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1 Introduction

Two full-scale experiments using controlled blasting were conducted in
November and December 2001 in the Port of Tokachi on Hokkaido Island, Japan, (Figure
1.1 and Figure 1.2 ) to study the performance of lifeline facilities subjected to the lateral
spreading. This research project was the joint collaboration between the University of
California San Diego and several Japanese organizations. This overall research effort
was lead by Dr. Takehiro Sugano of the Port and Airport Research Institute (PARI). The
primary objective of the test was to assess the performance of quay walls subjected to the
lateral spreading using controlled blasting. The diagram of the overall test is presented in
Figure 1.3. One quay wall was of traditional design and new seismic design criteria was
applied to the other. Each wall supported approximately 7.5 meters of hydraulic fill
which was susceptible to liquefaction. The ground surface behind the traditionally
designed quay walls was gently sloped. Since the test area was so large, it enabled
researchers to include additional experiments in the zone of liquefaction and lateral
spreading without interfering with the primary objective of the quay wall test. The
University of California, San Diego, together with Waseda University lead by Professor
Masanori Hamada, collaborated with other Japanese researchers to install the lifeline
specimens in the zone of lateral spreading through the PEER Lifelines Program with
support from Caltrans, Pacific Gas & Electric and the California Energy Commission.

In all, UCSD installed 6 test specimens. The pile specimens in the experiment
program consisted of a single pile, a 4-pile group, and a 9-pile group. In addition, two
natural gas pipelines and one electrical conduit were installed. Two were installed at
approximately 1 meter below the ground surface and perpendicular to the direction of
flow. The other gas pipeline with 22 m long was installed parallel to the direction of the
flow. The schematic diagram of location of test specimens is presented in Figure 1.3.
Apart from the UCSD, many organizations and universities/institutes cooperated in this
research are summarized in Table 1.1. The example of some experiments are: a study of

group of single piles and geomembrane behaviors subjected to lateral spreading as well



as a study of soil behavior during the lateral spreading by the Waseda University (WU); a
study of the influence of improvement depth on the degree of settlement induced by
liquefaction by the University of California, Berkeley (UCB); and an uplift experiment
on buried structures due to soil liquefaction by Japan Gas Association. However, this
report will present only the details of research carried out by the UCSD.

This report summarizes the general test information as well as the UCSD test
results. Data from other researchers will be available in reports by others. It is
anticipated that subsequent analyses, as well as data by others, will be presented in future

reports.

Table 1.1 Participants in the Japan Lateral Spreading Test

Universities /Institutes Industrial Participants

Port and Airport Research Institute Japan Reclamation and Dredging Association

Civil Engineering Research Institute Japan Association for Steel Piles

Waseda University Japan Association for Marine Structures
University of Tokyo Japan Gas Association
University of California, Berkeley Tokyo Electric Power Company

University of California, San Diego Kanden Kogyo

PEER Sato Kogyo

Caltrans

Pacific Gas & Electric

California Energy Commission

1.1 Background

Lateral spreading, which usually refers to global displacements of gently sloping
ground due to liquefaction, is one of the primary earthquake hazards. In past
earthquakes, lateral spreading has caused considerable damage to civil infrastructure

including port facilities, buildings, bridges, and utilities. Good examples are the damage



of quay walls and buildings in the 1995 Kobe earthquake; damage of pile foundations in
the 1964 Niigata earthquake; the damage of over 250 bridges and numerous
embankments along the Alaskan Railroad and Highway during the 1964 earthquake; the
damages of numerous water and gas lines that contributed to the a large destructive fire in
the city in the 1906 earthquake; and the significant damage in the San Francisco area in
1989 Loma Prieta earthquake (Bartlett and Youd 1992b; Seed 1987; Youd and Hoose
1976; Bardet and Kapuskar 1993; Clough et al. 1994; and O’ Rourke and Pease 1992).
Therefore, it is extremely essential to understand the behavior of soil as well as structures
during the lateral spreading in order to improve the current design method for structures
and lifeline utilities to prevent the catastrophic failure for the future earthquakes.
Meanwhile, most lateral spreading research to date has focused on small-scale centrifuge
studies (e.g. Abdoun et al., 1996), limited area 1-g shake table tests (e.g. Tokida et al.,
1993), or case histories (e.g. Hamada and O’Rourke, 1992; O’Rourke, 1996). In
addition, some full-scale has been carried out to study behavior of deep foundations in
sand liquefied by controlled blasting (e.g. Ashford et al., 2000), but these tests do not
account for the global translations of the lateral spreading soil mass. In light of this, the
full-scale instrumented lifeline components in a controlled lateral spreading test were
carried out in order to understand the performance of lifelines and be able to implement
the test results in engineering practice. The test results will be an invaluable source of
data for further development of the empirical methods and/or complex numeral models to
use to design lifeline facilities subjected to lateral spreading.

Specifically, the objectives of this research are to:

1. Conduct damage and performance assessments of a single pile, a 4-pile

group, and a 9-pile group subjected to lateral spreading.
2. Conduct damage and performance assessments of the natural gas
pipeline as well as electrical conduit subjected to lateral spreading.
3. From instrumentation in the piles and pipelines, evaluate loading

conditions on the structures during the lateral spreading.



4. Utilize developing numeral platforms within PEER (OPENSEES) to
analyze the behavior of test results, as well as utilize simpler models and
empirical methods derived from past earthquakes.

By accomplishing these objectives we will be able to assess current design
procedures and provide recommendations for the cost effective design of lifeline facilities
subjected to lateral spreading. Using the detailed information obtained from this unique
full-scale experiment, improved performance of pipelines and pile foundations during

seismic events can be expected once these recommendations are implemented.



Port of Tokachi, Obihiro,
Hakkaido Island , Japan

Figure 1.1 Site Location
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2 Site Characterization and Pilot Lateral Spreading
Studies

In this chapter, the results from extensive subsurface investigation programs of
the test site are presented. These include geotechnical information from several boring
logs conducted in the test area, grain size distributions, and index properties.
Furthermore, the details regarding the pilot studies of lateral spreading test at the area

adjacent to the actual test site are also provided.

2.1 Site Conditions

The site was located at the Port of Tokachi, on Hokaido Island, Japan. The test
site for full-scale lateral spreading experiment was approximately 100 m by 100 m area.
This location was chosen to be a test site because (1) the soil condition was susceptible to
liquefaction and (2) the area of the site was large enough to perform the full-scale lateral
spreading test. The test site was a recent man-made land and the construction was
completed just a few years ago. The land was built by hydraulically placing fill without
any improvement technique; therefore, the soil was very loose and highly susceptible to
liquefaction.

Subsurface soil exploration program was carried out in many areas throughout the
test site to characterize the soil condition as presented in Figure 2.1. The soil condition
consisted of a 7.5 m thick of hydraulic fill underlain by a very dense gravel layer of a
natural soil. The hydraulic fill generally consisted of a 4-m of very loose silty sand layer
with uncorrected SPT-N values ranging from 1 to 5. This was underlain by a 3.5-m
layer of very soft lean to fat clay with sand. Uncorrected SPT blow counts ranged from
0 to 2 blows per foot in this layer. Soil boring logs at various locations are given in
Figure 2.2 through Figure 2.8. Soil properties for each borehole are summarized in Table
2.1 through Table 2.7. Soil profiles across sections A-A, and B-B are presented in Figure
2.9 and Figure 2.10, respectively. The water table varies from 0.5 m to 1 m below the
ground surface. Figure 2.11 through Figure 2.14 presented the grain size distribution of

the hydraulic fill of individual boreholes plotted together with the Japanese standard



curves for liquefaction potential evaluation. It is clearly seen that most soil of this test
site fell into the zone of highly susceptible to liquefaction, therefore this test site was
appropriate for conducting the full-scale lateral spreading test. Uncorrected SPT-N
values profiles are presented in Figure 2.15. In addition, shear wave and P-wave velocity
profiles are given in Figure 2.16. Cone penetration tests were also conducted in several
locations, but the data are not available at this time. They will be incorporated in the

final report.

2.2 Pilot Studies

Prior to perform the full-scale lateral spreading test, two pilot studies were carried
out to verify the site configuration as well as the amount and locations of charges to be
used. This was to ensure that the soil can be successfully liquefied and the amount of
global translation of the soil satisfies the requirement. The locations of each pilot test are
presented in Figure 2.17.

The first pilot test was carried out in August 2001 about 50 m behind the actual
test site as presented in Figure 2.17. According to a discussion with Japanese
researchers, the results of the first pilot test did not achieve the goal because the
maximum horizontal movement was only 20 cm. One of the explanations was that the
layout of the pilot test site was somewhat different from that of actual test because there
was no excavation for a waterway in front of the test embankment. Therefore, the
movement of the soil was impeded by the soil in front of it. With the actual site
configuration, the horizontal movement was expected to be much greater than the results
obtained from the first pilot test.

The second pilot study was carried out on September 14, 2002 with the
modification of the site configuration to be as close as possible to the actual site
configuration. The configuration of the second pilot test was scaled to 1/3 of the actual
site configuration. Layout of the second pilot test is presented in Figure 2.18. Overviews
of the pilot test site are shown in Figure 2.19 and Figure 2.20. Blast holes were spaced at

6.0 m on centers in the regular grid pattern as denoted by M1 to M10. Explosives were



installed in each borehole at depths of 3m and 6m below the ground surface. The amount
of charge was 3 kg for each depth. Several pore pressure transducers were installed in
various locations as denoted by PWP1 to PWP6 to measure an increase in pore water
pressure after the blasting. K1 to K17 were the survey points. The explosive at the back
corner of the embankment (M10) was detonated initially and preceded one after the other
towards the water the way (M1).

Figure 2.21 and Figure 2.22 show the excess pore pressures at multiple depths
measured during the test together with effective vertical stress. Table 2.8 summarizes the
excess pore water pressure ratios from each transducer. The excess pore pressure ratios
were generally over 50%. Two of them were close to 100%. Sand boils were observed
in several places which confirmed that the soil was successfully liquefied. Figure 2.23
shows the vector displacements and contour of settlement after the completion of the test.
The results indicate that the maximum soil movement was about 50 cm, and the sheet pile
moved more than 70 cm. Figure 2.24 through Figure 2.27 present the site condition after
the blast, as well as the evidence of liquefaction. The magnitude of these movements, as
well as qualitative evidence of liquefaction satisfied the researcher’s goal and it was
expected to induce more movement from the actual full-scale lateral spreading test. The
success of the second pilot test led the research team to advance to the full-scale lateral

spreading experiment.
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Table 2.8 Summary of Excess Pore Water Pressure Ratio, 2" Pilot Test (Data from Sato
Kogyo)

PPT No. | Depth (m) Water Effective Excess Pore Ru (%)
Depth (m) | Stress (kPa) | Pressure (kPa)
PWTI 3.0 0.50 28.4 32.6 114.8
PWT2 5.5 0.50 48.0 45.0 93.8
PWT3 3.0 0.98 33.1 4.5 13.6
PWT4 6.0 0.98 56.6 38.0 67.1
PWTS5 3.0 1.50 38.2 16.0 41.9
PWT6 6.0 1.50 61.7 34.5 55.9

15



(T v d woij eye(q) ssuriog [10S JO SUONLI0T 7 In3I

ol 0

(w) sjeog

w/9

wol w 6Z wg /

[ —

£ ﬁ —— : -
- -9 G rae oo

uBiseq onusieg
Uum [1em Aeno

o]

