	350	0	200	1.5	54
TR 5 500KV TR 1 Phi 2 8 1.5 24 MAIN BUSHING BREAK 260 750 250 300 0 100 15 72 MAIN BUSHING BREAK 260 750 250 300 0 100 15 72 MAIN BUSHING BREAK 260 750 250 250 0 100 15 54 TR 6 500KV TR 3 Phi 6 8 1.5 24 144 3 MAIN BUSHING BREAKS 780 650 100 500 0 100 15 144 2 MAIN BUSHING BREAK 280 650 300 300 100 15 108 1 MAIN BUSHING GASKET LEAKS 20 400 200 350 0 100 15 108 2 MAIN BUSHING BREAK 280 1250 250 0 100 15 168 1 MAIN BUSHING GASKET LEAK 10 1000 250 250 0 100 15 72 MAIN BUSHIN		1 MAIN BUSHING GASKET LEAK 10	1000	300	250	0	200	15	36
MAIN BUSHING BREAK 260 750 250 300 0 100 15 72 MAIN BUSHING GASKET LEAK 10 450 250 250 0 100 15 54 TR 6 500KV TR 3 Phi 6 8 1.5 24 104 100 15 144 2 MAIN BUSHING BREAKS 780 650 100 500 0 100 15 144 2 MAIN BUSHING BREAKS 530 650 200 400 0 100 15 108 1 MAIN BUSHING GASKET LEAKS 304 100 450 0 100 15 108 2 MAIN BUSHING GASKET LEAKS 20 400 200 350 0 100 15 108 1 MAIN BUSHING GASKET LEAK 10 400 250 250 0 100 15 54 TR 7 500KV TR 1 Phi COMP BUSH 2 8 1.5 24 100 15 144 2 MAIN BUSHING BREAKS 780	TR 5	500KV TR 1 Phi	2	8	1.5	24	200	10	00
MAIN BUSHING GASKET LEAK 10 450 250 0 100 15 54 TR 6 500KV TR 3 Phi 6 8 1.5 24 104 10 15 144 2 MAIN BUSHING BREAKS 780 650 100 500 0 100 15 144 2 MAIN BUSHING BREAKS 530 650 200 400 0 100 15 108 1 MAIN BUSHING BREAK 280 650 300 300 0 100 15 108 2 MAIN BUSHING GASKET LEAKS 20 400 200 350 0 100 15 108 2 MAIN BUSHING GASKET LEAK 10 400 250 250 0 100 15 54 TR 7 500KV TR 1 Phi COMP BUSH 2 8 1.5 24 44 44 450 100 15 154 10 100 250 250 0 100 15 164 10 100 15 164 <t< td=""><td> 0</td><td>MAIN BUSHING BREAK 260</td><td>7.5.0</td><td>2.50</td><td>300</td><td>0</td><td>100</td><td>1.5</td><td>72</td></t<>	0	MAIN BUSHING BREAK 260	7.5.0	2.50	300	0	100	1.5	72
TR 6 500kV TR 3 Phi 6 8 1.5 24 3 MAIN BUSHING BREAKS 780 650 100 500 0 100 15 144 2 MAIN BUSHING BREAKS 530 650 200 400 0 100 15 108 1 MAIN BUSHING BREAK 280 650 300 300 0 100 15 108 2 MAIN BUSHING GASKET LEAKS 20 400 200 350 0 100 15 108 2 MAIN BUSHING GASKET LEAK 20 400 200 350 0 100 15 108 2 MAIN BUSHING GASKET LEAK 10 400 250 250 0 100 15 54 TR 7 500kV TR 1 Phi COMP BUSH 2 8 1.5 24 MAIN BUSHING BREAK 260 1250 250 0 100 15 72 MAIN BUSHING BREAKS 780 1250 100 500 100 15 144 2 MAIN BUSHING BREAKS 780 1250 100		MAIN BUSHING GASKET LEAK 10	450	250	250	0	100	15	54
3 MAIN BUSHING BREAKS 780 650 100 510 110 15 144 2 MAIN BUSHING BREAKS 530 650 200 400 0 100 15 144 2 MAIN BUSHING BREAKS 530 650 200 400 0 100 15 108 1 MAIN BUSHING GASKET LEAKS 30 400 100 450 0 100 15 108 2 MAIN BUSHING GASKET LEAKS 20 400 200 350 0 100 15 108 2 MAIN BUSHING GASKET LEAK 10 400 250 250 0 100 15 54 TR 7 500KV TR 1 Phi COMP BUSH 2 8 1.5 24 MAIN BUSHING BREAK 260 1250 250 0 100 15 54 TR 8 500KV TR 3 Phi COMP BUSH 6 8 1.5 24 MAIN BUSHING BREAKS 780 1250 100 500 100 15 108 1 MAIN BUSHING BREAKS 530 125	TR 6	500KV TR 3 Phi	6	8	1 5	24	200	10	01
2 MAIN BUSHING BREAKS 530 650 200 400 0 100 15 108 1 MAIN BUSHING BREAK 280 650 300 300 0 100 15 108 1 MAIN BUSHING GASKET LEAKS 30 400 100 450 0 100 15 108 2 MAIN BUSHING GASKET LEAKS 20 400 200 350 0 100 15 108 2 MAIN BUSHING GASKET LEAKS 20 400 200 350 0 100 15 108 2 MAIN BUSHING GASKET LEAK 10 400 250 250 0 100 15 54 TR 7 500KV TR 1 Phi COMP BUSH 2 8 1.5 24 MAIN BUSHING BREAK 260 1250 250 0 100 15 144 2 MAIN BUSHING BREAKS 780 1250 100 500 100 15 108 1 MAIN BUSHING BREAKS 530 1250 200 400 0 100 15 108	110 0	3 MAIN BUSHING BREAKS 780	650	100	500	0	100	15	144
1 MAIN BUSHING BREAK 280 650 300 300 0 100 15 72 3 MAIN BUSHING GASKET LEAKS 30 400 100 450 0 100 15 108 2 MAIN BUSHING GASKET LEAKS 20 400 200 350 0 100 15 108 2 MAIN BUSHING GASKET LEAK 20 400 200 350 0 100 15 81 1 MAIN BUSHING GASKET LEAK 10 400 250 250 0 100 15 54 TR 7 500KV TR 1 Phi COMP BUSH 2 8 1.5 24 MAIN BUSHING GASKET LEAK 10 1000 250 250 0 100 15 54 TR 8 500KV TR 3 Phi COMP BUSH 6 8 1.5 24 144 2 MAIN BUSHING BREAKS 780 1250 100 500 100 15 108 1 MAIN BUSHING BREAK 280 1250 300 30		2 MAIN BUSHING BREAKS 530	650	200	400	0	100	15	108
3 MAIN BUSHING GASKET LEAKS 30 400 100 450 0 100 15 108 2 MAIN BUSHING GASKET LEAKS 20 400 200 350 0 100 15 108 2 MAIN BUSHING GASKET LEAKS 20 400 200 350 0 100 15 81 1 MAIN BUSHING GASKET LEAK 10 400 250 250 0 100 15 54 TR 7 500KV TR 1 Phi COMP BUSH 2 8 1.5 24 100 15 54 MAIN BUSHING GASKET LEAK 10 1000 250 250 0 100 15 54 TR 8 500KV TR 3 Phi COMP BUSH 6 8 1.5 24 101 100 250 200 100 15 144 2 MAIN BUSHING BREAKS 780 1250 100 500 0 100 15 144 2 MAIN BUSHING BREAKS 530 1250 200 400 0 100 15 108 1 MAIN BUSHING GASKET LEAKS 30 1000 100 <td></td> <td>1 MAIN BUSHING BREAK 280</td> <td>650</td> <td>300</td> <td>300</td> <td>0</td> <td>100</td> <td>15</td> <td>72</td>		1 MAIN BUSHING BREAK 280	650	300	300	0	100	15	72
2 MAIN BUSHING GASKET LEAKS 20 400 200 350 0 100 15 81 1 MAIN BUSHING GASKET LEAK 10 400 250 250 0 100 15 81 TR 7 500KV TR 1 Phi COMP BUSH 2 8 1.5 24 72 MAIN BUSHING GASKET LEAK 10 1000 250 250 0 100 15 54 TR 7 500KV TR 1 Phi COMP BUSH 2 8 1.5 24 72 MAIN BUSHING GASKET LEAK 10 1000 250 250 0 100 15 54 TR 8 500KV TR 3 Phi COMP BUSH 6 8 1.5 24 72 MAIN BUSHING BREAKS 780 1250 100 500 0 100 15 144 2 MAIN BUSHING BREAKS 530 1250 100 0 100 15 108 1 MAIN BUSHING GASKET LEAKS 30 1000 100 450 100 15 108 1 MAIN BUSHING GASKE		3 MAIN BUSHING GASKET LEAKS 30	400	100	450	0	100	15	108
1 MAIN BUSHING GASKET LEAK 10 400 250 250 0 100 15 54 TR 7 500KV TR 1 Phi COMP BUSH 2 8 1.5 24 MAIN BUSHING BREAK 260 1250 250 0 100 15 54 TR 7 500KV TR 1 Phi COMP BUSH 2 8 1.5 24 100 15 72 MAIN BUSHING GASKET LEAK 10 1000 250 250 0 100 15 72 MAIN BUSHING BREAK 260 1250 100 500 0 100 15 74 TR 8 500KV TR 3 Phi COMP BUSH 6 8 1.5 24 104 100 15 144 2 MAIN BUSHING BREAKS 780 1250 100 500 0 100 15 108 1 MAIN BUSHING BREAK 280 1250 300 300 0 100 15 108 2 MAIN BUSHING GASKET LEAKS 30 1000 100 450 0 100 15 108 2 MAIN BUSHIN		2 MAIN BUSHING GASKET LEAKS 20	400	200	350	0	100	15	81
TR 7 500KV TR 1 Phi COMP BUSH 2 8 1.5 24 MAIN BUSHING BREAK 260 1250 250 300 0 100 15 72 MAIN BUSHING GASKET LEAK 10 1000 250 250 0 100 15 72 MAIN BUSHING GASKET LEAK 10 1000 250 250 0 100 15 74 TR 8 500KV TR 3 Phi COMP BUSH 6 8 1.5 24 74 3 MAIN BUSHING BREAKS 780 1250 100 500 0 100 15 144 2 MAIN BUSHING BREAKS 530 1250 200 400 0 100 15 108 1 MAIN BUSHING BREAK 280 1250 300 300 0 100 15 108 2 MAIN BUSHING GASKET LEAKS 30 1000 100 450 100 15 108 2 MAIN BUSHING GASKET LEAKS 20 1000 200 350 100 15		1 MAIN BUSHING GASKET LEAK 10	400	250	250	0	100	15	54