I
I

16



\v—:——

Soil Boring Log

Project Number Boring Number A-4
UC San Diego Logger _ - Sheet 1 of 1
Project Performance of Lifelines subjected to Lateral Spreading Ground Elevation +1.890 m
Location Hiroo, Port of Tokachi, Japan Water Level Elevation +1.490 m
Drilling Method and Equipment Rotary Wash Dirilling, TDC-1 Starting Date 9/20/2001
Drilling Contractor Tokyo Soil Research Co., Ltd. Finishing Date 9/20/2001
B San’)plt‘a Soil Description
— ~—|__Descritption
€ E 5 8 . Gravel % Claystone
- c (3 8 '
£ -% %g) I:l Sand SPT N-Values Comments
o > ol = |lo g .
a ﬁ 8 § % E' é £ |:| Silt
o1 2 o
sl £ 18 2|5 % Clay 0 10 20 30 40 50 60
E o1 Very Loose, Dark Brown to Dark Gray, Silty SAND) : :
— (SM) | |
F 1 1,00 I I
— P2-1 | |
3 P22 | |
:_ 1.40 | |
E 2 2.00 ! !
E +0.09 | 235 P3
E 235 Very Soft, Dark Gray, Sandy CLAY (CL)
F 3 3.00
E P4
F 3.30
E 4 4.00
g PS5
:_ 4.40
F 5 | 311 ] 500 | 500
E ,SZ:; Very Soft, Dark Gray, Lean to Fat CLAY
E— 5.35 (CL,CH)
E 6 | 421 610 | 800 7
= P7-2 Medium Dense, Dark Gray, Silty SAND (SM)
— -4.41 6.30 6.30
E 7

Figure 2.2 Soil Boring Log for Borehole A-4 (Data from PARI)
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Soil Boring Log

\v—:——

Project Number Boring Number A-5
UC San Diego Logger - Sheet 1 of 1
Project Performance of Lifelines subjected to Lateral Spreading Ground Elevation +3.020 m
Location Hiroo, Port of Tokachi, Japan Water Level Elevation +2.620 m
Drilling Method and Equipment Rotary Wash Dirilling, TDC-1 Starting Date 8/24/2001
Drilling Contractor Tokyo Soil Research Co., Ltd. Finishing Date 8/25/2001
B Sa”.‘p'? Soil Description
— ~—|__Descritption
E £ 5 g . Gravel % Claystone
Z|5|8¢% 4
£1% s a [] sand SPT N-Values Comments
o) > ol = |o 5l_ .
a ﬁ 3 § % —g é £ |:| Silt
o1 2 ol
&l £ 182 5o % Clay 0 10 20 30 40 50 60
P1 Very Loose, Dark Brown, Well-Graded SAND with
| Silt and Gravel to Silty SAND with Gravel (SW-
1.00 SM, SM)
—1 P2 4
1.30
2.00 /
P3 0.8
2.40
3.00
P4 0.7
058 | 360 [z
4.00 Very Soft, Dark Gray, Fat CLAY with Sand
Ps (CH) Q
4.45
5.00
P6 Q
545
6.00
p7 Q
6.45
7.4
470 | 7.40 P8 0.9
;gg Medium Dense, Dark Gray, Silty SAND (SM)
P9 10
590 | 860 | 83
9.00 Dense, Dark Gray, Silty SAND (SM)
P10 41
9.30
10.00
P11 33
10.30
11.00
P12 44
868 | 11.70 | 1130
8.98 | 12.00 Hard, Dark Gray, CLAY
= Dense to Very Dense, Dark Gray, GRAVEL 41
E— with Sand
£ 13
F 50/8
E |-1078] 1380
:—14 Dark Brown, Weathered Claystone 50/19
§ 15
:_ -12.16 | 15.18 50/18
E 16

Figure 2.3 Soil Boring Log for Borehole A-5 (Data from PARI)
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Soil Boring Log

Project Number Boring Number B-1
UC San Diego Logger - Sheet 1 of 1
Project Performance of Lifelines subjected to Lateral Spreading Ground Elevation +2.710 m
Location Hiroo, Port of Tokachi, Japan Water Level Elevation +2.410 m
Drilling Method and Equipment Rotary Wash Dirilling, TDC-1 Starting Date 9/20/2001
Drilling Contractor Tokyo Soil Research Co., Ltd. Finishing Date 9/20/2001
g San’)plt‘a Soil Description
£ lz Descritption
= = o
E| § 8 . Gravel % Claystone
£ -% %f) I:l Sand SPT N-Values Comments
7] > — 5 .
I I 5 = g ié é z O sit
ol & ol
gl £ 18 2|5 % Clay 0 10 20 30 40 50 60
P1 Very Loose, Dark Brown, Silty SAND (SM) :
|
1.00 :
P2 5 !
1.30 |
2.00 !
I
P3 3 !
2.30 |
|
3.00
P4 £V S
0.79 | 350 [ |
400 Very Soft, Dark Gray, Lean to Fat CLAY with |
- |
o Sand (CL, CH) 0.4l ‘
4.40 :
5.00 1
P6 0.7 |
5.45 |
6.00 - ________/
P7 0.7 :
6.45 |
-4.29 | 7.00 | 7.00 {
459 | 730 P8 Medium Dense, Dark Gray, Silty SAND (SM) | 12 |
7.30 |
|

Figure 2.4 Soil Boring Log for Borehole B-1 (Data from PARI)
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Soil Boring Log

Project Number Boring Number B-3
UC San Diego Logger - Sheet 1 of 1
Project Performance of Lifelines subjected to Lateral Spreading Ground Elevation +3.070 m
Location Hiroo, Port of Tokachi, Japan Water Level Elevation +2.770 m
Drilling Method and Equipment Rotary Wash Dirilling, TDC-1 Starting Date 9/21/2001
Drilling Contractor Tokyo Soil Research Co., Ltd. Finishing Date 9/21/2001
B Sanjplg Soil Description
— ~—|__Descritption
= | E|88
E| T 2 g . Gravel % Claystone
£ -% £ a I:l Sand SPT N-Values Comments
[ > kel —_ [ .
a ﬁ 8 § % —g é £ |:| Silt
o1 2 ol
sl £ 18 2|5 % Clay 0 10 20 30 40 50 60
o1 Very Loose, Dark Brown, Silty SAND (SM) ;
|
1.00 | ﬂ‘ 77777777777777777
— P2 5 |
1.30 |
2.00 !
1 p3
2.30
3.00
P4
345
4.00
-1.38 4.45 PS5
4.45 Very Soft, Dark Gray, Lean to Fat CLAY (CL,
5.00 CH)
I
5.45
6.
P7
6.30
7.00
-4.23 7.30 P8
7.30 Medium Dense, Dark Gray, Silty SAND (SM)
8.00
5.23 | 830 .
8.30

Figure 2.5 Soil Boring Log for Borehole B-3 (Data from PARI)
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Soil Boring Log

Project Number Boring Number B-4
UC San Diego Logger - Sheet 1 of 1
Project Performance of Lifelines subjected to Lateral Spreading Ground Elevation +3.110 m
Location Hiroo, Port of Tokachi, Japan Water Level Elevation +2.310 m
Drilling Method and Equipment Rotary Wash Dirilling, TDC-1 Starting Date 8/26/2001
Drilling Contractor Tokyo Soil Research Co., Ltd. Finishing Date 8/28/2001
B Sa”.‘p'? Soil Description
— ~—| __Descritption
=Bz
E|l Tl g . Gravel % Claystone
g -% %g) [] sand SPT N-Values Comments
o) > ol = |o 5l_ .
a % 3 § % —g é £ |:| Silt
of 2 ol
&l £ 182 5o % Clay 0 10 20 30 40 50 60
E P1 Very Loose, Dark Brown, Silty Sand with Gravel
— (SM)
E 1 1.00 /
E P2 1.7]
:_ +1.51 1.60 1.35
F 2 2.00 Very Loose, Dark Gray, Silty Sand (SM)
E L | pr3 2]
- 2.30
E 3 3.00
E P4 0.7
E— 345
E 4 4.00
E 134 | 445 P5 Q
E 4.45 ‘ery Soft, Dark Gray, Lean to Fat CLAY (CL,
E 5 5.00
E P6 1
- 5.30
E 6 6.00
E p7 1
:_ 6.30
E 7 7.00
— -4.09 7.20 -
E Po2 ' 0.7,
— 459 | 770 | 7.45 Very Loose , Dark Gray, Silty SAND (SM)
E 8 Very Dense, Dark Gray, GRAVEL
E 50/6]
E 9
F- 50/2]
E 10
E 7.29 | 1040 50/3]
== Dense, Dark Gray, Silty SAND
E 11 11.00
E P9 44
E— 859 | 11.70 | 1130
E 12 ark Brown, Weathered Claystone
E 50/29)
E 13
E- 50/20)
E 14
= 50/19)
§ 15
:_ -12.05| 15.16 50/16]
E 16

Figure 2.6 Soil Boring Log for Borehole B-4 (Data from PARI)
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Soil Boring Log

Project Number Boring Number C1
UC San Diego Logger - Sheet 1 of 1
Project Performance of Lifelines subjected to Lateral Spreading Ground Elevation +3.010 m
Location Hiroo, Port of Tokachi, Japan Water Level Elevation +2.710 m
Drilling Method and Equipment Rotary Wash Dirilling, TDC-1 Starting Date 8/31/2001
Drilling Contractor Tokyo Soil Research Co., Ltd. Finishing Date 8/31/2001
B Sa”?p"? Soil Description
— ~—|__Descritption
=2z
E| T 2 g . Gravel % Claystone
£ -% £ 3 [] sand SPT N-Values Comments
93 > ol = |lo g "
a ﬁ 3 § % E' é £ |:| Silt
o1 2 ol
ol E182|5 6 % Clay 0 10 20 30 40 50 60
g P1 Loose, Dark Brown, Silty SAND with gravel (SM) :
— |
E 1 1.00 | ﬂ‘ 77777777777777777
E P2 8 |
— 1.30 |
FE 2 [+.01] 200 | 200 !
F b3 Very Soft, Dark Gray, Fat CLAY (CH) e *‘ ”””””””””
E |
E 5 : |
3 Pt &
E— 345 |
E 4 4.00 |
§ P5 Q !
:_ 4.45 :
E 5 5.00 |
E P6 0.7 |
= 5.45 |
F 6 6.00 |
3 | ¥ 1
:_7 379 | 680 | 64° !
- 7.00 n "
E_ w0 | 730 . Medium Dense, Dark Gray, Silty SAND (SM) 13 :
:_ 7.30 |
F 8 !
—— |
E |
— |
E o ‘

Figure 2.7 Soil Boring Log for Borehole C-1 (Data from PARI)
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Soil Boring Log

Project Number Boring Number D-1
UC San Diego Logger - Sheet 1 of 1
Project Performance of Lifelines subjected to Lateral Spreading Ground Elevation +3.09 m
Location Hiroo, Port of Tokachi, Japan Water Level Elevation +2.710 m
Drilling Method and Equipment Rotary Wash Dirilling, TDC-1 Starting Date 8/31/2001
Drilling Contractor Tokyo Soil Research Co., Ltd. Finishing Date 8/31/2001
B Sanjplg Soil Description
— ~—|__Descritption
A
E| T 2 g . Gravel % Claystone
£ -% £ a I:l Sand SPT N-Values Comments
7] > — 5 .
ol 3|8 }'; g ié é £ O sit
EEREE s B cwy 0 10 20 30 40 50 60
P1 Very Loose, Dark Brown, Silty SAND with gravel ;
| (SM) |
1.00 :
— P2 3| |
1.30 |
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Figure 2.8 Soil Boring Log for Borehole D-1 (Data from PARI)
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Figure 2.20 Overview of 2™ Lateral Spreading Pilot Test (Side View)
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Figure 2.25 Surface Cracks after the Blast
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Figure 2.27 Evidence of Liquefaction : Sand Boils
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3  Test Set-Up of 1% Full-Scale Lateral Spreading
Experiment

With the accomplishment in the pilot lateral spreading test, the construction of the
actual test site for the first full-scale lateral spreading experiment was then launched in
the late of August 2001 and completed in the early of November 2001. The details of the
test site are discussed in this chapter. This is followed by the detailed instrumentation
and installation procedure. Instrumentation employed to measure responses of soil and
lifelines during the lateral spreading are described. The locations of blast holes, amount
of charges used as well as the sequence of blasting are also given. Finally, the

descriptions of data acquisition system employed in this test are provided.
3.1 Description of Test Site

The UCSD experiments on performance of lifelines subjected to lateral spreading
were located in a zone of the unapplied seismic design quay wall where the large global
translation of the soil was expected. A layout of the test site for the UCSD experiment is
shown in Figure 3.1. Overviews of the site are presented in Figure 3.2 and Figure 3.3.
The test site was approximately 25 m wide by 100 m long. The front face was bordered
by a 25-m wide water way with the bottom located at elevation of -5.00 m. The water
elevation was approximately +2.00 m on the test date. The sheet pile quay wall was
driven to the elevation of -8.00 m and was anchored by the tie rods which were fixed to
H-piles to prevent the movement of the quay wall. The quay wall retained 7.5 m of
hydraulic fill with the design elevation at the ground surface of +3.00m. The UCSD pile
specimens were located at 19.0 m away from the quay wall. Figure 3.4 shows the layout
of UCSD pile foundations consisting of a single pile, a-4 pile group and a 9-pile group.
A group of free head single piles of WU were also located in this region. The gas
pipelines and electrical conduit were located across the test sites at 30 m and 32.2 m
away from the quay wall. Both were installed at the elevation of +1.75 m. The ground

surface started to gently elevate upwards at 25.2 m away from the quay wall with the

40



slope of 4% such that the elevation of the other end of the site was +5.00 m. The other
gas pipeline was installed parallel to the direction of flow with the center of the pile being
located at 1 m below the ground surface. The test site was surrounded by the sheet piles

to tip elevations between -5.00 to -8.00m.
3.2 Description of Test Specimens

The foundation specimen’s 318-mm diameter of steel pipe piles with wall
thickness of 10.5 mm and a nominal length of 11.5 m were used to model foundation
systems which included a single pile, 4-pile group and 9-pile group. The yield strength
of these steel pipe piles was 400 MPa. A total of 9 piles were instrumented with
electrical strain gauges (i.e., 1 single pile, 2 piles for the 4-pile group, and 6 piles for the
9-pile group). The strain gauges were located at 0.6 m intervals on two opposite sides of
the piles (i.e., upstream (front) and downstream (back) sides) to measure the bending
moment along the pile as presented in Figure 3.5. In addition, two rosette strain gauges
were attached to each pile to measure the shear force developed in each pile in the pile
group during the lateral spread. One was attached at a depth of 1.9 m below the original
pile head and the other one was attached just below the pile cap. A series of tiltmeters at
various depths were also installed on one pile of each foundation system to use as backup
data for strain gauges. The 75x40x5 steel channels with the yield strength of 400 MPa
were welded to the steel pipe piles to protect the strain gauges from damage during the
pile installation.

Gas pipelines were 500 mm in diameter with wall thickness of 6 mm. One of
them was installed transversely across the test site which was perpendicular to the flow
direction, denoted as pipeline type A and the other was installed parallel to the flow
direction, denoted as pipeline type C. The length of the pipelines type A and C were
approximately 25 m and 22 m, respectively. The electrical conduit denoted as pipeline
type B was 268 mm diameter with a wall thickness of 6 mm, a length approximately of
25 m. It was installed transversely across the test site, 2m away from the pipeline type A.

All of them were instrumented with electrical strain gauges along their lengths as
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presented in Figure 3.6. The strain gauges along the sides of the pipeline type A and B
were used to measure the bending moment of the pipelines subjected to horizontal
movement from lateral spreading. This will be also valuable for back-calculating the soil
pressure distribution along the pipelines. The strain gauges along the top of the pipelines,
which measured the bending moment along the pipelines in the vertical direction, will be
used to calculate the settlement of the pipelines. Apart from the strain gauges, a series of
tiltmeters were also instrumented to use as a backup data for strain gauges. For the
longitudinal gas pipeline (pipeline type C), the strain gauges were installed along the top,
side, and bottom of the pipeline. The strain gauges along the side of the pipeline were
utilized to measure axial force distribution along the pipeline type C subjected to drag
force from a flow of the soil around it. The strain gauges along the top and bottom of the
pipeline C will be used to calculate the settlement. A series of tiltmeters were installed at

various locations to use for a backup of strain gauge data.

3.3 Pile Installation Procedure

A diesel driving machine was used to install the piles into the ground as presented
in Figure 3.7. Most piles were driven full length into the ground corresponding to about
3.0 to 3.5 m into denser soils to generate the fixity at the pile tips. This was to ensure that
the movement of the soil due to the lateral spreading can produce the bending moment
along the pile and hence allow quantifying the distribution of the soil pressure acting on
the pile from strain gauge data. At the end of pile installation, it was found that about
20% of strain gauges were lost during the installation. Figure 3.8 and Figure 3.9 present
the elevation of piles after driving for a 4-pile group and a 9-pile group, respectively. As
observed on the photographs, the piles were driven to different depths because a couple
of them reached refusal, likely due to the presence of boulder at that particular depth.

After the completion of pile installation, excess pile lengths were cut. Then, the
construction of pile caps was continued using standard of Caltrans. Figure 3.10 shows
locations of pile tips together with the position of remaining strain gauges after cutting

the piles. The depths of soil plug were also measured as indicated in the figure. The
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details of the pile caps for the 4-pile group and the 9-pile group were given in Figure 3.11
and Figure 3.12. The piles were spaced at 3.5 pile diameter center-to-center
corresponding to 1.113 m. The dimensions of pile caps of the 4-pile group and 9-pile
group were 2.333 m x 2.333 m x Im and 3.446 m x 3.446 m x 1 m, respectively. Figure
3.13 presents the sequence of construction of a pile cap. A summary of concrete strength

for the pile caps at 7 and 28 days is given in Table 3.1.
3.4 Pipeline Installation Procedure

Figure 3.14 present the installation sequence of pipeline A and B, while Figure
3.15 presents the installation of pipeline C. Due to the Japanese regulation of
transportation, the pipelines needed to be cut into a few segments and then were welded
together at the test site. Steel plates were welded to the pipelines on both ends of the
pipelines type A and B, and one end of pipeline type C. The ground was then excavated
with the side slope of approximately 1:1 to a depth of 1.45 m below the ground elevation.
Subsequently, the backfill material was placed and compacted to a required thickness of
0.20 m for the base layer using rammer and roller vibrator. The pipeline was then lifted
up and set in place with an approximate depth of 1m below the ground surface. Then,
both ends were anchored to the sheet pile wall using high strength bolts. Shims were
used if necessary. This type of connection allowed for some rotation on both ends of the
pipelines.  Subsequently, the sand was backfilled with multiple compacted layers in
accordance with Japanese Gas Association specification to achieve a compact dry density
unit weight of 90% of the maximum dry unit weight determined in the laboratory by
standard Proctor test (ASTM D-698). Based on the laboratory test results, the optimum
dry density and optimum moisture contents of this backfill material was 14.7 kN/m’ and
16.8%, respectively. For each layer, the field density tests were carried out at 3 random
locations using the sand cone method (ASTM D-1556). The field density test results of
each layer for location of pipeline A, B and pipeline C are summarized in Table 3.2 and
Table 3.3, respectively. It shows that the density of compacted soil met the specification

with the relative compaction (R) of more than 90%.
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Apart from the strain gauges and tiltmeters, several instruments were also
installed to capture the behavior of soil and lifelines in more details. These include pore
pressure transducers, soil pressure cells, string-activated linear potentiometers,
accelerometers, inclinometer casings, and Global Positioning System (GPS) units. The
plan of instrumentation for the entire site is presented in Figure 3.17.  The
instrumentation plans nearby the pile foundation systems and pipelines are enlarged as
illustrated in Figure 3.18 and Figure 3.19, respectively. The details of each instrument
are described as the followings.

A total of 24 pore pressure transducers were installed at various locations and
depths throughout the test site to measure the excess pore water pressure built up during
the liquefaction. The transducers were installed nearby the test specimens as well as in
the free field. The measured excess pore water pressure will be used to calculate the
excess pore water pressure ratio to indicate the degree of liquefaction during the test.

For the 4-pile group and 9-pile group, soil pressure cells were installed at the front
and back sides of the pile cap surfaces to measure the pressure distribution of the soil
acting on both upstream and downstream sides. A total of 8 cells were employed for this
test. The magnitude of resultant forces acting on both pile caps can be calculated based
on the data from soil pressure cells. The locations of soil pressure cells are presented in
Figure 3.20.

Three accelerometers were installed on the top of the pile caps and single pile to
measure the horizontal acceleration responses during the test. The direction of
accelerometers was set to be parallel to the flow direction. The tiltmeters were also
attached adjacent to those accelerometer locations for measuring the pile head rotations.

To measure the profiles of soil displacement due to the lateral spreading,
inclinometer casings were installed. First, the borehole was drilled to the stiff layer, and
then the casing was lowered into the hole.  After that, the inclinometer casing was
adjusted until the direction of grooves was approximately parallel to the flow direction.
Borehole was then backfilled with the sand. The sensor was lowered into the casing to

measure the rotations along the casing before and after the test. Assuming that the
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rotation and displacement at the tips of the casing were zero, the displacement profile of
the soil can be calculated. Furthermore, three of displacement array fibers were also
installed to measure the real-time displacement soil profiles.

The string-activated linear potentiometers were used to measure the relative
displacement between two points of interest. For example, the potentiometer connected
between inclinometer casing and pile cap indicates the relative movement between soil
and the pile cap. The locations of linear potentiometers installed for this test are
summarized in Figure 3.18

The GPS units were used to measure real-time the movement in longitudinal,
transverse, and vertical direction. They were setup at several locations (i.e., on the pile
caps, single piles, and ground surface) in order to capture the movement of piles as well
as the soil during the test. The locations of GPS units are presented in Figure 3.17

through Figure 3.19.

3.5 Controlled Blast

As success in using the controlled blast to induce liquefaction of the soil in
several tests in Japan as well as the full-scale lateral load tests at Treasure Island
(Ashford ef al. 2000), the same method was implemented to liquefy the soil at the test site
and thus induce the lateral spreading. The blast holes were spaced at 6.0 m on centers in
the regular grid pattern as presented in Figure 3.21. The charges were installed at depths
of 3.5 m and 7.5 m below the ground surface (El +3.00m). The amount of charge varied
from 2 kg nearby the pile specimens to 3-5 kg at other areas. It was done this way so as
to prevent damage to a large number of instruments installed in the vicinity of pile
specimens. The sequence of the blasting started from the back corner of the embankment
(B1) and then proceeded successively towards the quay wall (B48). This was followed
by the detonation of the secondary blast holes around the perimeter of the test site as
denoted by C1-C14 and D1-D3. The purpose of these explosives was to loosen the soil
in the vicinity of sheet pile to allow unrestricted flow of the soil in such region.

Approximately 10 sec after a completion of primary and secondary blasting, the
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additional explosives were used to break tie rods of the quay wall and allow the quay wall

to move freely and thus create additional movement of the soil within the test area.
3.6 Data Acquisition System

A total of more than 400 channels were connected to the high speed data
acquisition systems to collect and process the data during the test. The number of
channels required for this test was more than the capacity of the UCSD data acquisition
system, therefore an additional data acquisition system was rented from Tokyo Soil
Research Company in Japan to satisfy the requirement. The UCSD data acquisition
system was the SCXI system manufactured by National Instruments. It consisted of
SCXI-1001 chassis, SCXI-1120, SCXI-1520, and SCXI-1121 modules together with
SCXI-1320, SCXI-1321, and SCXI-1314 front mounting terminal blocks. The UCSD
system had a capability to support up to 320 channels comprised of 280 channels of strain
gauges and 40 channels of other instruments (i.e., accelerometers, linear potentiometers,
and tiltmeters). The Japanese system was manufactured by Kyowa consisting of 150
strain gauge channels. Both systems started recording the data at the same time
approximately 3 minutes before the blasting. The data were synchronized with other test
participants at 116.76 seconds before the blast using the 5 volt signal as an indication.
The data were acquired at sampling rate of 100 Hz for about 3 minutes following the
blasting to capture all the important information during the test. The scan rate was then
changed to 10 Hz and 0.1 Hz for the duration of about 2 hours and 24 hours, respectively

to measure the decrease in excess pore water pressure with time.
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Table 3.1 Summary of Concrete Strength for Pile Caps

Date of
Casting

Date of
Test

Concrete
Age
(Days)

Truck
No.