MAIN BUSHING BREAK 260 1250 250 300 0 100 15 72 MAIN BUSHING GASKET LEAK 10 1000 250 250 0 100 15 54 TR 8 500KV TR 3 Phi COMP BUSH 6 8 1.5 24 3 MAIN BUSHING BREAKS 780 1250 100 500 0 100 15 144 2 MAIN BUSHING BREAKS 780 1250 200 400 0 100 15 108 1 MAIN BUSHING BREAK 280 1250 300 300 0 100 15 108 1 MAIN BUSHING BREAK 280 1250 300 300 0 100 15 108 1 MAIN BUSHING GASKET LEAKS 30 1000 100 450 0 100 15 108 2 MAIN BUSHING GASKET LEAKS 20 1000 200 350 0 100 15 108 2 MAIN BUSHING GASKET LEAKS 10 1000 250 250 0 100 15 54 SA 1 220KV SA LOW DESIGN 1 4 1.3 4 FAILURE OF PORCLN COLUMN 20 550 200 200 .5 150 7 6 SA 2 220KV SA MED DESIGN 1 4 1.3	TR 7	500KV TR 1 Phi COMP BUSH	2	200	1 5	24	TOO	10	51
MAIN BUSHING GASKET LEAK 10 1000 250 250 0 100 15 54 TR 8 500KV TR 3 Phi COMP BUSH 6 8 1.5 24 54 3 MAIN BUSHING BREAKS 780 1250 100 500 0 100 15 54 2 MAIN BUSHING BREAKS 780 1250 100 500 0 100 15 144 2 MAIN BUSHING BREAKS 530 1250 200 400 0 100 15 108 1 MAIN BUSHING BREAK 280 1250 300 300 0 100 15 108 2 MAIN BUSHING GASKET LEAKS 20 1000 200 350 0 100 15 108 2 MAIN BUSHING GASKET LEAKS 20 1000 200 350 0 100 15 108 2 MAIN BUSHING GASKET LEAK 10 1000 250 250 0 100 15 54 SA 1 220KV SA LOW DESIGN 1 4 1.3 4 4 FAILURE OF PORCLN COLUMN 2	110 /	MAIN BUSHING BREAK 260	1250	250	300	0	100	15	72
TR 8 500KV TR 3 Phi COMP BUSH 6 8 1.5 24 3 MAIN BUSHING BREAKS 780 1250 100 500 0 100 15 144 2 MAIN BUSHING BREAKS 530 1250 200 400 0 100 15 144 2 MAIN BUSHING BREAKS 530 1250 200 400 0 100 15 144 2 MAIN BUSHING BREAKS 530 1250 200 400 0 100 15 108 1 MAIN BUSHING GASKET LEAKS 280 1250 300 300 0 100 15 108 2 MAIN BUSHING GASKET LEAKS 20 1000 200 350 0 100 15 108 2 MAIN BUSHING GASKET LEAKS 20 1000 200 350 0 100 15 108 2 MAIN BUSHING GASKET LEAKS 20 1000 250 250 0 100 15 54 SA 1 20KV SA LOW DESIGN 1 4 1.3 4 4 FAILURE OF PORCLN COLUMN <		MAIN BUSHING CASKET LEAK 10	1000	250	250	0	100	15	54
3 MAIN BUSHING BREAKS 780 1250 100 500 0 100 15 144 2 MAIN BUSHING BREAKS 530 1250 200 400 0 100 15 108 1 MAIN BUSHING BREAK 280 1250 300 300 0 100 15 108 1 MAIN BUSHING BREAK 280 1250 300 300 0 100 15 108 2 MAIN BUSHING GASKET LEAKS 30 1000 100 450 0 100 15 108 2 MAIN BUSHING GASKET LEAKS 20 1000 200 350 0 100 15 108 2 MAIN BUSHING GASKET LEAKS 20 1000 200 350 0 100 15 108 1 MAIN BUSHING GASKET LEAK 10 1000 250 250 0 100 15 54 SA 1 220KV SA LOW DESIGN 1 4 1.3 4 1.3 4 FAILURE OF PORCLN COLUMN 20 550 200 200 .5 150 7 6 SA	TR 8	500KV TR 3 Phi COMP BUSH	1000	200	1 5	24	TOO	10	54
2 MAIN BUSHING BREAKS 530 1250 100 100 15 101 2 MAIN BUSHING BREAKS 530 1250 200 400 0 100 15 108 1 MAIN BUSHING BREAK 280 1250 300 300 0 100 15 108 3 MAIN BUSHING GASKET LEAKS 30 1000 100 450 0 100 15 108 2 MAIN BUSHING GASKET LEAKS 20 1000 200 350 0 100 15 108 2 MAIN BUSHING GASKET LEAKS 20 1000 200 350 0 100 15 108 1 MAIN BUSHING GASKET LEAK 10 1000 250 250 0 100 15 54 SA 1 220KV SA LOW DESIGN 1 4 1.3 4 4 FAILURE OF PORCLN COLUMN 20 550 200 200 .5 150 7 6 SA 220KV SA MED DESIGN 1 4 1.3 4 4 1.3 4	110 0	3 MAIN BUSHING BREAKS 780	1250	100	500	0	100	15	144
1 MAIN BUSHING BREAK 280 1250 200 400 0 100 15 72 3 MAIN BUSHING GASKET LEAKS 30 1000 100 450 0 100 15 72 3 MAIN BUSHING GASKET LEAKS 30 1000 100 450 0 100 15 108 2 MAIN BUSHING GASKET LEAKS 20 1000 200 350 0 100 15 108 1 MAIN BUSHING GASKET LEAKS 20 1000 250 250 0 100 15 81 1 MAIN BUSHING GASKET LEAK 10 1000 250 250 0 100 15 54 SA 1 220KV SA LOW DESIGN 1 4 1.3 4 4 FAILURE OF PORCLN COLUMN 20 550 200 200 .5 150 7 6 SA 2 20KV SA HIGH SEISMIC 1 4 1.3 4 4		2 MAIN BUSHING BREAKS 530	1250	200	400	0	100	15	108
3 MAIN BUSHING GASKET LEAKS 30 1000 100 450 0 100 15 108 2 MAIN BUSHING GASKET LEAKS 20 1000 200 350 0 100 15 108 1 MAIN BUSHING GASKET LEAKS 20 1000 200 350 0 100 15 81 1 MAIN BUSHING GASKET LEAK 10 1000 250 250 0 100 15 81 SA 1 220KV SA LOW DESIGN 1 4 1.3 4 4 1.3 4 FAILURE OF PORCLN COLUMN 20 550 200 200 .5 150 7 6 SA 2 220KV SA MED DESIGN 1 4 1.3 4 4 1.3 4 FAILURE OF PORCLN COLUMN 20 650 200 200 .5 150 7 6 SA 3 220KV SA HIGH SEISMIC 1 4 1.3 4 4		1 MAIN BUSHING BREAK 280	1250	300	300	0	100	15	72
2 MAIN BUSHING GASKET LEAKS 20 1000 200 350 0 100 15 81 1 MAIN BUSHING GASKET LEAK 10 1000 250 250 0 100 15 81 1 MAIN BUSHING GASKET LEAK 10 1000 250 250 0 100 15 81 SA 1 220KV SA LOW DESIGN 1 4 1.3 4 4 1.3 4 FAILURE OF PORCLN COLUMN 20 550 200 200 .5 150 7 6 SA 2 220KV SA MED DESIGN 1 4 1.3 4 4 FAILURE OF PORCLN COLUMN 20 650 200 200 .5 150 7 6 SA 3 220KV SA HIGH SEISMIC 1 4 1.3 4		3 MAIN BUSHING GASKET IFAKS 30	1000	100	150	0	100	15	108
1 MAIN BUSHING GASKET LEAK 10 1000 250 250 0 100 15 54 1 MAIN BUSHING GASKET LEAK 10 1000 250 250 0 100 15 54 SA 1 220KV SA LOW DESIGN 1 4 1.3 4 4 FAILURE OF PORCLN COLUMN 20 550 200 200 .5 150 7 6 SA 2 220KV SA MED DESIGN 1 4 1.3 4 4 FAILURE OF PORCLN COLUMN 20 650 200 200 .5 150 7 6 SA 3 220KV SA HIGH SEISMIC 1 4 1.3 4 4		2 MAIN BUSHING GASKET LEAKS 30	1000	200	350	0	100	15	81
SA 1 220KV SA LOW DESIGN 1 4 1.3 4 FAILURE OF PORCLN COLUMN 20 550 200 200 .5 150 7 6 SA 2 220KV SA MED DESIGN 1 4 1.3 4 1.3 4 FAILURE OF PORCLN COLUMN 20 650 200 200 .5 150 7 6 SA 2 220KV SA MED DESIGN 1 4 1.3 4 6 SA 3 220KV SA HIGH SEISMIC 1 4 1.3 4 6		1 MAIN BUSHING GASKET LEAKS 20	1000	250	250	0	100	15	54
FAILURE OF PORCLN COLUMN 20 550 200 200 .5 150 7 6 SA 2 220KV SA MED DESIGN 1 4 1.3 4 FAILURE OF PORCLN COLUMN 20 650 200 200 .5 150 7 6 SA 3 220KV SA HIGH SEISMIC 1 4 1.3 4	SZ 1	220KV SA LOW DESIGN	1	2.50 Л	200 1 3	Л	TOO	тJ	54
SA 2 200 200 200 200 100 7 6 SA 2 220KV SA MED DESIGN 1 4 1.3 4 FAILURE OF PORCLN COLUMN 20 650 200 200 .5 150 7 6 SA 3 220KV SA HIGH SEISMIC 1 4 1.3 4	JA I	ENTITIE OF DODOLN COLUMN 20		200	200	ч 5	150	7	E
FAILURE OF PORCLN COLUMN 20 650 200 200 .5 150 7 6 SA 3 220KV SA HIGH SEISMIC 1 4 1.3 4	SA 0	220KU SA MED DESIGN COLUMN 20	1	200 Л	200 . 1 3	Л	TJU	1	0
SA 3 220KV SA HIGH SEISMIC 1 4 1.3 4	JA Z	FATTIBE OF DOBCIN COTTIMN 20	1 650	200	200	4 5	150	7	6
	SA 3	220KV SA HIGH SEISMIC	1	4	1.3	4	T 0 0	,	0