Slump
(cm)

Air
(%)

Sample
No.

f.’
(MPa)

2
fC ave

(MPa)

10/15/02

10/22/02

7.0

4.3

29.3

294

29.8

29.5

8.0

4.6

29.5

29.7

29.7

29.5

7.0

4.4

28.6

28.9

294

29.0

10/15/02

11/12/02

28

7.0

4.3

36.7

36.8

36.6

36.7

8.0

4.6

35.9

35.5

36.2

359

7.0

4.4

36.1

36.7

WIN [ |WN [ [WIN [ W[ [W[N [ W D[

35.7

36.2

47



Table 3.2 Summary of Field Density Test Results for Pipeline A and B

Location | Layer | Sample Total Water Dry Relative Average
No. No. Density | Content | Density | Compaction, Relative
(N/m)) | (%) | (kKNm) R (%) Compaction
(%)
1 17.27 25.0 13.81 94.0
Base 2 17.75 24.9 14.21 96.7 96.1
3 17.74 23.8 14.33 97.5
1 16.87 17.8 14.31 97.4
1 2 16.22 15.5 14.05 95.6 96.3
3 16.72 18.7 14.08 95.8
1 16.35 17.6 13.90 94.6
2 2 17.37 19.4 14.55 99.0 96.1
Pipeline 3 15.89 14.2 13.91 94.6
Aand B 1 15.92 15.6 13.77 93.7
3 2 15.56 12.5 13.84 94.2 94.1
3 15.82 13.9 13.89 94.6
1 16.12 133 14.23 96.8
4 2 15.43 133 13.62 92.7 95.2
3 16.13 14.3 14.11 96.0
1 15.82 15.0 13.76 93.7
5 2 16.62 16.0 14.33 97.5 95.6
3 15.98 13.8 14.05 95.6

Note: R(%) = L2090 1100%

7/ d (max—lab)

Yacneay = Field dry density

Y dmax—1ary = Maximum dry density measured in laboratory by standard Proctor test
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Table 3.3 Summary of Field Density Test Results for Pipeline C

Location | Layer | Sample Total Water Dry Relative Average
No. No. Density | Content | Density | Compaction, Relative
(N/m)) | (%) | (kKNm) R (%) Compaction
(%)
1 16.01 14.7 13.96 95.0
Base 2 16.57 16.0 14.28 97.2 96.1
3 16.17 14.7 14.10 96.0
1 16.34 14.4 14.28 97.2
1 2 16.86 14.6 14.72 100.0 97.2
3 16.28 17.4 13.86 94.3
1 16.27 13.8 14.30 97.3
2 2 15.90 14.7 13.86 94.3 97.2
Pipeline 3 16.76 14.1 14.69 100.0
C 1 16.33 14.4 14.28 97.2
3 2 15.80 12.6 14.03 95.5 95.9
3 15.83 13.2 13.98 95.1
1 15.55 12.7 13.80 93.9
4 2 15.09 12.9 13.36 90.9 92.2
3 15.35 14.0 13.47 91.7
1 16.00 14.4 13.99 95.2
5 2 16.00 14.8 13.94 94.9 95.8
3 16.14 12.8 14.30 97.3

Note: R(%) = 2090 1100%

7/ d(max—lab)

Yacneay = Field dry density

Y dmax—1ary = Maximum dry density measured in laboratory by standard Proctor test
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Figure 3.3 Overview of Test Site, 1* Japan Blast Test (Side View)
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Figure 3.8 Piles of 9-Pile Group after Completion of Installation

Figure 3.9 Piles of 4-Pile Group after Completion of Installation
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6. Construction of Reinforcement

7. Construction of Formworks 8. Pile Cap after Concrete Work

Figure 3.13 Procedure for Construction of Pile Cap
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3. Excavation for Pipeline AB Installation

7. Installation of Pipeline B 8. Pipeline A and B in Place
Figure 3.14 Procedure in Construction of Pipeline Type A and B
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10. Compaction of 1* Layer

PR ¥ ST = s
.

T
11. Compaction

16. Completion of Installation

Figure 3.14 Procedure in Construction of Pipeline Type A and B (Cont’d)
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7. Compaction of 1% Layer 8. Completion of Installation

Figure 3.15 Procedure in Construction of Pipeline Type C
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Figure 3.18 Schematic Diagram of Instruments nearby Pile Specimens
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Figure 3.20 Location of Soil Pressure Cells
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4 Test Results of 1% Full-Scale Lateral Spreading
Experiment

In this chapter, preliminary test results of the 1* full-scale lateral spreading
experiment using controlled blasting are presented. For each test specimen, the results of
strain gauges as well as the excess pore pressures nearby each specimen are presented
and discussed. Then, the results of other instruments will be presented separately for
comparison purposes. Furthermore, the overview of site condition after the test as well as
the results of surveying after the test is described. It is noted that time at 0 second

presented in each plot associated with the initiation of the blast.

4.1 Single Pile

The time-history of strain of a single pile at various depths are presented in Figure
4.1 and Figure 4.2. Figure 4.3 presents the strain profile at time of 70 seconds, which can
be considered as the residual strain after the lateral spreading occurred. It is noted that
most strain gauges on back side of the single pile, as well as a series of tiltmeters, were
damaged during the pile installation. The test results indicate that the strains at depths
between 0 and 4 meters were insignificant implying that the resultant force acting on the
pile for the first 4 meters was negligible. This can be explained in a number of ways.
One of possible explanations on this phenomenon is that after the soil was liquefied, it
becomes to behave like viscous fluid material being able to flow around the pile without
significant force acting on the pile on the first 4 m of loose sand. The soil resistance
began to increase with depth for the next 3.5 m where very soft clay layer existed. The
maximum strain occurred in a dense soil layer at depth about 9 m below the ground
surface.

To determine the moment along the length of the pile, the section analysis was
first performed to calculate the moment-curvature relationship of the steel pipe pile using
UCFyber, a finite element program from section analysis. Assuming the bilinear stress-

strain relationship for the steel, the moment-curvature relationship of the steel pipe pile is
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presented in Figure 4.4. The pile curvatures were calculated from the strain gauge data

using the following equation:

p=" (1)

where ¢ is curvature, ¢is strain, ¢ and ¢ denote tension and compression, respectively, and
h is distance from both strain gauges. However, if one of both strain gauges was

damaged, the following expression was used.

4= (4.2)

£
d
where d is the distance of strain gauge from neutral axis.

The moment was calculated by multiplying the flexural rigidity of the pile with
the curvature data. Figure 4.5 shows the moment distribution of the pile indicating that
maximum moment was approximately 67% of yield moment of the section.

Figure 4.6 and Figure 4.7 present excess pore pressure ratio responses at different
depths nearby the single pile for durations of 100 seconds and lhour, respectively. The
excess pore pressure ratios were calculated by assuming a total soil unit weight of 16
kN/m’ and the water table at 1 m below the ground surface. It shows that the excess pore
water pressure ratios had built up since the blast was initiated and reached the maximum
values at about 30 seconds following the blast. Both transducers show excess pore
pressure ratio reaching 100%. The excess pore pressure ratio fluctuated more as the
blasting moved closer to the transducers. After the completion of blasting, the excess
pore water pressure dissapated with time. The excess pore pressure ratio immediately
after the completion of the blast ranged from 80% to 90%, and then dropped to about
50% to 60% one hour following blasting.

4.2 4-Pile Group

Two piles of a 4-pile group, denoted as No.7 and No.8, were instrumented with

strain gauges. A series of tiltmeters were also installed along the length of the pile No.7.
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Unfortunately, the tiltmeters were damaged during the pile installation because the
sensors could not resist strong vibration during driving of the pile. Most of strain gauges
on the back side of the pile No.7 were also damaged. The results of strain gauge of each
pile at various depths are presented in Figure 4.8 through Figure 4.11. The residual strain
profiles of pile No.7 and No.8 are presented in Figure 4.12 and Figure 4.13, respectively.
For pile No.§8, the strains on both sides along the pile were reasonably symmetric
indicating the consistency of strain gauge data. The moment distribution of each pile was
estimated as presented in the in Figure 4.14 and Figure 4.15. The shape of moment
profile from the experiment agreed well with a typical analysis of a pile with fixed head
condition showing that the results from the test were reasonable and appropriate for
further analysis to estimate the pressure distribution of liquefiable soil on the pile. The
maximum moment of both piles occurred in a dense soil layer at a depth of 9 m below the
ground surface with ranging in magnitude from 180 to 245 kN-m for pile No.7 and No.8,
respectively. The ratios of maximum moment to yield moment were 0.35 to 0.47 which
were less than those occurred in the single pile.

The results from pore pressure transducers nearby the 4-pile group are presented
in Figure 4.16 and Figure 4.17. The excess pore pressure ratios reached the peak at about
30 seconds after the blast detonated ranging in values from 80% to more than 100%.
This indicates that the soil was liquefied in this neighborhood. The excess pore pressure
ratio had dropped to between 50% and 100% just after the completion of the blast and
proceeded to drop to between 40% and 65% one hour after the blast.

4.3 9- Pile Group

A total of 6 piles in a 9-pile group were instrumented with strain gauges. The
results of strain gauges on each pile at different depths are presented in Figure 4.18
through Figure 4.29. Furthermore, the strain profile of each pile at the time about 70
seconds after the blast initiated is also presented in Figure 4.30 through Figure 4.35. It is
noted that the strain gauge on the back side of the pile No. 4 as well as the tiltmeters were

damaged during pile installation. Similar to the results of the 4-pile group, the strain
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gauge profiles on the front and back sides of each pile were symmetric showing that the
strain gauge data obtained from the test were reliable.

The moment distribution of each pile calculated from strain gauges data is
presented in Figure 4.36 through Figure 4.41. It is observed that the moment distribution
of all piles in the group was more or less similar except for pile No. 2 and No.4 where the
moments were smaller than the others. This is likely due to the fact that both piles were
shorter in length and thus the degree of fixity into the dense soil layer was less, resulting
in smaller moment developed in the piles. The maximum moment of the piles occurred
at depths about 9m below the ground surface with ranging in magnitude from 60 to 230
kN-m, corresponding to about 12% to 44% of the yield moment. The moment
distributions occurred in the piles of the 9-pile group were comparatively similar to those
measured in the 4-pile group. Data from GPS units which will present in later section
also show that the movement of the 4-pile group and the 9-pile group were similar.
These similar measurements of the pile groups support that the moment distribution
occurred for both pile groups should also be comparable.

The results of excess pore pressure ratios nearby the 9-pile group at various
depths are presented in Figure 4.42 through Figure 4.45. The excess pore water pressure
ratios started to build up immediately after the blast. The rate of increase in pore water
pressure become more rapidly as the blast moved closer to the transducers. The increased
in pore water pressure ratios proceeded to reach the maximum values at approximately 30
seconds after the blast and then continued to drop with time. Again, the results show that
the soil in the vicinity of the 9-pile group was liquefied with the maximum excess pore
pressure ratios exceeded 100%. The excess pore pressure ratios dropped to between

50% and 90% one hour after the blast.

4.4 Gas Pipeline in Transverse Direction (Pipeline A)

The strain gauge data along transverse gas-pipeline (pipeline A) are presented in
Figure 4.46 and Figure 4.47. The profiles of strain gauge on the top and the side of the

pipeline are shown in Figure 4.48. Unlike the data of pile foundation systems, the strain
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data of pipeline were somewhat irregular from what we expected (i.e., the maximum
strain occurs at the mid span of the pipeline.). This is probably due to the fact that the
pipeline was subjected to non-uniform soil pressure along its entire length produced by
the compression wave from the blasting which likely to produce inconsistent pressure
distribution by its nature. Due to the irregularity of strain gauge data, the moment
distribution along the pipeline was not computed at this time, but will be further
investigated once additional data from other researchers becomes available.

Figure 4.49 and Figure 4.50 present the data from pore pressure transducers
installed between the middle of the pipeline A and B in multiple depths. Similar
characteristics of response of excess pore pressure ratio were observed as those
transducers for the pile foundation systems. However, the excess pore pressure ratio
reached the maximum values at about 20 seconds, which was 10 seconds earlier than
those transducers installed in the vicinity of pile foundation. This is because the blasting
occurred in the vicinity of pipelines sooner than that of pile foundation system. Both
transducers show maximum excess pore pressure ratio exceeding 100% over 100 seconds
showing that soil in this region was liquefied during the test. The excess pore pressure

ratio then dropped below 80% one hour following blasting.

4.5 Electrical Conduit in Transverse Direction (Pipeline B)

The strain data along a transverse electrical conduit are presented in Figure 4.51
and Figure 4.52. The profile of strain gauge on the top and the side of the pipeline are
shown in Figure 4.53. The data are somewhat irregular similar to the results of pipeline
A, and will require further analysis once more data is available.. The possible reason as
mentioned in previous section can be applied to explain the irregularity of the results. It
is observed that strain distribution along the side of the electrical conduit was larger than
that of the gas-pipeline. This is because both pipelines had the same magnitude of
movement (This refers to the GPS data which will mention in the later section of this

chapter) which implied that the distribution of curvature was approximately no different;
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therefore, larger diameter pipeline produced larger strain. The excess pore pressure

ratios nearby this pipeline were already discussed in the previous section.

4.6 Gas-Pipeline in Longitudinal Direction (Pipeline C)

The responses of strain gauges along longitudinal gas pipeline are presented in
Figure 4.54 through Figure 4.56. The profiles of strain gauges on the top, side, and
bottom of the pipeline are shown in Figure 4.57.  Again, the results were not the same
as what we expected. The strain along the side where it was intended to measure the
axial strain distribution should have the maximum strain at the support and zero strain at
the end if the soil flowed parallel to the direction of the pipeline. However, the measured
strain distribution shows that the maximum moment occurred at about the middle of the
pipeline. This is because the actual blasting energy produced not only the movement
parallel to the pipeline but also perpendicular to the pipeline. In this particular case, the
movement mainly occurred in the direction perpendicular to the pipeline. This was
observed from the evidence of a relative large movement of sheet pile wall on one side of
the embankment as presented in Figure 4.58. The measurements from GPS data also
confirmed that the movement in this vicinity was mainly perpendicular to the flow
direction.

The excess pore pressure responses at various depths in the vicinity of the
pipeline C are presented in Figure 4.59. The excess pore pressure built up immediately
after the blast initiated and reached the maximum values at about 10 seconds. The
maximum excess pore pressure ratios ranged from 80% to over 100 % showing that the
soil nearby the pipeline was liquefied. Just after the blast ceased, the pore water pressure
ratios decreased to between 60% and 80%. The ratios dropped to 35% to 60% one hour
after the blast.

4.7 Results of Other Instruments

Other instruments that were installed far away from the test specimens or

inappropriate to include in the above sections are discussed here. This includes the pore
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pressure responses in the free field region, data from soil pressure cells, the accelerations
and rotations of the pile head, soil displacement profiles from the inclinometer readings,
relative movement between soil and lifeline utilities using linear potentiometers, and the
real-time movements of lifeline utilities and near field from the GPS units. The details of
test results are discussed below.

The excess pore pressure data distributed throughout free field region were
presented in Figure 4.61 and Figure 4.64. The excess pore pressure ratio built up and
reached their peaks at time between 5 to 15 seconds, depending on the locations of the
transducers. The closer to the back corner of the embankment where the blasting was
first initiated, the sooner reaching the maximum excess pore water pressure. Pore water
pressure ratios obtained from all the transducers in the free field were relatively larger
than those in the vicinity of pile specimens due to the larger amount of explosives used in
this zone. The excess pore water pressure ratios exceeded 100%. One hour after the
blast, the excess pore pressure ratios dropped to between 50% and 90%. Several sand
boils were observed confirming that using the controlled blast could successfully induced
the liquefaction throughout the test area.

The data of soil pressure cells on the pile caps of the 4-pile group and the 9-pile
group are presented in Figure 4.65. The locations of soil pressure cells are given in the
previous chapter. The data seems to be not consistent. The soil pressures acting on the
pile caps appeared to be relatively small with the average magnitude of less than 5
KN/m?.

The results from accelerometers and tiltmeters at the pile head are presented in
Figure 4.66 and Figure 4.67, respectively. The acceleration at the pile head due to the
effect of blasting decreased with increasing the foundation stiffness with the acceleration
being highest for the single pile and lowest for the 9-pile group. The results from
tiltmeters show that the pile head rotation of the single pile (free head condition) at the
end of the test was approximately 2 degree, while the rotation of the 9-pile group (fixed
head condition) was insignificant. It is noted that the tiltmeter installed on the 4-pile

group was damaged.
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Profiles of soil displacement obtained from the inclinometer readings after the
completion of the blast test are presented in Figure 4.68 through Figure 4.78. The results
indicated that the maximum movement of the soil occurred at the ground surface as
expected. The displacements obtained from inclinometer data were slightly less than the
actual soil displacement (i.e., compared to GPS data) because an absolutely fixed
boundary condition at the tip of the casing was assumed to compute the soil displacement
profile. In fact, some movement of inclinometer casings at the tips might occur resulting
in underestimating the soil displacements. The summary of the movement at the ground
surface of each location are summarized in Table 4.1. The movement of the soil ranged
approximately from 18 to 41 cm with the average values of 30 cm. It is noted that the
fiber optic displacement arrays which were installed to measure the real times soil
displacement were all damaged due to the effect of blasting.

The results of string activated linear potentiometers are presented in Figure 4.79
through Figure 4.81. A summary of relative movement between two points of interest
after the blast is given in Table 4.2. According to the measurements, it can be observed
that the movement of single pile (No.9) and the soil in front of the pile is approximately
the same, while the movements of the Waseda single piles were more than the soil. This
might be due to the fact that the Waseda piles were sit just above the dense layer; while
the UCSD pile was penetrated 3 meters into the dense layer. The Waseda piles were
therefore likely to behave like a rigid pile in which the rotation and movement at the pile
tip were expected. In contrast, the UCSD pile behaved more like a flexible pile where the
rotation and the movement at the pile tip was insignificant. Therefore, the displacement
at the pile head of the UCSD single pile was less than those of the Waseda piles. As
expected, the soil in front of and behind the pile groups moved approximately 8 to 15 cm
more than the pile groups. It is noted that there might be some small error on the
measurements due to the uplift of slope inclinometer casing as remarked in Table 4.2.

The displacement time histories from GPS units installed at several locations on
the ground surface as well as on lifeline utilities are presented in Figure 4.82 through

Figure 4.97. The data of 4 Caltrans’ GPS units loss during the critical blasting period due
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to intermittent GPS antenna interference and wireless communications loss (Turner
2002). One of Waseda GPS units (GPS-5) out of 10 was not working during the test.
Displacements in longitudinal, transverse, and vertical directions obtained from Caltrans’
GPS units at one minutes and 22 hours following blasting are summarized in Table 4.3
and Table 4.4, respectively. No horizontal creep was observed over 22 hours following
blasting. Most of the horizontal displacement associated with the lateral spreading took
placed within tens of seconds following the blast. However, the data revealed that the
maximum settlement of 10 cm was observed over an extended period of time as the pore
water pressures dissipated. Ground surface displacements in the vicinity of embankment
soil were monitored using WU’s GPS units. A summary of the movements of the
embankment soil at 30 minutes following the blast is given in Table 4.5. The vector
displacements in horizontal plane throughout the test site are presented in Figure 4.98.
The largest horizontal displacement was about 0.55 m occurring at a group of Waseda
free head piles. The data from the GPS units in the vicinity of the pipelines show that the
movements of the gas pipeline and electrical conduit were similar. Surprisingly, data
from 2 GPS units showed a significant movement of an embankment soil perpendicular
to the expected flow direction. This is because the soil in the applied seismic test site
adjacent to the embankment soil was liquefied causing a significant decrease in lateral
confinement in transverse direction comparatively to the flow direction where the soil
was not liquefied yet.

The displacement measurements from GPS units were verified against linear
potentiometer measurements in two locations. One of them was the relative displacement
between the single pile (GPS-1D) and slope inclinometer casing S7 (GPS-1E). The other
was the relative displacement between the 9-pile group and slope inclinometer casing S1.
Table 4.1 presents comparisons of relative displacements obtained from GPS data and
linear potentiometers data. Excellent agreement between measurements from GPS units
and linear potentiometers were observed with the difference being within 1 cm, which is
the accuracy typically associated with real time kinematics GPS methods. This

confirmed the consistency of measurements using the GPS.

78



4.8 Overview of Site Condition after Testing

After the end of the test, the evidence of liquefaction (i.e., sand boils, water
coming out from the ground, and ground settlement) were observed in many placed
throughout the test area. The sand boils were observed especially in the vicinity of blast
holes and inclinometer casings where the water could escape from the ground easier than
the other area due to appearance of gapping between soil and those casings. Figure 4.99

through Figure 4.105 show general overviews of site condition after the test.

4.9 Survey of Movement after Testing

Prior to and after the test, the location of specimens, inclinometer casings, and
many references on soil surface were measured to determine the relative movement of
those in X, y, and z direction due to the global translation of the soil mass. Figure 4.107
presents the vector movement of soil and specimens as well as the settlement contour at

the end of the test.
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Table 4.1 Summary of Measured Soil Displacements at ground Surface from
Inclinometer Results

Name | Displacement | Displacement | Total Vector Remarks
in A-Axis (m) | In B-Axis (m) (m)
S1 - - - Casing damaged.
S2 0.310 -0.059 0.315
S3 0.233 -0.049 0.238
S4 0.179 -0.031 0.182
S5 0.413 -0.050 0.416
S6 0.348 0.078 0.356
S7 0.309 -0.057 0.314
S8 0.242 -0.059 0.249
S9 0.315 0.096 0.330
S10 0.323 -0.021 0.324
S11 0.307 0.025 0.308
S12 0.236 0.165 0.288
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Table 4.2 Summary of Test Results from Linear Potentiometers

Name Location Relative Interpretation Remarks
movement
(m)
9-pile group and Inc. S1 Soil moved 96 mm more
STP-1 -0.096
(upstream) than pile.
9-pile group and Inc. S2 Soil moved 144 mm more
STP-2 +0.144 )
(downstream) than pile.
Single pile and Inc. S7 Soil and pile moved
STP-3 +0.002
(upstream) together.
4-pile group and Inc. S8 Soil moved 80 mm more S8 moved 0.3
STP-4 -0.080 )
(upstream) than pile. m upward.
Single pile (W1) and Pile moved 158 mm more | S11 moved 0.2
STP-5 +0.158
Inc. S11 (upstream) than soil. m upward.
Single pile (W2) and Pile moved 74 mm more S11 moved 0.2
STP-6 +0.074
Inc. S11 (upstream) than soil. m upward.
Single pile (W1) and Both piles have the same
STP-7 +0.008
Single pile (W3) movement.
4-pile group and anchor Anchor pile moved more
STP-8 +0.170
pile than soil.
Anchor pile and quay Quay wall moved more
STP-9 +0.347

wall

than anchor pile.