		FAILURE OF PORCLN COLUMN	20	750	200	200	.5	150	7	6
SA	4	220KV SA COMP COL		1	4	1.3	4			
		FAILURE OF COMP COLUMN	20	1250	200	200	.5	150	7	6
SA	5	500KV SA LOW DESIGN		1	3	1.3	4			
	-	FAILURE OF PORCLN COLUMN	30	250	100	250	1	100	5	6
сл	6	500KU SA MED DESICN	00	1	700	1 3	- 1	100	0	Ŭ
SA	0	SUURV SA MED DESIGN	2.0	2 E O	100	1.5	1	100	F	C
a a	-	FAILURE OF PORCLN COLUMN	30	350	TUU	250	Ţ	100	5	0
SA	/	500KV SA HIGH SEISMIC		1	3	1.3	4		_	
		FAILURE OF PORCLN COLUMN	30	450	100	250	1	100	5	6
SA	8	500KV SA COMP COL		1	3	1.3	4			
		FAILURE OF COMP COLUMN	30	1100	100	250	1	100	5	6
СВ	1	220KV DEAD TANK SF-6		2	10	2	24			
		2 PORCELAIN COLUMNS FAIL	250	1200	200	400	0	400	20	40
		1 PORCELAIN COLUMN FAILS	125	1200	200	300	0	400	20	32
CB	2	220KW DEAD TANK OII	120	200	10	200	24	100	20	52
CD	2	2 DODCELAIN COLUMNS FAIL	250	1200	200	400	27	100	20	10
		2 PORCELAIN COLUMNS FAIL	105	1200	200	400	0	400	20	40
	~	I PORCELAIN COLUMN FAILS	125	1200	200	300	0	400	20	32
СВ	3	220KV SIEMANS LIVE TANK		2	3	1	12			
		2 PORCELAIN COLUMNS FAIL	250	700	200	400	.5	400	5	60
		1 PORCELAIN COLUMN FAILS	100	650	200	200	.5	400	5	40
СВ	4	220KV GE ATB 4-6		3	4	1	72			
		2 PORCELAIN COLUMNS FAIL	250	350	150	150	2	100	5	80
		1 PORCELAIN COLUMN FAILS	125	300	150	150	2	100	5	65
		COLUMN BASE GASKET LEAK	30	250	150	100	2	75	5	30
CB	5	220KW CE ATE 7	00	200	700	1 1	72	10	0	50
CD	J	2 DODCELAIN COLUMNIC FAIL	250	200	75	200	2	10	F	0.0
		2 PORCELAIN COLUMNS FAIL	105	200	75	200	2	40	5	00 C F
~ ~	~	I PORCELAIN COLUMN FAILS	125	150	/5	150	2	40	5	65
СВ	6	220KV GE ATB230 W/GKEEPER		3	3	1	12			
		2 PORCELAIN COLUMNS FAIL	250	450	150	150	1	200	5	80
		1 PORCELAIN COLUMN FAILS	125	400	150	150	1	200	5	65
		LOSE GAS PRESSURE	30	300	100	150	1	100	5	30
СВ	7	220KV CIRCUIT SWITCHER		2	5	1.5	36			
		2 PORCELAIN COLUMNS FAIL	150	850	200	400	. 5	400	5	60
		1 PORCELAIN COLUMN FAILS	100	800	250	250	5	400	5	4 0
CP	Q	230 POCIES	100	2000	10	200	• • •	100	0	10
СВ	0	2 DODCELAIN COLUMNIC FAIL	65	1200	200	400	24	100	7	1
		2 PORCELAIN COLUMNS FAIL	65	1200	200	400	.5	400	7	1
	~	I PORCELAIN COLUMN FAILS	65	1200	200	300	.5	400	/	T
СВ	9	230 BOGUS		2	10	2	24			
		2 PORCELAIN COLUMNS FAIL	65	1200	200	400	.5	400	7	1
		1 PORCELAIN COLUMN FAILS	65	1200	200	300	.5	400	7	1
СВ	10	500 kV DEAD TANK SF-6		2	8	2	36			
		2 PORCELAIN COLUMNS FAIL	85	1000	200	400	.5	400	7	60
		1 PORCELAIN COLUMN FAILS	85	1000	200	300	.5	400	7	40
CB	11	500KV MODERN SEISMIC PUFFEI	R	2	3	1	72			
02		2 PORCELAIN COLUMNS FAIL	40	1200	200	400	5	400	7	60
		1 DODCELAIN COLUMN FAILS	40	1200	200	200	.5	400	, 7	45
an	10	I PORCELAIN COLOMN FAILS	40	1200	200	300	• 5	400	/	40
СВ	12	SUUKV WES PUFFER		2	3	1	12		_	0.0
		2 PORCELAIN COLUMNS FAIL	40	1200	200	400	.5	400	/	90
		1 PORCELAIN COLUMN FAILS	40	1200	200	300	.5	400	7	65
СВ	13	500KV GE ATB		3	2	1	72			
		2 PORCELAIN COLUMNS FAIL	500	350	200	200	1.5	100	5	90
		1 PORCELAIN COLUMN FAILS	350	300	150	200	1.5	100	5	65
		COLUMN BASE GASKET LEAK	250	250	100	100	1.5	100	5	30
CB	14	500KV COGENAL OLDER		1	1	1	72		-	
20		COLLAPSE OF ALL COLUMNS	500	300	100	250	2	150	2	100
CD	15	500KU OTHER NON STICKTO IT	000	200	- UU 2	200	2 70	± 0 0	2	TOO
CD	тJ	2 DODCETATN COTINNE EAT	500	3E0	200	1 1	/ム 1 F	100	F	0.0
		2 FURCELAIN CULUMNS FAIL	000	330	200	200	1.J	100	5 -	90
		I PORCELAIN COLUMN FAILS	350	300	15U	200	1.5	ΤUΟ	5	65

		COLUMN BASE GASKET LEAK	250	250	100	100	1.5	100	5	30
СВ	16	500KV CIRCUIT SWITCHER		2	5	1.5	36			
		2 PORCELAIN COLUMNS FAIL	350	750	200	400	.5	400	5	70
		1 PORCELAIN COLUMN FAILS	200	700	250	250	.5	400	5	50
СТ	1	220KV CT LOW SEISMIC		1	5	1.5	36			
		PORCELAIN COLUMN FAILURE	20	400	200	400	1	250	7	24
СТ	2	220KV CT MED SEISMIC		1	5	1.5	36			
		PORCELAIN COLUMN FAILURE	20	500	200	400	1	250	7	24
СТ	3	220KV CT HIGH SEISMIC		1	5	1.5	36			
		PORCELAIN COLUMN FAILURE	20	600	200	400	1	250	7	24
СТ	4	220KV CT COMPOSITE		1	5	1.5	36			
		COMPOSITE COLUMN FAILURE	20	1500	200	400	1	250	7	24
СТ	5	500KV CT LOW SEISMIC		1	3.5	1.5	36			
		PORCELAIN COLUMN FAILURE	30	300	100	300	1	250	5	32
СТ	6	500KV CT MED SEISMIC		1	3.5	1.5	36			
		PORCELAIN COLUMN FAILURE	30	450	150	200	1	250	5	32
СТ	7	500KV CT HIGH SEISMIC		1	3.5	1.5	36			
		PORCELAIN COLUMN FAILURE	30	500	150	200	1	250	5	32
СТ	8	500KV CT COMPOSITE		1	3.5	1.5	36			
		COMPOSITE COLUMN FAILURE	30	1500	200	200	1	250	5	32
DS	1	220KV DS LOW DESIGN		3	4	1.3	24			
		2 PORCELAIN COLUMNS FAIL	8	650	200	450	.5	300	7	32
		1 PORCELAIN COLUMN FAILS	5	600	200	450	.5	300	7	24
		CONTACTS BURN/ADJUSTMENT	2	400	100	300	.5	200	7	6
DS	2	220KV DS MEDIUM DESIGN	_	3	4	1.3	2.4			-
20		2 PORCELAIN COLUMNS FAIL	8	750	200	4.50	. 5	300	7	.32
		1 PORCELAIN COLUMN FAILS	5	700	200	4.50	.5	300	7	2.4
		CONTACTS BURN/ADJUSTMENT	2	500	50	300	5	200	7	6
DS	З	220KV DS HIGH DESIGN	2	3	4	13	.0	200	,	0
00	0	2 PORCELAIN COLUMNS FAIL	8	850	200	450	5	300	7	32
		1 PORCELAIN COLUMN FAILS	5	800	200	450	• 5	300	7	24
		CONTACTS BURN/ADJUSTMENT	2	700	50	300	• 5	200	7	6
PG	Δ	220KV DS COMPOSITE DESIGN	2	700 3	<u></u>	1 3	.5	200	1	0
00	Т	2 COMPOSITE COLUMNS FALL	8	1500	200	150	5	300	7	30
		1 COMPOSITE COLUMN FALLS	5	1300	200	450	• 5	300	י ד	24
		CONTACTS BURN / ADJUSTMENT	2	£00	50	300	• 5	200	י ד	24
рg	5	500KW DS LOW SEISMIC	2	3	30	1 3	• 5	200	/	0
00	J	2 POPCEIAIN COLUMNS FAIL	10	150	200	300	1 5	100	5	18
		1 DORCELAIN COLUMN FAILS	2 2 0	350	150	300	1 5	100	5	36
		CONTACTS BIDN / AD TISTMENT	5	300	150	300	1.J	50	5	20
DC	6	500KW DG MED SEIGMIC	J	300	7.00 T.00	1 3	1.J 36	50	J	0
00	0	2 POPCEIAIN COLUMNS FAIL	10	550	150	300	1 5	100	5	18
		1 POPCEIAIN COLUMN FAILS	20	150	150	300	1 5	100	5	36
		CONTACTS DIDN / AD THE THENT	5	250	150	200	1.J	50	5	0
DC	7	500KW DS HICH SEISMIC	J	300	100	1 2	1.J 26	50	J	0
DS	/	2 DODCELAIN COLUMNS EAT	1.0	5 6 5 0	150	200	20 1 E	100	F	10
		2 PORCELAIN COLUMNS FAIL	10	630 550	150	300	1 5	100	5	40
		I PORCELAIN COLOMN FAILS	0	150	150	300	1 5	100	5	30
DO	0	CONTACTS BURN/ADJUSTMENT	5	450	100	300	1.5	50	5	0
DS	8	SUURV DS COMPOSITE	1.0	1 - 0 0	1 - 0	1.3	30 1 F	100	F	1.0
		2 COMPOSITE COLUMNS FAIL	TO	1200	150	300	1.5	100	Э Г	48
		I COMPOSITE COLUMN FAILS	8	1300 550	150	300	1.5	TUU	5	36
~~	1	CONTACTS BURN/ADJUSTMENT	5	550	120	300	1.5	50	Э	8
	T	ZZURV COVT LOW SEISMIC	1 0		4	1	∠4 -	0 F 0	л	1.0
~~	0	COLUMN FALLURE	ΤU	330	UC1	∠∪U ₁	. 5	∠30	4	12