Note: Refer to Figure 3.18 for a better understanding of the relative movements.
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Table 4.3 Summary of Caltrans’ GPS Data, approximately 1 Minute Following Blasting

Displacement (m) Horizontal Angle to Flow
Longitudinal | Transverse Displacement (m) Direction
Location (x) (y) Vertical (z) (x-y plane) (Degree)
1A
1B
1C 0.341 -0.023 -0.001 0.341 3.88
1D 0.364 0.005 0.006 0.364 -0.78
1E
2A 0.214 -0.037 0.014 0.217 9.79
2B
2C 0.552 -0.016 0.010 0.552 1.68
2D 0.367 -0.080 -0.011 0.376 12.36
2E 0.368 -0.093 -0.043 0.380 14.24

Table 4.4 Summary of Caltrans’ GPS Data, approximately 22 Hours Following Blasting

Displacement (m) Horizontal Angle to Flow
Longitudinal | Transverse Displacement (m) Direction
Location (x) (y) Vertical () (x-y plane) (Degree)
1A 0.176 -0.042 0.014 0.181 13.39
1B 0.282 -0.025 0.032 0.283 5.11
1C 0.331 -0.018 -0.090 0.332 3.08
1D 0.350 0.005 0.008 0.350 -0.86
1E 0.338 -0.003 0.026 0.338 0.51
2A 0.209 -0.035 0.005 0.212 9.42
2B 0.343 -0.088 -0.091 0.354 14.45
2C 0.547 -0.012 0.012 0.547 1.28
2D 0.362 -0.078 -0.111 0.371 12.18
2E 0.372 -0.096 -0.128 0.384 14.49
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Table 4.5 Summary of WU s’ GPS Data, approximately 30 Minutes Following Blasting

Displacement (m) Horizontal Angle to Flow
Longitudinal | Transverse Displacement (m) Direction
Location (x) (y) Vertical (z) (x-y plane) (Degree)
1 0.332 -0.175 -0.072 0.375 27.79
2 0.389 -0.100 -0.045 0.402 14.41
3 0.347 -0.032 -0.005 0.348 5.27
4 0.314 -0.406 -0.246 0.513 52.28
5 - - _— - -
6 0.337 -0.021 -0.171 0.338 3.56
7 -0.002 -0.590 -0.507 0.590 89.81
8 0 -0.302 -0.490 0.302 90.00
9 0.126 -0.001 -0.333 0.126 0.46
10 0.385 -0.169 -0.117 0.420 23.70

Table 4.6 Verification of GPS Measurements with Data from Potentiometers

GPS Potentiometer
GPS Location Potentiometer Location Measurement
Measurement (m) (m)
GPS 1A-1B STP-1 0.106 0.096
GPS 1E -1D STP-3 0.012 0.002
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Figure 4.8 Strain Gauge Response along Pile No.7 (Front Side) of 4-Pile Group
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Figure 4.9 Strain Gauge Response along Pile No.7 (Back Side) of 4-Pile Group
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Figure 4.10 Strain Gauge Response along Pile No.8 (Front Side) of 4-Pile Group
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Figure 4.19 Strain Gauge Response along Pile No.1 (Back Side) of 9-Pile Group
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Figure 4.20 Strain Gauge Response along Pile No.2 (Front Side) of 9-Pile Group
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Figure 4.22 Strain Gauge Response along Pile No.3 (Front Side) of 9-Pile Group
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Figure 4.23 Strain Gauge Response along Pile No.3 (Back Side) of 9-Pile Group
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Figure 4.24 Strain Gauge Response along Pile No.4 (Front Side) of 9-Pile Group

107



800
400

-400
-800
800
400

-400
-800

800
400

-400
-800

800
400

-400
-800

800
400

-400
-800

Strain (x10<)
o

800
400

-400
-800

800
400

-400
-800

800
400

-400
-800

800
400

-400
-800

4-B-1.8(z=121m)

- Bad
:: 4-B-24(z=1.81m)
= Bad
~ 4-B-30(z=241m)
— Bad

4-B-36(z=301m)

|

:: 4-B-42(z=361m)
— Bad

— 4-B-4.8(z=421m)
- Bad

~ 4-B-54(z=481m)
- Bad

— 4-B-60 (z=541m)
o Bad

— 4-B-66(z=6.01m)
- Bad

e IR R T BT
0 20 40 60 80 100

Time (s)

800
400

-400
-800
800
400

-400
-800

800
400

-400
-800

800
400

-400
-800

800
400

-400
-800

800
400

-400
-800

800
400

-400
-800

800
400

-400
-800

800
400

-400
-800

4-B-7.2(z=661m)

Bad

4-B-7.8(z=7.21m)

¥

4-B-84(z=7.81m)

Bad

4-B-9.0 (z=841m)
Bad

4-B-96(z=9.01m)

f

— 4-5-24-1(z=1.81m)

iy Bad

— 4-5-242(z=181m)

__ L.

- o

- 4-S-2.4-3(z=1.81m)

1 | ] | ] | ] | ] |

0 20 40 60 80 100
Time (s)

Figure 4.25 Strain Gauge Response along Pile No.4 (Back Side) of 9-Pile Group
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Figure 4.26 Strain Gauge Response along Pile No.5 (Front Side) of 9-Pile Group
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Figure 4.27 Strain Gauge Response along Pile No.5 (Back Side) of 9-Pile Group

110



800

6-F-12(z=152m) 800 6-F-6.6 (z=6.92m)

400 400 ::———"ML*(
0 F . 0 F
-400 — -400 =
-800 [— -800 —
800 [ 6-F-18(z=212m) 800 [~ 6-F-7.2(z=7.52m)
400 | 400 w
0 w 0 n
-400 [ 400 |-
-800 | -800 |
800 [~ 6-F-24(z=272m) 800 [ -
200 200 Z__/&W/.' 6-F-7.8(z=812m)
0 _—‘*—m”l\“ 0
400 [ 400 |-
-800 | -800 |
800 I~ 6-F-30(z=332m) 800 [~
400 |~ 400 I~ 6-F-84(z=8.72m)
0k 0 F
-400 - -400 —
-800 -800 —
= - -
o 800 — 6-F-36(z=392m) 800 —
< 400 | 400 | 6-F-9.0 (z= 9.32m)
c OF 0 I
‘s 400 — 400
5 800 - -800 —
800 — 6-F-42(z=452m) 800 —
400 - 400 J 6-F-9.6 (z=9.92m)
0 _—c——M\‘ 0 F
-400 — ) -400 |
-800 -800 —
800 — 6-F-48(z=512m) 800 [— 6-5-0-1(z = 1.00m)
400 — 400 =
0 r " 0 F e
-400 — -400 =
-800 [— -800 —
800 [~ 6-F-54(z=572m) 800 [ 6-S-0-2 (z = 1.00m)
400 | 400 |
o v o F e
-400 = -400 —
-800 -800 —
800 |~ 6-F-6.0(z=632m) 800 [ 6.5.0-3 (2= 100m)
400 — 400 —
0 F ' 0 _———~——»M="
-400 | -400
-800 [— l 1 l 1 l 1 l 1 | -800 = | ] | ] | ] | ] |
0 20 40 60 80 100 0 20 40 60 80 100
Time (s) Time (s)

Figure 4.28 Strain Gauge Response along Pile No.6 (Front Side) of 9-Pile Group
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Figure 4.29 Strain Gauge Response along Pile No.6 (Back Side) of 9-Pile Group
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Figure 4.30 Profile of Residual Strain of Pile No.1 of 9-Pile Group after Lateral
Spreading (t = 70s)

113



®

® @

Back Front

Flow Direction

O O O —o— Front
—@—— Back
9-Pile Group Strain (x109)
El +3.000 -(;1200 -600 0 600 1200
NN . NN T I T T T
Pile Cap Comp. Tens.
- _ P A
El +2.000
V. Loose 2 a
SAND
El-0.800
4 — _
V.Soft &
3 1 CLA?( é
S 6| _
o
a
El -4.300
Med. Dense
El-5.300 SAND 8 - |
V. Dense
GRAVEL
10 — _
12

Figure 4.31 Profile of Residual Strain of Pile No.2 of 9-Pile Group after Lateral
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Figure 4.33  Profile of Residual Strain of Pile No.4 of 9-Pile Group after Lateral (t =
70 s)

116



Back Front

® N@¥

@

Flow Direction

® @ O <
O O O —&— Front
——@—— Back
9-Pile Group Strain (x10°)
El +3.000 -1200 -600 0 600 1200
AN Pile C N7 0 T T T T I
e ~ap Comp. Tens.
_ _ v |
El +2.000
V. Loose 2 L ]
SAND
El-0.800
4 +— _
V.Soft &
6 4 CLAY é
£ 6 -
Q.
a
El -4.300
Med. Dense
ElI-5.300 SAND 8 N
V. Dense
GRAVEL
[ | 10 _|
12

Figure 4.34 Profile of Residual Strain of Pile No.5 of 9-Pile Group after Lateral
Spreading (t =70 s)

117



Back Front

N@¥

®

Flow Direction

® @ O <
O O O ——S—— Front
—@—— Back
9-Pile Group Strain (x10%)
El +3.000 -1200 -600 0 600 1200
VR : 2N 0 — T a—
Pile Cap Comp. Tens.
- — 3 i
El +2.000
V. Loose
SAND 2 - u
El -0.800
4 - —
V. Soft =
5 4 CLAY é
£ 6 -
o
[
El-4.300 =
Med. Dense
El-5.300 SAND 8 —
V. Dense
GRAVEL
L | 10 —
12
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Figure 4.36 Moment Distribution along Pile No.1 of 9-Pile Group after Lateral
Spreading (t =70 s)
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Figure 4.37 Moment Distribution along Pile No.2 of 9-Pile Group after Lateral
Spreading (t =70 s)
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Figure 4.38 Moment Distribution along Pile No.3 of 9-Pile Group after Lateral
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Figure 4.39 Moment Distribution along Pile No.4 of 9-Pile Group after Lateral
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Figure 4.40 Moment Distribution along Pile No.5 of 9-Pile Group after Lateral
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Figure 4.53  Profile of Residual Strain of Pipeline Type B (t = 70s) at (a) Side of
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Figure 4.58 Lateral Movement of Sheet Pile due to Effect of Blasting
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Figure 4.59 Excess Pore Water Pressure between Pipeline C (a) PPT-C-2m, (b) PPT-
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Figure 4.61 Excess Pore Pressure Ratio for (a) PPT -W-1, (b) PPT-W-2, and (c) PPT-
W-3, 100s Duration

144



200 T T T T | T
- a) PPT-W-4 -
150 - Depth 3.00 m _|
< _ i
5 100 Bad -
(14 L i
50 — —
0 1 | 1 | 1 | 1 | 1
0 20 40 60 80 100
Time (s)
200 T T T | T
5 b) PPT-W-5 A
150 Depth2.71m _]
g L ]
= 100 - —
(14 L i
50 — —
O | | | | | | | | |
0 20 40 60 80 100
Time (s)
T T T | T | T
c) PPT-W-6 1
Depth 2.72 m _]
| | | | | | | | |
20 40 60 80 100
Time (s)
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Figure 4.65 Response of Soil Pressure Cells for 4-Pile Group and 9-Pile Group
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Figure 4.72 Soil Displacement from Inclinometer Casing S6 a) Section View A-
Direction, b) Section View B-Direction, and c) Plan View
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Figure 4.76 Soil Displacement from Inclinometer Casing S10 a) Section View A-
Direction, b) Section View B-Direction, and c) Plan View
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Figure 4.86 Global Positioning System Data of Unit 2D (1st Blast Test) (a)
Displacement Time-History, and (b) Displacement Path, Data from Caltrans
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Figure 4.87 Global Positioning System Data of Unit 2E (1st Blast Test) (a)
Displacement Time-History, and (b) Displacement Path, Data from Caltrans
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Figure 4.88 Global Positioning System Data of Unit 1 (1st Blast Test) (a)
Displacement Time-History, and (b) Displacement Path, Data from WU
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Figure 4.89 Global Positioning System Data of Unit 2 (1st Blast Test) (a)
Displacement Time-History, and (b) Displacement Path, Data from WU
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Figure 4.90 Global Positioning System Data of Unit 3 (1st Blast Test) (a)
Displacement Time-History, and (b) Displacement Path, Data from WU
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Figure 4.91 Global Positioning System Data of Unit 4 (1st Blast Test) (a)
Displacement Time-History, and (b) Displacement Path, Data from WU
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Figure 4.92 Global Positioning System Data of Unit 5 (1st Blast Test) (a)
Displacement Time-History, and (b) Displacement Path, Data from WU
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Figure 4.93 Global Positioning System Data of Unit 6 (1st Blast Test) (a)
Displacement Time-History, and (b) Displacement Path, Data from WU
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Figure 4.94 Global Positioning System Data of Unit 7 (1st Blast Test) (a)
Displacement Time-History, and (b) Displacement Path, Data from WU
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Figure 4.95 Global Positioning System Data of Unit 8 (1st Blast Test) (a)
Displacement Time-History, and (b) Displacement Path, Data from WU
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Figure 4.96 Global Positioning System Data of Unit 9 (1st Blast Test) (a)
Displacement Time-History, and (b) Displacement Path, Data from WU
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Figure 4.97 Global Positioning System Data of Unit 10 (1st Blast Test) (a)
Displacement Time-History, and (b) Displacement Path, Data from WU
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Figure 4.100 Site Condition in the Vicinity of Single Piles
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Figure 4.102 Permanent Rotation of Single Piles
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Figure 4.104 Sand Boil Following after Blasting in the Vicinity of 4-Pile Group
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Figure 4.106 Water Coming from Inclinometer Casing
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5. 2" Full-Scale Lateral Spreading Test

Based on the success of the November 2001 test, it was decided to carry out a
second test in December while the test specimens and instrumentation were still in place.
Therefore, the second lateral spreading test was performed with an attempt to induce
additional ground deformations and further evaluate the performance of lifeline facilities
subjected larger soil deformation. In this chapter, the descriptions of test site and test
set-up, as well as the test results for the 2nd full-scale lateral spreading experiment, are
presented. Furthermore, the investigation of connection of piles to pile caps after the

experiment was discussed.