CC	2	ZZUKV COVI MED SEISMIC	1 0		4 1 F O		24 -	0 5 0	4	1.0
~~	2	COLUMN FAILURE	ΤU	430	UC1	∠∪U ₁	. 5	∠30	4	12
	3	ZZURV COVT HIGH SEISMIC	1 0		4 1 E O	1	∠4 ⊑	0 E 0	л	1.0
		COLUMIN FALLUKE	ΤU	550	тЭО	200	. 5	ZOU	4	$\perp \angle$

CC	4	220KV CCVT COM SEISMIC		1	4	1	24			
		COLUMN FAILURE	10	1500	150	200	.5	250	4	12
CC	5	500KV CCVT LOW SEISMIC		1	4	1	24			
		COLUMN FAILURE	10	250	150	200	.5	250	4	16
СС	6	500KV CCVT MED SEISMIC		1	4	1	24			
		COLUMN FAILURE	10	350	150	200	.5	250	4	16
CC	7	500KV CCVT HIGH SEISMIC		1	4	1	24			
		COLUMN FAILURE	10	500	150	200	.5	250	4	16
CC	8	500KV CCVT COM SEISMIC		1	4	1	24			
		COLUMN FAILURE	10	1500	150	200	.5	250	4	16
РТ	1	220KV PTRANS LOW SEIS		1	4	1	24			
		COLUMN FAILURE	15	400	150	200	.5	250	4	12
РТ	2	220KV PTRANS MED SEIS		1	4	1	24			
		COLUMN FAILURE	15	500	150	200	.5	250	4	12
РТ	3	220KV PTRANS HIGH SEIS		1	4	1	24			
		COLUMN FAILURE	15	600	150	200	.5	250	4	12
РТ	4	220KV PTRANS COM SEIS		1	4	1	24			
		COLUMN FAILURE	15	1500	150	200	.5	250	4	12
РТ	5	500KV PTRANS LOW SEIS		1	4	1	24			
	-	COLUMN FAILURE	15	300	150	200	.5	250	4	16
РТ	6	500KV PTRANS MED SEIS	-	1	4	1	24			
		COLUMN FAILURE	15	400	150	200	.5	250	4	16
РТ	7	500KV PTRANS HIGH SEIS	-	1	4	1	24			
		COLUMN FAILURE	15	500	150	200	.5	250	4	16
РТ	8	500KV PTRANS COM SEIS		1	4	1	24			
		COLUMN FAILURE	15	1500	150	200	.5	250	4	16
ΡI	1	220KV POST INSUL LOW		1	6	1.4	12			
		COLUMN FAILURE	2	600	150	250	.5	250	4	4
ΡI	2	220KV POST INSUL MED		1	6	1.4	12			
		COLUMN FAILURE	2	700	150	250	.5	250	4	4
ΡI	3	220KV POST INSUL HIGH		1	6	1.4	12			
		COLUMN FAILURE	2	800	150	250	.5	250	4	4
ΡI	4	220KV POST INSUL COM		1	6	1.4	12			
		COLUMN FAILURE	2	1500	150	250	.5	250	4	4
ΡI	5	500KV POST INSUL LOW		1	6	1.4	12			
		COLUMN FAILURE	2	500	150	250	.5	250	4	6
ΡI	6	500KV POST INSUL MED		1	6	1.4	12			
		COLUMN FAILURE	2	600	150	250	.5	250	4	6
ΡI	7	500KV POST INSUL HIGH		1	6	1.4	12			
		COLUMN FAILURE	2	700	150	250	.5	250	4	6
ΡI	8	500KV POST INSUL COM		1	6	1.4	12			
		COLUMN FAILURE	2	1500	150	250	.5	250	4	6
BS	1	220KV BUS FOR SAG CALC		1	2	1.0	12			
		NO FAILURE	1	1000	1000	1000	1.	1000	4	6
BS	2	500KV BUS FOR SAG CALC		1	2	1.0	12			
		NO FAILURE	1	1000	1000	1000	1.	1000	4	8
ΡH	1	220KV POT HEAD		1	2	1.0	12			
		PORCELAIN FAILURE	1	1000	1000	1000	1.	1000	4	32
ΡH	2	500KV POT HEAD		1	2	1.0	12			
		PORCELAIN FAILURE	1	1000	1000	1000	1.	1000	4	48
WΤ	1	WAVE TRAP FOR SAG CALC		1	1	1.0	12			
		ATTACHMENT FAILURE	1	1000	100	500	1.	500	4	24

Appendix 3: Hypothetical Network Database

@, SUBSTATION A1/AA1,01/19/03 #, POSITION, 220, 1; P,1N-412,BS1999,DS11333,CB01333,DS31; L, SUBSTATION B1, DS31333, DS11333; P,1S-612,DS11333,CB01333,DS31999,BS1; #, POSITION, 220, 2; P, 2N-422, BS1999, DS11333, CB01333, DS31; L, SUBSTATION B1, DS31333, DS11333; P,2S-622,DS11333,CB01333,DS31999,BS1; #, POSITION, 220, 3; P, 3N-432, BS1999, DS11333, CB01333, DS31; L, SUBSTATION B2, DS31333, DS11333; P, 3S-632, DS11333, CB01333, DS31999, BS1; #, POSITION, 220, 4; P,4N-442,BS1999,DS11333,CB01333,DS31; L, SUBSTATION B2, DS31333, DS11333; P,4S-642,DS11333,CB01333,DS31999,BS1; #, POSITION, 220, 5; P, 5N-452, BS1999, DS11333, CB01333, DS31; L, BANK 1AA, DS31333; #, POSITION, 220, 5; L, BANK 2AA, DS11333; P,5S-652,DS11333,CB01333,DS31999,BS1; #, POSITION, 500, 1; P,1N-711,BS6999,DS16; L, BANK 1AA, DS16333, SA5333; #, POSITION, 500, 1; L, BANK 2AA, DS36333, SA5333; P,1S-913,DS31333,BS6; #, POSITION, 500, 2; P, 2N-722, BS6999, DS16333, CB10333, DS36; L, SOURCE 2, DS36333, DS16333; P,2S-922,DS16333,CB10333,DS36999,BS6; #, POSITION, 500, 3; P, 3N-732, BS6999, DS16333, CB10333, DS36; L, SOURCE 1, DS36333, DS16333; P, 3T-832, DS16333, CB10333, DS36; L, SUBSTATION AA4, DS36333, DS16333; P, 3S-932, DS16333, CB10333, DS36999, BS6; #, POSITION, 220, 1; P,1N-412,BS1999,DS11333,CB01333,D3S1; L, SUBSTATION B1, DS31333, DS11333; P,1S-612,DS11333,CB01333,DS31999,BS1; #, POSITION, 220, 2; P, 2N-422, BS1999, DS11333, CB01333, DS31; L, SUBSTATION B1, DS31333, DS11333; P,2S-622,DS11333,CB01333,DS31999,BS1; #, POSITION, 220, 3; P, 3N-432, BS1999, DS11333, CB01333, DS31; L, SUBSTATION B2, DS31333, DS11333; P, 3S-632, DS11333, CB01333, DS31999, BS1; #, BANK, 1AA, ID5, 1, AN9, RAD9, RAD9; A, DCSAH555, DCSAL155, SABSH5, SABSL5, TERT9; #, BANK, 1AA, ID5, 1, AN9, RAD9, RAD9; B, DCSAH555, DCSAL155, SABSH5, SABSL5, TERT9;

```
#, BANK, 1AA, ID5, 1, AN9, RAD9, RAD9;
C, DCSAH555, DCSAL155, SABSH5, SABSL5, TERT9;
#, BANK, 2AA, ID5, 1, AN9, RAD9, RAD9;
A, DCSAH555, DCSAL155, SABSH5, SABSL5, TERT9;
#, BANK, 2AA, ID5, 1, AN9, RAD9, RAD9;
B, DCSAH555, DCSAL155, SABSH5, SABSL5, TERT9;
#, BANK, 2AA, ID5, 1, AN9, RAD9, RAD9;
C, DCSAH555, DCSAL155, SABSH5, SABSL5, TERT9;
#, MISC;
B, DDSAGC, DESECC, DESECC, DESELT, D
```

P, PTN5666, PTS5666, PTN1555, PTS1555;

```
@, SUBSTATION A4/AA4,01/21/03
#, POSITION, 500, 2;
P,2N-722,BS6999,DS16333,CB10333,DS36;
L, SUBSTATION AA1, DS36333, DS16333;
P,2S-922,DS16333,CB10333,DS36999,BS6;
#, POSITION, 500, 3;
P, 3N-732, BS6999, DS16333, CB10333, DS36;
L, SOURCE 3, DS36333, DS16333;
P, 3S-932, DS16333, CB10333, DS36999, BS6;
#, POSITION, 500, 4;
P, 4N-742, BS6999, DS16333, CB10333, DS36;
L, SOURCE 4, DS36333, DS16333;
P,4S-942,DS16333,CB10333,DS36999,BS6;
#, POSITION, 500, 5;
P, 5N-751, BS6999, DS16;
L, BANK 1AA, DS16333, SA5333;
#, POSITION, 500, 5;
L, BANK 2AA, DS36333, SA5333;
P,5S-953,DS36333,BS6;
#, POSITION, 220, 1;
P,1N-412,BS1999,DS11333,CB01333,DS31;
L, BANK 1AA, DS31333;
#, POSITION, 220, 1;
L, BANK 2AA, DS1333;
P,1S-612,DS11333,CB01333,DS31999,BS1;
#, POSITION, 220, 2;
P,2N-422,BS1999,DS11333,CB01333,DS31;
L, SUBSTATION B3, DS31333, DS11333;
P,2S-622,DS11333,CB01333,DS31999,BS1;
#, POSITION, 220, 3;
P, 3N-432, BS1999, DS11333, CB01333, DS31;
L, SUBSTATION B4, DS31333, DS11333;
P, 3T-532, DS11333, CB01333, DS31;
L, SUBSTATION B3, DS31333, DS11333;
P,3S-632,DS11333,CB01333,DS31999,BS1;
#, POSITION, 220, 4;
P,4N-442,BS1999,DS11333,CB01333,DS31;
L, SUBSTATION B4, DS31333, DS11333;
P,4S-642,DS11333,CB01333,DS31999,BS1;
#, POSITION, 220, 5;
P, 5N-452, BS1999, DS11333, CB01333, DS31;
L, BANK 1A, DS31333;
#, POSITION, 220, 5;
L, BANK 2A, DS11333;
P,5S-652,DS11333,CB01333,DS31999,BS1;
#, BANK, 2AA, ID5, 1, AN9, RAD9, RAD9;
```

```