5.1 Site Description and Test Setup

The test site for the second lateral spreading test was significantly modified from
the first one as presented in Figure 5.1. Overview of the test site is also shown in Figure
5.2 and Figure 5.3. The test site was approximately 30m wide by 40m long. The quay
wall and sheet piles surrounding the test site were removed to allow the soil to move
freely and thus provided larger displacement than the first test. The waterway was
excavated on one end of the test site to the elevation of -1.00m with the slope 1:2 and
then filled with the water to the elevation of +1.00 m. The ground surface was level for
a distance of 7.5 m away from the edge of the waterway and then started to rise up with
the embankment slope of 6% over a distance of 18.0m. The longitudinal gas pipeline was
not included in the area of the 2™ test. It is noted that during the excavation of the water
way, some ground movement had occurred and caused the soil settlement, gapping, and
some surface cracks, in the areas of the pile groups and single pile as illustrated in Figure
5.4 and Figure 5.5.

Instrumentation of the lifeline utilities were essentially the same as the first
experiment, which included strain gauges on the test specimens, pore pressure
transducers, linear potentiometer, soil pressure cells, slope inclinometers, accelerometers,
tiltmeters, and GPS units. The schematic diagram of the locations of those instruments is

presented in Figure 5.6.
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The blast holes were spaced at 6.0 m on centers in a regular grid pattern as
presented in Figure 5.7. The charges were installed at depths of 4.0 m and 8.0 m below
the design ground surface (El +3.00m). The amount of charges varied from 2 kg to 4 kg
with the charges being smaller in the vicinity of specimens to prevent the damages to the
instruments. Two additional rows of blast holes were drilled. One was located on the
steep slope adjacent to the waterway with the amount of explosives ranging from Ito 3
kg. The purpose of these explosives was to create some movement at the slope toe prior
to the primary blasting sequence such that the embankment soil behind it had a high
potential to move freely with larger deformation once the primary blasting initiated. The
other was located between the pipelines and pile as denoted as blast hole No. 7 to No.9.
Three kilograms of explosives were installed at El. -3.00 m.

The weather condition for the second experiment was awful for the lateral
spreading test due to the heavy snowfall with the snow thickness of about 0.50 m, and a
new record of wind speed of 100 kph on the test day. The ground was frozen throughout
the test site which would likely impede the global translation of the soil mass. In an
attempt to mitigate this, jackhammers were used to break the frozen ground in the
vicinity of test specimens to depths of approximately 20 to 30 cm below the ground
surface.

The second test was carried out on December 14, 2001. The explosives on the
steep slopes were detonated initially from S1 to S5. Approximately 15 second later, the
primary sequence of blasting was started. The primary blast began with the back corner
of the embankment denoted as blast hole No.1. Then, the blasting proceeded to the next
holes of the same rows, then continued to the next row towards the waterway (i.e., from

No.1 to No.17). The sequence of blasting is shown in Figure 5.7.

5.2 Test Results

In this section, the results from the 2™ full-scale lateral spreading experiment are
presented. The results are presented in terms of additional amounts measured due to the

movement of the soil which only occurred in the second test. The total responses of
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those quantities which included the soil movements, strains in the piles and pipelines, as
well as pile rotations, can be computed by summing those amounts from the first and

second blast together.

5.2.2 Single Pile

The strain gauge data of the single pile are presented in Figure 5.9 to Figure 5.10.
The strain profile of single pile is presented in Figure 5.11. Figure 5.12 presents
cumulative moment of the pile due to the first and the second test in the same plot. The
pile reached the yield moment after the second test at depths between 8 and 9.5 m. The
moment along the pile was insignificant for the first 4m of a very loose sand layer which
was highly susceptible to liquefaction.

The pore water pressure ratios nearby the single pile are presented in Figure 5.13
and Figure 5.14. The pore pressure ratios ranged between 30% and 70% immediately
after the blast ceased and proceeded to drop below 20% one hour following the blast.
The excess pore pressure ratios appeared to be much less than those measured during the
first test. Two possible reasons can be explained. Firstly, the soil was less susceptible to
liquefaction because some settlement took place after the first blast and caused the soil
become denser. Secondly, frozen ground decreased the liquefaction potential.

The excess pore pressure ratios at a depth of 2 m were somewhat unusual between
5 and 20 seconds because they were negative (not presented in the plot). This might be
due to the fact that transducer at this particular depth might not be fully saturated because
it was left in the ground for a period of a month. The water table was possibly sometimes
below the transducer level due to the fluctuation of the Pacific Ocean resulting in

partially saturation of the transducer.

5.2.3 4-Pile Group

Individual strain gauge responses along instrumented piles in the 4-pile group are
presented in Figure 5.15 through Figure 5.18. Strain gauges on the back side
(downstream) of pile No.8 were damaged due to the blasting. Profiles of strain for pile

No.7 and pile No.8 due to lateral spreading in the 2™ test are presented in Figure 5.19 and
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Figure 5.20, respectively. The moment along the pile are presented in Figure 5.21 and
Figure 5.22. The maximum moment for pile No.7 and No.8 was 44% and 70% of yield
moment and occurred at depths approximately 9.0m below the ground surface.

The excess pore pressure ratios nearby the 4-pile group for durations of 100
seconds and 1 hour are presented in Figure 5.23 and Figure 5.24, respectively. The
excess pore pressure ratios were approximately 50% immediately after the blast stopped.
One hour after the blast, the pore water pressure ratios dropped to between 15 % and
30%. The transducer at depth of 2m showed negative excess pore pressure ratio as that
occurred for the single pile which confirmed the possibility of partially saturation of the
transducers at this particular depth. Again, the excess pore pressure ratios were much
less than those occurred in the first blast. The possible reasons were already discussed in

the single pile section.

5.2.4 9-Pile Group

Strain gauge data for instrumented piles in the 9-pile group are presented in
Figure 5.25 through Figure 5.32. The time-history data for the pile No.4 and No.5 were
lost due to the accidentally error in our data acquisition system. Fortunately, the residual
strains of such piles were accessible. Strain profiles along individual piles are shown in
Figure 5.33 through Figure 5.38. The moment distribution of each pile is presented in
Figure 5.39 through Figure 5.44. The maximum moment ranged from about 50% to
60% of yield moment except for pile No.2 and No.4 for which the maximum moments
were only 10% and 20% of yield moment, respectively. The lower moments along those
two piles were likely due to the lower degree of fixity at pile tips because penetrated
lengths of those piles into the dense soils were shorter.

The excess pore pressure ratios in the vicinity of the 9-pile group are presented in
Figure 5.45 to Figure 5.48. Just the blast stopped, the excess pore pressure ratios ranged
between 50% and 80%. One hour after the blast, the ratios dropped to between 10% and
55%. These ratios were lower than the first test, and therefore indicated the less degree

of liquefaction.
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5.2.5 Gas Pipeline in Transverse Direction (Pipeline Type A)

The strain gauge data along transverse gas-pipeline (pipeline A) are presented in
Figure 5.49 and Figure 5.50. These were the additional strains measured in the 2™ test
alone. Figure 5.51 presents profiles of strain gauge along the top and the side of the
pipeline. The maximum strains, which occurred at the top and the side of the pipeline,
were approximately the same.

Figure 5.52 and Figure 5.53 present the data from pore pressure transducers
installed between the middle of the pipeline A and B in several depths. Both transducers
show the maximum excess pore pressure ratio ranging from 60% to 80% just after the

blast stopped and then dropped to below 50% one hour after the blast.

5.2.6 Gas Pipeline in Transverse Direction (Pipeline Type B)

The data of strain gauges along the transverse electrical conduit are presented in
Figure 5.54 and Figure 5.55. The profile of strain gauge on the top and the side of the
pipeline are shown in Figure 5.56. The maximum strain occurred at about the middle of
the pipeline as expected. The excess pore pressure ratios nearby this pipeline were

already discussed in the previous section.

5.2.7 Results of Other Instruments

Other instruments that were not installed in the vicinity of the test specimens or
inappropriate to incorporate in the above section were discussed separately in this
section.

The data of soil pressure cells on the pile caps of the 4-pile group and the 9-pile
group are presented in Figure 5.57. Considering the cells installed for the 9-pile group
(SPC-1 to SPC-6), the soil pressures on the upstream side of the pile cap varied between
5 and 10 kN/m?, while those on the downstream side were insignificant. This is because
the gap on the downstream side of the pile cap was existed prior to the test. Furthermore,
the soil on the downstream side moved towards the waterway resulting in loosing the

contact between soil and the pile cap.
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The results of accelerometers attached on the top of foundations are presented in
Figure 5.58. Similar to the first test, acceleration at the pile head due to the effect of
blasting decreased with increasing the foundation stiffness. The maximum acceleration
occurred at the single pile, while the lowest acceleration was observed at the 9-pile group.

Figure 5.59 presents the tiltmeter data. The additional pile head rotation of the
single pile (free head condition) due the movement occurred in the 2™ test alone was
approximately 1.5 degree, and therefore the total rotation of the single pile was about 3.5
degree (2 degree from the first test). The rotation of the 9-pile group (fixed head
condition) was again insignificant. The rotations of a group of WU single piles after the
2" test were also crudely measured with ranging in values from 5.6° to 6.3°.

Profiles of soil displacement obtained from the inclinometer readings after the
completion of the 2" blast test are presented in Figure 5.60 through Figure 5.69. The
summary of the movement at the ground surface of each location are summarized in
Table 5.1. The displacements obtained from inclinometer data were generally slightly
less than the actual soil displacement (i.e., compared to GPS data) because some rotations
and displacements occurred at the tips of those casings. The movement of the soil ranged
approximately from 9 to 43 cm. The soil between the foundation systems moved the
most with an averages of 40 cm and the displacement tended to be smaller as moving
away from the waterway.

The results of string activated linear potentiometers are presented in Figure 5.70
and Figure 5.73. A summary of relative movement is given in Table 5.2. The
movements of the 4-pile group (19cm) and 9-pile group (17cm) were almost the same,
while the movement of the single pile was approximately 10 cm more than the pile
groups. The soil in front of the pile caps moved approximately the same amount as the
pile caps. The soil on the downstream behind the 9- pile group moved 20 cm more than
the pile cap.

The GPS data are presented in Figure 5.74 through Figure 5.83 Displacements in
longitudinal, transverse, and vertical directions obtained at 1 minute and 20 hours

following blasting are summarized in Table 5.3 and Table 5.4, respectively. No
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horizontal creep was observed over 20 hours following blasting. Most of the horizontal
displacement associated with the lateral spreading took placed within tens of seconds
following the blast. Settlement about 4 cm was observed on the gas pipeline over a
period of 20 hours. The vector displacements in horizontal plane throughout the test site
are presented in Figure 5.84. The largest horizontal displacement was about 0.45 m
occurring at a group of Waseda free head piles. The movement of the soil between two
pile caps was 0.43m which was in good agreement with the inclinometer measurements.
The displacement measurements from GPS units were verified against linear
potentiometer measurements in several locations as summarized in Table 5.5. Excellent
agreement between measurements from GPS units and linear potentiometers were
observed with the differences being within 1.4 cm, except at STP-3 where the

measurements of GPS was 3.8 cm lower than that measured by linear potentiometer.

5.2.8 Overview of Site Condition after Testing

After the end of the test, some evidences of liquefaction were observed which
included water coming out nearby the pile caps, from the inclinometer casings, as well as
from the blast holes. However no sand boil was observed in any locations. Large
settlement was observed in the downstream side of the pile cap as presented in Figure
5.85. Water was mainly coming out on the downstream side of the pile cap causing a
small pond behind the pile caps as shown in the figure. Significant tilting of single piles
was observed as presented in Figure 5.86. Figure 5.87 and Figure 5.88 show water
coming out from a slope inclinometer casing and a blast hole, respectively. Figure 5.89
presents the locations of blast holes and inclinometer casings where water was observed.
Some surface cracks were observed showing the movement of soil towards to waterway.
Sketch of these cracks is shown in Figure 5.89. Based on the observation of site
condition after the test as well as the test results from many instruments, the degree of the
liquefaction for the second test was much less than that of the first test mainly due to the

weather condition.
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5.2.9 Survey of Movement after Testing

Prior to and after the test, the locations of specimens, inclinometer casings, and
many references on soil surface were measured to determine the relative movements of
those in x, y, and z direction due to the global translation of the soil mass. Figure 5.90
presents the vector movements of soil and specimens as well as the settlement contour

one day following the test.

5.2.10 Investigation of Pile Cap Connection Condition

Soil around the pile caps was excavated to investigate the condition of connection
between piles and pile caps. Figure 5.91 and Figure 5.92 show the connection conditions
for 4-pile group and 9-pile group, respectively. No any structural damage was observed
for both connections though both pile groups experienced the total movements of almost

40 cm.
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Table 5.1 Summary of Displacement at Ground Surface from Slope Inclinometer Data,
2"¢ Blast Test

Location | Displacement | Displacement Total Remarks
in A-Axis (m) | In B-Axis (m) Vector
(m)
S1 - - - Casing damaged.
S2 0.351 -0.033 0.353
S3 0.143 0.066 0.157
S4 0.136 -0.046 0.143
S5 0.392 -0.076 0.400
S6 0.429 0.025 0.430
S7 0.218 -0.057 0.225
S8 0.119 -0.015 0.120
S9 0.091 0.038 0.098
S10 0.090 -0.012 0.091
S11 0.212 -0.001 0.212
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Table 5.2 Summary of Relative Displacements after 2" Blast Test

Name | Location Relative Interpretation Remarks
movement
(m)
STP-1 | 9-pile group and Inc. 0 Piles and soil had the
S1 (upstream) same movement.
STP-2 | 9-pile group and Inc. 0.196 Soil moved 196 mm
S2 (downstream) more than piles.
STP-3 | Single pile and Inc. 0.038 Pile moved 38 mm
S7 (upstream) more than pile.
STP-4 | 4-pile group and Inc. 0.025 Soil moved 25 mm
S8 (upstream) more than pile.
STP-5 | Single pile (W1) and 0.132 Pile moved 132 mm
Inc. S11 (upstream) more than soil.
STP-6 | Single pile (W2) and 0.085 Pile moved 85 mm
Inc. S11 (upstream) more than soil.
STP-7 | Single pile (W1) and 0.018 W3 moved 18 mm
Single pile (W3) more than W1.
STP-8 | 4-pile group -0.187 | 4-pile group moved
187 mm.
STP-9 | 9-Pile Group -0.169 9-pile group moved
169 mm.
STP-10 | Single Pile -0.285 Single pile moved 285
mm.

Note: Refer to Figure 5.6 for a better understanding of the relative movements.
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Table 5.3 Summary of GPS Data for 2™ Japan Blast Test, approximately 1.3 Minutes
Following Blasting (Data from Caltrans)

Displacement (m) . Horizontal Ang!e to_FIow
Displacement (m) Direction
Location || ongitudinal (x)| Transverse (y) | Vertical (z) (x-y plane) (Degree)
1A 0.155 -0.022 0.009 0.157 8.06
1B 0.151 -0.017 0.066 0.151 6.34
1C 0.195 -0.048 0.015 0.201 13.81
1D 0.299 0.004 0.002 0.299 -0.70
1E 0.226 0.054 0.010 0.232 -13.37
2A 0.183 -0.012 0.009 0.184 3.83
2B 0.103 -0.039 0.028 0.110 20.98
2C 0.473 0.002 -0.019 0.473 -0.19
2D 0.170 -0.020 -0.107 0.171 6.71
2E 0.445 -0.018 -0.015 0.445 2.27

Table 5.4 Summary of GPS Data for My apan Blast Test, approximately 20 Hours
Following Blasting (Data from Caltrans)

Displacement (m Dispiacoment (m)| . Direction
Location | ongitudinal (x)| Transverse (y)| Vertical (z) (x-y plane) (Degree)
1A 0.149 -0.023 -0.001 0.151 8.76
1B 0.149 -0.016 0.047 0.150 6.24
1C 0.193 -0.034 -0.009 0.196 9.99
1D 0.296 0.011 -0.015 0.296 -2.17
1E 0.224 0.055 -0.012 0.230 -13.79
2A 0.171 -0.021 0.007 0.172 6.99
2B 0.104 -0.045 0.044 0.114 23.36
2C 0.475 0.005 -0.024 0.475 -0.57
2D 0.169 -0.022 -0.144 0.170 7.37
2E 0.459 -0.008 -0.022 0.459 1.00
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Table 5.5 Verification of GPS Measurements with Data from Potentiometers

GPS Location

Potentiometer Location

GPS
Measurement (m)

Potentiometer
Measurement (m)

1A

1D

2A

GPS 1A -1B

GPS 1E-1D

STP-9

STP-10

STP-8

STP-1

STP-3

0.157

0.299

0.184

0.006

0.073

0.169

0.285

0.187

0.000

0.038
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Figure 5.1 Test Site Layout for 2™ Japan Blast Test
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Figure 5.2 Overview of Test Site (Front View), 2nd Japan Blast Test

Figure 5.3 Overview of Test Site (Side View), 2™ Japan Blast Test
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Figure 5.4 Site Condition before 2" Blast Test Showing Settlement and Gapping
around 9-Pile Group

Figure 5.5 Site Condition before 2™ Blast Test Showing Gapping around Single Pile
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Figure 5.8 Bad Weather during 2™ Lateral Spreading Test
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Group, 2" Blast Test
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Figure 5.27 Strain Gauge Response along Steel Pipe Pile No.2 (Front Side) of 9-Pile
Group, 2" Blast Test
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Figure 5.28 Strain Gauge Response along Steel Pipe Pile No.2 (Back Side) of 9-Pile
Group, 2" Blast Test
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Figure 5.29 Strain Gauge Response along Steel Pipe Pile No.3 (Front Side) of 9-Pile
Group , 2™ Blast Test
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Figure 5.30 Strain Gauge Response along Steel Pipe Pile No.3 (Back Side) of 9-Pile
Group, 2" Blast Test
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Figure 5.31 Strain Gauge Response along Steel Pipe Pile No.6 (Front Side) of 9-Pile
Group, 2" Blast Test
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Figure 5.32 Strain Gauge Response along Steel Pipe Pile No.6 (Back Side) of 9-Pile
Group, 2" Blast Test
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Figure 5.41 Moment Distribution along Pile No.3 of 9-Pile Group after 2" Lateral
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Figure 5.42 Moment Distribution along Pile No.4 of 9-Pile Group after 2" Lateral
Spreading Test
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Figure 5.43 Moment Distribution along Pile No.5 of 9-Pile Group after 2" Lateral
Spreading Test
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Figure 5.46 Excess Pore Water Pressure Ratios nearby 9-Pile Group (Back) for (a)
PPT-9B-2m, (b) PPT-9B-4m, and (c) PPT-9B-6m, Duration of 100s (2" Blast Test)
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Figure 5.48 Excess Pore Water Pressure Ratios nearby 9-Pile Group (Back) for (a)
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Blast Test
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Figure 5.60 Soil Displacement from Inclinometer Casing S2 for 2™ Japan Blast Test
a) Section View A-Direction, b) Section View B-Direction, and c¢) Plan View
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Figure 5.61 Soil Displacement from Inclinometer Casing S3 for 2™ Japan Blast Test
a) Section View A-Direction, b) Section View B-Direction, and c¢) Plan View
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Figure 5.62 Soil Displacement from Inclinometer Casing S4 for 2™ Japan Blast Test
a) Section View A-Direction, b) Section View B-Direction, and c¢) Plan View
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Figure 5.63 Soil Displacement from Inclinometer Casing S5 for 2™ Japan Blast Test
a) Section View A-Direction, b) Section View B-Direction, and c¢) Plan View
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Figure 5.64 Soil Displacement from Inclinometer Casing S6 for 2™ Japan Blast Test
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Figure 5.65 Soil Displacement from Inclinometer Casing S7 for 2™ Japan Blast Test
a) Section View A-Direction, b) Section View B-Direction, and c¢) Plan View
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Figure 5.66 Soil Displacement from Inclinometer Casing S8 for 2™ Japan Blast Test
a) Section View A-Direction, b) Section View B-Direction, and c¢) Plan View
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Figure 5.67 Soil Displacement from Inclinometer Casing S9 for 2™ Japan Blast Test
a) Section View A-Direction, b) Section View B-Direction, and c¢) Plan View
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Figure 5.68 Soil Displacement from Inclinometer Casing S10 for 2™ Japan Blast Test a) Section View
A-Direction, b) Section View B-Direction, and c¢) Plan View
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Figure 5.69 Soil Displacement from Inclinometer Casing S11 for 2™ Japan Blast Test

a) Section View A-Direction, b) Section View B-Direction, and c¢) Plan View
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Figure 5.74 Global Positioning System Data of Unit 1A (2nd Blast Test) (a)
Displacement Time-History, and (b) Displacement Path, Data from Caltrans
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Figure 5.75 Global Positioning System Data of Unit 1B (2nd Blast Test) (a)
Displacement Time-History, and (b) Displacement Path, Data from Caltrans
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Figure 5.76 Global Positioning System Data of Unit 1C (2nd Blast Test) (a)
Displacement Time-History, and (b) Displacement Path, Data from Caltrans
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Figure 5.77 Global Positioning System Data of Unit 1D (2nd Blast Test) (a)
Displacement Time-History, and (b) Displacement Path, Data from Caltrans
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Figure 5.78 Global Positioning System Data of Unit 1E (2nd Blast Test) (a)
Displacement Time-History, and (b) Displacement Path, Data from Caltrans
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Figure 5.79 Global Positioning System Data of Unit 2A (2nd Blast Test) (a)
Displacement Time-History, and (b) Displacement Path, Data from Caltrans
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Figure 5.80 Global Positioning System Data of Unit 2B (2nd Blast Test) (a)
Displacement Time-History, and (b) Displacement Path, Data from Caltrans
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Figure 5.81 Global Positioning System Data of Unit 2C (2nd Blast Test) (a)
Displacement Time-History, and (b) Displacement Path, Data from Caltrans
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Figure 5.82 Global Positioning System Data of Unit 2D (2nd Blast Test) (a)
Displacement Time-History, and (b) Displacement Path, Data from Caltrans
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Figure 5.83 Global Positioning System Data of Unit 2E (2nd Blast Test) (a)
Displacement Time-History, and (b) Displacement Path, Data from Caltrans
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Figure 5.84 Vector Displacements in Horizontal Plane from GPS Data (2nd Blast Test)
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Figure 5.86 Tilting of Group of Single Piles
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Figure 5.88 Water Coming from Inclinometer Casing
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Figure 5.89 Sketch of Surface Cracks with Diagram of Liquefaction Evidence
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Figure 5.91 Condition of Piles to Pile Cap Connection of 4-Pile Group after Lateral
Spread
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Figure 5.92 Condition of Piles to Pile Cap Connection of 9-Pile Group after Lateral
Spread
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