A, DCSAH555, DCSAL155, SABSH5, SABSL5, TERT9;
#, BANK, 2AA, ID5, 1, AN9, RAD9, RAD9;
B, DCSAH555, DCSAL155, SABSH5, SABSL5, TERT9;
#, BANK, 2AA, ID5, 1, AN9, RAD9, RAD9;
C, DCSAH555, DCSAL155, SABSH5, SABSL5, TERT9;
#, BANK, 1A, ID2, 3, AN9, RAD4, RAD4;
A, DCSAH140, SABSH4;
B, DCSAH140, SABSH4;
C, DCSAH140, SABSH4;
#, BANK, 2A, ID2, 3, AN9, RAD4, RAD4;
A, DCSAH140, SABSH4;
B, DCSAH140, SABSH4;
C, DCSAH140, SABSH4;
#,MISC;
P, PTN5666, PTS5666, PTN1555, PTS1555;
@,SUBSTATION B1,01/23/03
#, POSITION, 220, 1;
P,1N-412,BS1999,DS11333,CB01333,D3S1;
L, SUBSTATION A1, DS31333, DS11333;
P,1S-612,DS11333,CB01333,DS31999,BS1;
#, POSITION, 220, 2;
P,2N-422,BS1999,DS11333,CB01333,DS31;
L, SUBSTATION A1, DS31333, DS11333;
P,2S-622,DS11333,CB01333,DS31999,BS1;
#, POSITION, 220, 3;
P, 3N-432, BS1999, DS11333, CB01333, DS31;
L, SUBSTATION C1, DS31333, DS11333;
P, 3S-632, DS11333, CB01333, DS31999, BS1;
#, POSITION, 220, 4;
P,4N-442,BS1999,DS11333,CB01333,DS31;
L, SUBSTATION B2, DS31333, DS11333;
P,4T-542,DS11333,CB01333,DS31;
L, SUBSTATION C2, DS31333, DS11333;
P,4S-642,DS11333,CB01333,DS31999,BS1;
#, POSITION, 220, 5;
P, 5N-452, BS1999, DS11333, CB01333, DS31;
L, BANK 1A, DS31333;
#, POSITION, 220, 5;
L, BANK 2A, DS11333;
P,5S-652,DS11333,CB01333,DS31999,BS1;
#, BANK, 1A, ID2, 3, AN9, RAD4, RAD4;
A, DCSAH140, SABSH4;
B, DCSAH140, SABSH4;
C, DCSAH140, SABSH4;
#, BANK, 2A, ID2, 3, AN9, RAD4, RAD4;
A, DCSAH140, SABSH4;
B, DCSAH140, SABSH4;
C, DCSAH140, SABSH4;
#,MISC;
P, PTN1555, PTS1555;
```

@,SUBSTATION B2,01/23/03
#,POSITION,220,1;
P,1N-412,BS1999,DS11333,CB01333,DS31;
L,SUBSTATION A1,DS31333,DS11333;

```
P,1T-512,DS11333,CB01333,DS31;
L, SUBSTATION B1, DS31333, DS11333;
P,1S-612,DS11333,CB01333,DS31999,BS1;
#, POSITION, 220, 2;
P,2N-422,BS1999,DS11333,CB01333,D3S1;
L, SUBSTATION A1, DS31333, DS11333;
P,2S-622,DS11333,CB01333,DS31999,BS1;
#, POSITION, 220, 3;
P, 3N-432, BS1999, DS11333, CB01333, D3S1;
L, SUBSTATION C2, DS31333, DS11333;
P, 3S-632, DS11333, CB01333, DS31999, BS1;
#, POSITION, 220, 4;
P,4N-442,BS1999,DS11333,CB01333,D3S1;
L, SUBSTATION B3, DS31333, DS11333;
P,4S-642,DS11333,CB01333,DS31999,BS1;
#, POSITION, 220, 5;
P, 5N-452, BS1999, DS11333, CB01333, DS31;
L, BANK 1A, DS31333;
#, POSITION, 220, 5;
L, BANK 2A, DS11333;
P,5S-652,DS11333,CB01333,DS31999,BS1;
#, BANK, 1A, ID2, 3, AN9, RAD4, RAD4;
A, DCSAH140, SABSH4;
B, DCSAH140, SABSH4;
C, DCSAH140, SABSH4;
#, BANK, 2A, ID2, 3, AN9, RAD4, RAD4;
A, DCSAH140, SABSH4;
B, DCSAH140, SABSH4;
C, DCSAH140, SABSH4;
#,MISC;
P, PTN1555, PTS1555;
@, SUBSTATION B3,01/23/03
#, POSITION, 220, 2;
P,2N-422,BS1999,DS11333,CB01333,D3S1;
L, SUBSTATION B2, DS31333, DS11333;
P,2S-622,DS11333,CB01333,DS31999,BS1;
#, POSITION, 220, 3;
P, 3N-432, BS1999, DS11333, CB01333, DS31;
L, SUBSTATION A4, DS31333, DS11333;
P, 3T-532, DS11333, CB01333, DS31;
L, SUBSTATION C3, DS31333, DS11333;
P, 3S-632, DS11333, CB01333, DS31999, BS1;
#, POSITION, 220, 4;
P,4N-442,BS1999,DS11333,CB01333,DS31;
L, SUBSTATION A4, DS31333, DS11333;
P,4T-542,DS11333,CB01333,DS31;
L, SUBSTATION B4, DS31333, DS11333;
P,4S-642,DS11333,CB01333,DS31999,BS1;
#, POSITION, 220, 5;
P, 5N-452, BS1999, DS11333, CB01333, DS31;
L, BANK 1A, DS31333;
#, POSITION, 220, 5;
L, BANK 2A, DS11333;
P,5S-652,DS11333,CB01333,DS31999,BS1;
#, BANK, 1A, ID2, 3, AN9, RAD4, RAD4;
A, DCSAH140, SABSH4;
B, DCSAH140, SABSH4;
```

```
C, DCSAH140, SABSH4;
#, BANK, 2A, ID2, 3, AN9, RAD4, RAD4;
A, DCSAH140, SABSH4;
B, DCSAH140, SABSH4;
C, DCSAH140, SABSH4;
#,MISC;
P, PTN1555, PTS1555;
@,SUBSTATION B4,01/23/03
#, POSITION, 220, 2;
P,2N-422,BS1999,DS11333,CB01333,D3S1;
L, SUBSTATION B3, DS31333, DS11333;
P,2S-622,DS11333,CB01333,DS31999,BS1;
#, POSITION, 220, 3;
P, 3N-432, BS1999, DS11333, CB01333, DS31;
L, SUBSTATION A4, DS31333, DS11333;
P, 3T-532, DS11333, CB01333, DS31;
L, SUBSTATION C3, DS31333, DS11333;
P, 3S-632, DS11333, CB01333, DS31999, BS1;
#, POSITION, 220, 4;
P,4N-442,BS1999,DS11333,CB01333,DS31;
L, SUBSTATION A4, DS31333, DS11333;
P, 4T-542, DS11333, CB01333, DS31;
L, SUBSTATION C4, DS31333, DS11333;
P,4S-642,DS11333,CB01333,DS31999,BS1;
#, POSITION, 220, 5;
P, 5N-452, BS1999, DS11333, CB01333, DS31;
L, BANK 1A, DS31333;
#, POSITION, 220, 5;
L, BANK 2A, DS11333;
P,5S-652,DS11333,CB01333,DS31999,BS1;
#, BANK, 1A, ID2, 3, AN9, RAD4, RAD4;
A, DCSAH140, SABSH4;
B, DCSAH140, SABSH4;
C, DCSAH140, SABSH4;
#, BANK, 2A, ID2, 3, AN9, RAD4, RAD4;
A, DCSAH140, SABSH4;
B, DCSAH140, SABSH4;
C, DCSAH140, SABSH4;
#,MISC;
P, PTN1555, PTS1555;
@, SUBSTATION C1, 01/23/03
#, POSITION, 220, 3;
P, 3N-432, BS1999, DS11333, CB01333, D3S1;
L, SUBSTATION D1, DS31333, DS11333;
P, 3S-632, DS11333, CB01333, DS31999, BS1;
#, POSITION, 220, 4;
P,4N-442,BS1999,DS11333,CB01333,DS31;
L, SUBSTATION B1, DS31333, DS11333;
P,4T-542,DS11333,CB01333,DS31;
L, SUBSTATION C2, DS31333, DS11333;
P,4S-642,DS11333,CB01333,DS31999,BS1;
#, POSITION, 220, 5;
P,5N-451,BS1999,DS31;
L, BANK 1A, DS31333;
#, POSITION, 220, 5;
L, BANK 2A, DS11333;
```

```
P,5S-653,DS31999,BS1;
#, BANK, 1A, ID2, 3, AN9, RAD4, RAD4;
A, DCSAH140, SABSH4;
B, DCSAH140, SABSH4;
C, DCSAH140, SABSH4;
#, BANK, 2A, ID2, 3, AN9, RAD4, RAD4;
A, DCSAH140, SABSH4;
B, DCSAH140, SABSH4;
C,DCSAH140,SABSH4;
#,MISC;
P, PTN1555, PTS1555;
@, SUBSTATION C2, 01/23/03
#, POSITION, 220, 2;
P,2N-422,BS1999,DS11333,CB01333,DS31;
L, SUBSTATION C1, DS31333, DS11333;
P,2T-522,DS11333,CB01333,DS31;
L, SUBSTATION D1, DS31333, DS11333;
P,2S-622,DS11333,CB01333,DS31999,BS1;
#, POSITION, 220, 3;
P, 3N-432, BS1999, DS11333, CB01333, DS31;
L, SUBSTATION B1, DS31333, DS11333;
P, 3T-532, DS11333, CB01333, DS31;
L, SUBSTATION D2, DS31333, DS11333;
P, 3S-632, DS11333, CB01333, DS31999, BS1;
#, POSITION, 220, 4;
P,4N-442,BS1999,DS11333,CB01333,DS31;
L, SUBSTATION B2, DS31333, DS11333;
P,4T-542,DS11333,CB01333,DS31;
L, SUBSTATION C3, DS31333, DS11333;
P,4S-642,DS11333,CB01333,DS31999,BS1;
#, POSITION, 220, 5;
P, 5N-452, BS1999, DS11333, CB01333, DS31;
L, BANK 1A, DS31333;
#, POSITION, 220, 5;
L, BANK 2A, DS11333;
P,5S-652,DS11333,CB01333,DS31999,BS1;
#, BANK, 1A, ID2, 3, AN9, RAD4, RAD4;
A, DCSAH140, SABSH4;
B, DCSAH140, SABSH4;
C,DCSAH140,SABSH4;
#, BANK, 2A, ID2, 3, AN9, RAD4, RAD4;
A, DCSAH140, SABSH4;
B, DCSAH140, SABSH4;
C, DCSAH140, SABSH4;
#,MISC;
P, PTN1555, PTS1555;
@,SUBSTATION C3,01/23/03
#, POSITION, 220, 2;
P, 2N-422, BS1999, DS11333, CB01333, DS31;
L, SUBSTATION C2, DS31333, DS11333;
P,2S-622,DS11333,CB01333,DS31999,BS1;
#, POSITION, 220, 3;
P, 3N-432, BS1999, DS11333, CB01333, DS31;
L, SUBSTATION B3, DS31333, DS11333;
P, 3T-532, DS11333, CB01333, DS31;
L, SUBSTATION D3, DS31333, DS11333;
```

```
P,3S-632,DS11333,CB01333,DS31999,BS1;
#, POSITION, 220, 4;
P, 4N-442, BS1999, DS11333, CB01333, DS31;
L, SUBSTATION B4, DS31333, DS11333;
P,4T-542,DS11333,CB01333,DS31;
L, SUBSTATION C4, DS31333, DS11333;
P,4S-642,DS11333,CB01333,DS31999,BS1;
#, POSITION, 220, 5;
P,5N-452,BS1999,DS11333,CB01333,DS31;
L, BANK 1A, DS31333;
#, POSITION, 220, 5;
L, BANK 2A, DS11333;
P,5S-652,DS11333,CB01333,DS31999,BS1;
#, BANK, 1A, ID2, 3, AN9, RAD4, RAD4;
A, DCSAH140, SABSH4;
B, DCSAH140, SABSH4;
C, DCSAH140, SABSH4;
#, BANK, 2A, ID2, 3, AN9, RAD4, RAD4;
A, DCSAH140, SABSH4;
B, DCSAH140, SABSH4;
C, DCSAH140, SABSH4;
#,MISC;
P, PTN1555, PTS1555;
@,SUBSTATION C4,01/23/03
#, POSITION, 220, 2;
P, 2N-422, BS1999, DS11333, CB01333, D3S1;
L, SUBSTATION C3, DS31333, DS11333;
P,2S-622,DS11333,CB01333,DS31999,BS1;
#, POSITION, 220, 3;
P, 3N-432, BS1999, DS11333, CB01333, DS31;
L, SUBSTATION B4, DS31333, DS11333;
P, 3T-532, DS11333, CB01333, DS31;
L, SUBSTATION D4, DS31333, DS11333;
P,3S-632,DS11333,CB01333,DS31999,BS1;
#, POSITION, 220, 5;
P, 5N-451, BS1999, DS31;
L, BANK 1A, DS31333;
#, POSITION, 220, 5;
L, BANK 2A, DS11333;
P,5S-653,DS31999,BS1;
#, BANK, 1A, ID2, 3, AN9, RAD4, RAD4;
A, DCSAH140, SABSH4;
B, DCSAH140, SABSH4;
C, DCSAH140, SABSH4;
#, BANK, 2A, ID2, 3, AN9, RAD4, RAD4;
A, DCSAH140, SABSH4;
B, DCSAH140, SABSH4;
C, DCSAH140, SABSH4;
#,MISC;
P, PTN1555, PTS1555;
@, SUBSTATION D1, 01/23/03
#, POSITION, 220, 3;
P, 3N-432, BS1999, DS11333, CB01333, DS31;
L, SUBSTATION C2, DS31333, DS11333;
P, 3T-532, DS11333, CB01333, DS31;
L, SUBSTATION C1, DS31333, DS11333;
```

```
P, 3S-632, DS11333, CB01333, DS31999, BS1;
#, POSITION, 220, 4;
P,4N-442,BS1999,DS11333,CB01333,D3S1;
L, SUBSTATION D2, DS31333, DS11333;
P,4S-642,DS11333,CB01333,DS31999,BS1;
#, POSITION, 220, 5;
P,5N-451,BS1999,DS31;
L, BANK 1A, DS31333;
#, BANK, 1A, ID2, 3, AN9, RAD4, RAD4;
A, DCSAH140, SABSH4;
B, DCSAH140, SABSH4;
C, DCSAH140, SABSH4;
#, BANK, 2A, ID2, 3, AN9, RAD4, RAD4;
A, DCSAH140, SABSH4;
B, DCSAH140, SABSH4;
C, DCSAH140, SABSH4;
#,MISC;
P, PTN1555, PTS1555;
@, SUBSTATION D2, 01/23/03
#, POSITION, 220, 3;
P, 3N-432, BS1999, DS11333, CB01333, DS31;
L, SUBSTATION D1, DS31333, DS11333;
P, 3T-532, DS11333, CB01333, DS31;
L, SUBSTATION D3, DS31333, DS11333;
P, 3S-632, DS11333, CB01333, DS31999, BS1;
#, POSITION, 220, 4;
P,4N-442,BS1999,DS11333,CB01333,D3S1;
L, SUBSTATION C2, DS31333, DS11333;
P,4S-642,DS11333,CB01333,DS31999,BS1;
#, POSITION, 220, 5;
P,5N-451,BS1999,DS31;
L, BANK 1A, DS31333;
#, POSITION, 220, 5;
L, BANK 2A, DS11333;
P,5S-653,DS31999,BS1;
#, BANK, 1A, ID2, 3, AN9, RAD4, RAD4;
A, DCSAH140, SABSH4;
B, DCSAH140, SABSH4;
C, DCSAH140, SABSH4;
#, BANK, 2A, ID2, 3, AN9, RAD4, RAD4;
A, DCSAH140, SABSH4;
B,DCSAH140,SABSH4;
C, DCSAH140, SABSH4;
#,MISC;
P, PTN1555, PTS1555;
@,SUBSTATION D3,01/23/03
#, POSITION, 220, 3;
P, 3N-432, BS1999, DS11333, CB01333, D3S1;
L, SUBSTATION D2, DS31333, DS11333;
P, 3S-632, DS11333, CB01333, DS31999, BS1;
#, POSITION, 220, 4;
P,4N-442,BS1999,DS11333,CB01333,DS31;
L, SUBSTATION C3, DS31333, DS11333;
P,4T-542,DS11333,CB01333,DS31;
L, SUBSTATION D4, DS31333, DS11333;
P,4S-642,DS11333,CB01333,DS31999,BS1;
```

```
#, POSITION, 220, 5;
P,5N-451,BS1999,DS31;
L, BANK 1A, DS31333;
#, POSITION, 220, 5;
L, BANK 2A, DS11333;
P,5S-653,DS31999,BS1;
#, BANK, 1A, ID2, 3, AN9, RAD4, RAD4;
A, DCSAH140, SABSH4;
B, DCSAH140, SABSH4;
C, DCSAH140, SABSH4;
#,MISC;
P, PTN1555, PTS1555;
@,SUBSTATION D4,01/23/03
#, POSITION, 220, 3;
P, 3N-432, BS1999, DS11333, CB01333, D3S1;
L, SUBSTATION D3, DS31333, DS11333;
P,3S-632,DS11333,CB01333,DS31999,BS1;
#, POSITION, 220, 4;
P,4N-442,BS1999,DS11333,CB01333,D3S1;
L, SUBSTATION C4, DS31333, DS11333;
P,4S-642,DS11333,CB01333,DS31999,BS1;
#, POSITION, 220, 5;
P,5N-451,BS1999,DS31;
L, BANK 1A, DS31333;
#, BANK, 1A, ID2, 3, AN9, RAD4, RAD4;
A, DCSAH140, SABSH4;
B, DCSAH140, SABSH4;
C,DCSAH140,SABSH4;
#,MISC;
P, PTN1555, PTS1555;
```

Appendix 4: System Function Level Configuration 1 SERA Output TEST.OUT

*A1-AA1	15.00	0.30	0.4	0	2.00		
POSITION 1, 220KV, IPOS =	3	7	0	0			
POSITION 2, 220KV, IPOS =	3	7	0	33			
SUBSTATION B1 LOST TO A1-AA	1						
POSITION 3, 220KV, IPOS =	3	33	0	0			
POSITION 4, 220KV, IPOS =	3	0	0	7			
POSITION 5, 220KV, IPOS =	5	40	7	1	0	0	
BANK 1AA LOST TO A1-AA1							
POSITION 1, 500KV, IPOS =	5	49	14	1	7	0	
BANK 1AA LOST TO A1-AA1							
BANK 2AA LOST TO A1-AA1							
POSITION 2, 500KV, IPOS =	3	67	14	37			
SOURCE 2 LOST TO A1-AA1	_	0			0.1	1.0	
POSITION 3, 500KV, IPOS =	5	9.	14	46	21	18	
SOURCE I LOST TO AL-AAL	7 1						
SUBSTATION AA4 LOST TO AI-A	AAI						
BANK ZAA SA FAIL							
BANK ZAA SA FAIL							
BANK ZAA SA FAIL							
*A4-AA4	15,00	0.30	0.4	0	2.00		_
POSITION 2. 500KV. IPOS =	3	8.3	14	9.5	2.00		
SUBSTATION AA1 LOST TO A4-A	AA4	00		50			
POSITION 3, 500KV, IPOS =	3	46	7	92			
SOURCE 3 LOST TO A4-AA4	-		-				
POSITION 4, 500KV, IPOS =	3	46	21	64			
SOURCE 4 LOST TO A4-AA4							
POSITION 5, 500KV, IPOS =	5	46	14	1	7	37	
BANK 1AA LOST TO A4-AA4							
BANK 2AA LOST TO A4-AA4							
POSITION 1, 220KV, IPOS =	5	7	0	1	0	0	
BANK 1AA LOST TO A4-AA4							
POSITION 2, 220KV, IPOS =	3	47	0	7			
SUBSTATION B3 LOST TO A4-AA	4						
POSITION 3, 220KV, IPOS =	5	40	0	40	0	7	
SUBSTATION B4 LOST TO A4-AA	4						
SUBSTATION B3 LOST TO A4-AA	4						
POSITION 4, 220KV, IPOS =	3	0	0	40			
POSITION 5, 220KV, IPOS =	5	25	0	1	0	32	
BANK 1A LOST TO A4-AA4							
BANK 2A LOST TO A4-AA4							
BANK 2AA SA FAIL							
BANK ZAA SA FAIL							
BANK ZAA SA FAIL							
BANK IA SA FAIL							
*B1	30.00	0.20	0.2	5	2.00		
+							
^BZ	30.00	0.20	0.2	Э	2.00	-	
POSITION 1, ZZUKV, IPOS =	с С	U	U	U	U	/	
FUSITION 2, ZZUKV, IPOS =	3	/	U	/			
POSTATION AT LOST TO BZ	З	7	\cap	\cap			
1001110M $3, 220MV, 1005 -$	5	/	0	0			

*B3 POSITION	2,	220KV,	IPOS	=	30.00	0.20	0.25 0 7	2.00	
*B4 POSITION POSITION	3, 4,	220KV, 220KV,	IPOS IPOS	=	30.00 5 5	0.20 0 0	0.25 0 14 0 7	2.00 0 0	0 0
*C1					45.00	0.10	0.15	2.00	
*C2					45.00	0.10	0.15	2.00	
*C3					45.00	0.10	0.15	2.00	
*C4					45.00	0.10	0.15	2.00	
*D1					60.00	0.05	0.10	2.00	
*D2					60.00	0.05	0.10	2.00	
*D3					60.00	0.05	0.10	2.00	
*D4					60.00	0.05	0.10	2.00	

Appendix 5:Component Function Level Configuration#1 SERA Output

TESTD.OUT NOVEMBER 2003 <==== DATE XXXXXXX <===== TIME HYPOTHETICAL SYSTEM SCENARIO SYSTEM.DAT NSITE ----> 14 _____ FAULT 1 342. San And ATTENUATION - HYPOTHETICAL ATTENUATION - HYPOTHETICAL NFP NRL ATT MMIN MSTP RT/DT BETA DEPTH ECIN COEF NYR SIGA SIGL BL AL 3 1 X X.00 .XX .000 X.XX X.X XX.0 X.0 0 .X0 .0X0 .XX0 -X.XX0 NMAX MMAX PMAX MMAX PMAX MMAX PMAX 1 X.XX X.00 FAULT SEGMENT COORDINATES PT LONG LAT PT LONG 2 XX YY 3 XX PT LONG LAT PT LONG PT LONG LAT YY 1 XX YΥ FAULT LENGTH ----> XX KM MAGNITUDE OF EVENT ----> 7.00 RUPTURE LENGTH ----> XX KM FOR SINGLE EVENT, EPICENTER IS XX.% ALONG THE FAULT FROM THE FAR (HIGH LONG. OR LAT) END SINGLE EVENT EPICENTER (LONG, LAT) XX YΥ NEAR END (LONG, LAT) XX ΥY FAR END (LONG, LAT) ΥY XX D(KM) M G M+1 SCOEF SITE _____ *A1-AA1 15.00 0.30 0.40 2.00 GEFF MN % RNUM *F 1N-412 DS 1 CONTACTS BURN/A 220 1 PH- 2 315 400 0.20 0.18 4 TEST FOR POSITION 1 FUNCTION AT 220kV --> , IPOS = 3 7 0 0 *F 2N-422 DS 1 CONTACTS BURN/A 220 2 PH- 3 315 400 0.20 0.10 6 *F 2S-622 DS 1 2 PORCELAIN COL 220 2 PH- 2 315 650 0.05 0.03 5 TEST FOR POSITION 2 FUNCTION AT 220kV --> , IPOS = 3 7 0 33 SUBSTATION B1 LOST TO A1-AA1 *F 3N-432 DS 1 2 PORCELAIN COL 220 3 PH- 1 315 650 0.05 0.04 4 TEST FOR POSITION 3 FUNCTION AT 220kV --> , IPOS = 3 33 0 0 *F 4S-642 DS 1 CONTACTS BURN/A 220 4 PH- 1 315 400 0.20 0.13 3 TEST FOR POSITION 4 FUNCTION AT 220kV -->, IPOS = 3 0 0 7 *F 5N-452 DS 1 2 PORCELAIN COL 220 5 PH- 2 315 650 0.05 0.03 4 *F 5N-452 DS 1 CONTACTS BURN/A 220 5 PH- 3 315 400 0.20 0.17 6 *F BANK 1AA SA 1 FAILURE OF PORC 220 5 PH- 2 315 550 0.12 0.11 4 TEST FOR POSITION 5 FUNCTION AT 220kV -->, IPOS = 5 40 7 1 Ο \cap BANK 1AA LOST TO A1-AA1 *F 1N-711 DS 6 2 PORCELAIN COL 500 1 PH- 1 315 550 0.06 0.02 4 *F BANK 1AA SA 5 FAILURE OF PORC 500 1 PH- 1 315 250 0.60 0.05 4 *F BANK 1AA SA 5 FAILURE OF PORC 500 1 PH- 2 315 250 0.60 0.29 4 *F BANK 2AA SA 5 FAILURE OF PORC 500 1 PH- 3 315 250 0.60 0.46 4 1S-913 DS1333/DS/BS PH 1 3 allow 7.8 actual 7.9 4 1S-913 DS1333/DS/BS PH2 3 allow7.8 actual7.941S-913 DS1333/DS/BS PH3 3 allow7.8 actual7.94 TEST FOR POSITION 1 FUNCTION AT 500kV --> , IPOS = 5 49 14 1 7 0 BANK 1AA LOST TO A1-AA1 BANK 2AA LOST TO A1-AA1 *F 2N-722 DS 6 CONTACTS BURN/A 500 2 PH- 2 315 350 0.41 0.32 4 *F 2N-722 DS 6 2 PORCELAIN COL 500 2 PH- 1 315 550 0.06 0.03 6 *F 2N-722 DS 6 CONTACTS BURN/A 500 2 PH- 3 315 350 0.41 0.32 6

```
*F SOURCE 2 SA 5 FAILURE OF PORC 500 2 PH- 1 315 250 0.60 0.28 5
*F SOURCE 2 SA 5 FAILURE OF PORC 500 2 PH- 2 315 250 0.60 0.25
                                                              5
*F 2S-922 DS 6 1 PORCELAIN COL 500 2 PH- 3 315 450 0.18 0.13 5
TEST FOR POSITION 2 FUNCTION AT 500kV --> , IPOS = 3
                                                    67 14 37
SOURCE 2 LOST TO A1-AA1
*F 3N-732 DS 6 CONTACTS BURN/A 500 3 PH- 3 315 350 0.41 0.26 6
*F SOURCE 1 SA 5 FAILURE OF PORC 500 3 PH- 1 315 250 0.60 0.22 5
*F SOURCE 1 SA 5 FAILURE OF PORC 500 3 PH- 2 315 250 0.60 0.37 5
*F 3T-832 DS 6 1 PORCELAIN COL 500 3 PH- 3 315 450 0.18 0.13 3
*F 3T-832 DS 6 CONTACTS BURN/A 500 3 PH- 1 315 350 0.41 0.40 5
*F SUBSTATION AA4 SA 5 FAILURE OF PORC 500 3 PH- 1 315 250 0.60 0.21
                                                                    5
*F SUBSTATION AA4 SA 5 FAILURE OF PORC 500 3 PH- 2 315 250 0.60 0.56 5
*F SUBSTATION AA4 SA 5 FAILURE OF PORC 500 3 PH- 3 315 250 0.60 0.46 5
*F 3S-932 DS 6 CONTACTS BURN/A 500 3 PH- 2 315 350 0.41 0.32 3
*F 3S-932 DS 6 CONTACTS BURN/A 500 3 PH- 1 315 350 0.41 0.21 5
TEST FOR POSITION 3 FUNCTION AT 500kV -->, IPOS = 5 9 14 46 21 18
SOURCE 1 LOST TO A1-AA1
SUBSTATION AA4 LOST TO A1-AA1
*F BANK A SA FAIL 500 2AA 315 250 0.603 0.131
*F BANK B SA FAIL 500 2AA 315 250 0.603 0.509
*F BANK C SA FAIL 500 2AA 315 250 0.603 0.306
*F PT 5 N COLUMN FAILURE PH- 1 315 300 0.53 0.44
*F PT 5 N COLUMN FAILURE PH- 3 315 300 0.53 0.00
*F PT 5 S COLUMN FAILURE PH- 2 315 300 0.53 0.31
*F PT 5 S COLUMN FAILURE PH- 3 315 300 0.53 0.18
_____
*A4-AA4
                        15.00 0.30 0.40 2.00 GEFF MN % RNUM
*F 2N-722 DS 6 1 PORCELAIN COL 500 2 PH- 3 315 450 0.18 0.14 4
*F 2N-722 DS 6 CONTACTS BURN/A 500 2 PH- 1 315 350 0.41 0.40 6
*F 2N-722 DS 6 1 PORCELAIN COL 500 2 PH- 2 315 450 0.18 0.15 6
*F SUBSTATION AA1 SA 5 FAILURE OF PORC 500 2 PH- 1 315 250 0.60 0.00
                                                                   5
*F SUBSTATION AA1 SA 5 FAILURE OF PORC 500 2 PH- 3 315 250 0.60 0.18 5
*F 2S-922 DS 6 1 PORCELAIN COL 500 2 PH- 3 315 450 0.18 0.12 3
*F 2S-922 DS 6 CONTACTS BURN/A 500 2 PH- 1 315 350 0.41 0.19 5
*F 2S-922 DS 6 2 PORCELAIN COL 500 2 PH- 2 315 550 0.06 0.02 5
TEST FOR POSITION 2 FUNCTION AT 500kV --> , IPOS = 3 83 14 95
SUBSTATION AA1 LOST TO A4-AA4
*F 3N-732 DS 6 CONTACTS BURN/A 500 3 PH- 2 315 350 0.41 0.21
                                                           4
*F 3N-732 DS 6 1 PORCELAIN COL 500 3 PH- 1 315 450 0.18 0.09 6
*F SOURCE 3 SA 5 FAILURE OF PORC 500 3 PH- 1 315 250 0.60 0.37 5
*F 3S-932 DS 6 CONTACTS BURN/A 500 3 PH- 1 315 350 0.41 0.34 3
*F 3S-932 DS 6 1 PORCELAIN COL 500 3 PH- 2 315 450 0.18 0.11
                                                            3
*F 3S-932 DS 6 CONTACTS BURN/A 500 3 PH- 1 315 350 0.41 0.22 5
*F 3S-932 DS 6 1 PORCELAIN COL 500 3 PH- 3 315 450 0.18 0.14 5
TEST FOR POSITION 3 FUNCTION AT 500kV --> , IPOS = 3
                                                    46 7 92
SOURCE 3 LOST TO A4-AA4
*F 4N-742 DS 6 1 PORCELAIN COL 500 4 PH- 1 315 450 0.18 0.12 4
*F 4N-742 DS 6 CONTACTS BURN/A 500 4 PH- 3 315 350 0.41 0.36 4
*F SOURCE 4 SA 5 FAILURE OF PORC 500 4 PH- 1 315 250 0.60 0.34
                                                              5
*F SOURCE 4 SA 5 FAILURE OF PORC 500 4 PH- 2 315 250 0.60 0.27
                                                              5
*F SOURCE 4 SA 5 FAILURE OF PORC 500 4 PH- 3 315 250 0.60 0.13
                                                              5
*F 4S-942 DS 6 CONTACTS BURN/A 500 4 PH- 1 315 350 0.41 0.34 3
*F 4S-942 DS 6 CONTACTS BURN/A 500 4 PH- 2 315 350 0.41 0.25 3
*F 4S-942 DS 6 1 PORCELAIN COL 500 4 PH- 3 315 450 0.18 0.17 3
*F 4S-942 DS 6 CONTACTS BURN/A 500 4 PH- 2 315 350 0.41 0.32 5
TEST FOR POSITION 4 FUNCTION AT 500kV --> , IPOS = 3
                                                     46 21 64
SOURCE 4 LOST TO A4-AA4
*F 5N-751 DS 6 CONTACTS BURN/A 500 5 PH- 2 315 350 0.41 0.39 4
```

```
*F 5N-751 DS 6 1 PORCELAIN COL 500 5 PH- 3 315 450 0.18 0.15 4
*F BANK 1AA SA 5 FAILURE OF PORC 500 5 PH- 2 315 250 0.60 0.19 4
*F BANK 1AA SA 5 FAILURE OF PORC 500 5 PH- 3 315 250 0.60 0.34 4
*F BANK 2AA SA 5 FAILURE OF PORC 500 5 PH- 2 315 250 0.60 0.03 4
*F 5S-953 DS 6 1 PORCELAIN COL 500 5 PH- 3 315 450 0.18 0.13 3
  5S-953 DS6333/DS/BS PH 1 3 allow 7.8 actual 9.3 4
  5S-953 DS6333/DS/BS PH 2 3 allow 7.8 actual 9.3 4
  5S-953 DS6333/DS/BS PH 3 3 allow 7.8 actual 9.3 4
TEST FOR POSITION 5 FUNCTION AT 500kV -->, IPOS = 5 46 14 1 7 37
BANK 1AA LOST TO A4-AA4
BANK 2AA LOST TO A4-AA4
*F 1N-412 DS 1 CONTACTS BURN/A 220 1 PH- 2 315 400 0.20 0.16 6
TEST FOR POSITION 1 FUNCTION AT 220kV -->, IPOS = 5 7 0
                                                           1
                                                               0
                                                                    0
BANK 1AA LOST TO A4-AA4
*F 2N-422 DS 1 CONTACTS BURN/A 220 2 PH- 1 315 400 0.20 0.19 4
*F 2N-422 DS 1 CONTACTS BURN/A 220 2 PH- 1 315 400 0.20 0.20 6
*F 2N-422 DS 1 2 PORCELAIN COL 220 2 PH- 2 315 650 0.05 0.03
                                                         6
*F 2S-622 DS 1 CONTACTS BURN/A 220 2 PH- 3 315 400 0.20 0.16 5
                                                            7
TEST FOR POSITION 2 FUNCTION AT 220kV --> , IPOS = 3 47 0
SUBSTATION B3 LOST TO A4-AA4
*F 3N-432 DS 1 2 PORCELAIN COL 220 3 PH- 2 315 650 0.05 0.03
                                                         4
*F 3N-432 DS 1 CONTACTS BURN/A 220 3 PH- 3 315 400 0.20 0.14 6
*F 3T-532 DS 1 2 PORCELAIN COL 220 3 PH- 3 315 650 0.05 0.03 3
*F 3T-532 DS 1 CONTACTS BURN/A 220 3 PH- 2 315 400 0.20 0.20
                                                          5
*F 3S-632 DS 1 CONTACTS BURN/A 220 3 PH- 3 315 400 0.20 0.08 3
TEST FOR POSITION 3 FUNCTION AT 220kV -->, IPOS = 5 40 0 40
                                                               0
                                                                  7
SUBSTATION B4 LOST TO A4-AA4
SUBSTATION B3 LOST TO A4-AA4
*F 4S-642 DS 1 CONTACTS BURN/A 220 4 PH- 3 315 400 0.20 0.10 3
*F 4S-642 DS 1 2 PORCELAIN COL 220 4 PH- 3 315 650 0.05 0.03 5
TEST FOR POSITION 4 FUNCTION AT 220kV --> , IPOS = 3 0 0 40
*F 5N-452 DS 1 1 PORCELAIN COL 220 5 PH- 2 315 600 0.08 0.06 4
*F 5S-652 DS 1 CONTACTS BURN/A 220 5 PH- 3 315 400 0.20 0.20 3
*F 5S-652 DS 1 1 PORCELAIN COL 220 5 PH- 3 315 600 0.08 0.06 5
TEST FOR POSITION 5 FUNCTION AT 220kV -->, IPOS = 5 25 0 1 0 32
BANK 1A LOST TO A4-AA4
BANK 2A LOST TO A4-AA4
*F BANK A SA FAIL 220 2AA 315 250 0.603 0.278
*F BANK B SA FAIL 220 2AA 315 250 0.603 0.063
*F BANK C SA FAIL 220 2AA 315 250 0.603 0.043
*F BANK C SA FAIL 220 1A 315 550 0.120 0.031
*F PT 5 N COLUMN FAILURE PH- 2 315 300 0.53 0.23
*F PT 1 N COLUMN FAILURE PH- 1 315 400 0.29 0.08
*F PT 1 S COLUMN FAILURE PH- 1 315 400 0.29 0.16
_____
                        30.00 0.20 0.25 2.00 GEFF MN % RNUM
*R1
TEST FOR POSITION 5 FUNCTION AT 220kV -->, IPOS = 5 0 0 1 0
                                                                    0
*F BANK A SA FAIL 220 1A 210 550 0.045 0.035
_____
                       30.00 0.20 0.25 2.00 GEFF MN % RNUM
*B2
*F 1S-612 DS 1 CONTACTS BURN/A 220 1 PH- 1 210 400 0.03 0.02 3
                                                               0
TEST FOR POSITION 1 FUNCTION AT 220kV --> , IPOS = 5 0 0
                                                            0
                                                                    7
*F 2N-422 DS 1 CONTACTS BURN/A 220 2 PH- 2 210 400 0.03 0.01 6
*F 2S-622 DS 1 CONTACTS BURN/A 220 2 PH- 3 210 400 0.03 0.02 3
TEST FOR POSITION 2 FUNCTION AT 220kV --> , IPOS = 3
                                                    7
                                                       0
SUBSTATION A1 LOST TO B2
*F 3N-432 DS 1 CONTACTS BURN/A 220 3 PH- 2 210 400 0.03 0.01 4
TEST FOR POSITION 3 FUNCTION AT 220kV -->, IPOS = 3 7 0
                                                            0
```
TEST	FOR	POSITION	5	FUNCTION	AT	220kV	7>	,	IPOS	=	5	(C	0	1	0	0
*B3 *F 2S- TEST TEST	-622 FOR FOR	DS 1 CON POSITION POSITION	NT2 2 5	30 ACTS BURN, FUNCTION FUNCTION	.00 /A 2 AT AT	0.20 220 2 220kV 220kV	0.25 PH- 2 7> 7>	2	.00 210 IPOS IPOS	GEF 400 = =	F MN 0.03 3 5	응 0 (RNU 00 0	JM 5 0 0	7 1	0	0
*B4 *F 3T- *F 3T-	-532 -532	DS 1 CON DS 1 CON	NT <i>I</i> NT <i>I</i>	30 ACTS BURN, ACTS BURN,	.00 /a 2 /a 2	0.20 220 3 220 3	0.25 PH- 1 PH- 2	2	.00 210 210	GEF 400 400	F MN 0.03 0.03	% 0 0	RNU .02 .01	JM 3 3		_	
TEST *F 4T- TEST	FOR 542 FOR	POSITION DS 1 COM POSITION	3 NT <i>1</i> 4	FUNCTION ACTS BURN, FUNCTION	AT /A 2 AT	220kV 220 4 220kV	7> PH- 3 7>	3	IPOS 210 IPOS	= 400 =	5 0.03 5) 0 0 0) .00)	0 5 0	14 7	0	0
TEST	FOR	POSITION	5	FUNCTION	AT	220kV	7>	, ,	IPOS	=	5	()	0	1	0	0
*C1 TEST	FOR	POSITION	5	45 FUNCTION	.00 AT	0.10 220kV	0.15	2	.00 IPOS	GEF =	F MN 5	% (RNU D	JM 0	1	0	0
*C2 TEST	FOR	POSITION	5	45 FUNCTION	.00 AT	0.10 220kV	0.15 />	2 ,	.00 IPOS	GEF =	F MN 5	% (RNU)	JM 0	1	0	0
*C3 TEST	FOR	POSITION	5	45 FUNCTION	.00 AT	0.10 220kV	0.15 7>	2	.00 IPOS	GEF =	F MN 5	 %	RNU D	JM 0	1	0	0
*C4 TEST	FOR	POSITION	5	45 FUNCTION	.00 AT	0.10 220kV	0.15 7>	2	.00 IPOS	GEF =	F MN 5	 % (RNU D	лм О	1	0	0
*D1				60	.00	0.05	0.10	2	.00	GEF	F MN	00	RNU	JM		_	
*D2 TEST	FOR	POSITION	5	60 FUNCTION	.00 AT	0.05 220kV	0.10 7>	2	.00 IPOS	 GEF =	 F MN 5	 %	RNU D	лм О	1	0	0
*D3 TEST	FOR	POSITION	5	60 FUNCTION	.00 AT	0.05 220kV	0.10	2	.00 IPOS	GEF =	F MN 5	% (RNU D	JМ 0	1	0	0
*D4				 60	.00	0.05	0.10	2	.00	GEF	F MN	00	RNU	 ЈМ		_	