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Abstract 
 
Limitations in the existing ground motion database force the scaling of real records to obtain 
accelerograms that are consistent with the ground motion target for structural design and 
evaluation.  In the seismology and engineering communities the acceptance of the limits for 
“legitimacy” of scaling varies from one (no scaling allowed) to ten.  The concerns expressed by 
detractors are mostly based on the knowledge of systematic and unquestionable differences in 
ground motion characteristics for different magnitude-distance (Mw-Rclose) scenarios and much 
less on their effects on structures.  At the other end of the spectrum Cornell and his co-workers at 
Stanford University have claimed that scaling is not only legitimate but also useful for assessing 
post-elastic response statistics of structures.  Such studies, however, did not draw conclusions 
valid over the entire spectrum of structural vibration periods and did not state the conditions 
under which scaling may fail. 
 
This study investigates whether scaling of a record randomly selected from a Mw-Rclose bin 
introduces bias in nonlinear structural response. Can one scale up a Mw=6.5, Rclose=20km record 
to obtain a ground motion level expected for a Mw=7.25 event at 5km from the fault? Is scaling 
legitimate for assessing the response of structures of all periods?  Are the effects of scaling 
constant for all periods and for different levels of nonlinear response?  We consider the 
legitimacy of scaling within a Mw-Rclose bin and across Mw-Rclose bins.  In both cases, the records 
are scaled up and down by large factors to determine whether the response to scaled records 
departs from the response of un-scaled ones that are “naturally” at that level. The answers to 
these questions are sought by investigating the nonlinear response of a suite of single-degree-of-
freedom (SDOF) systems with multiple “strengths” to achieve increasing levels of nonlinear 
responses.  Also considered are elastic and ductile models of a multi-degree-of-freedom (MDOF) 
building. 
 
The results of this study demonstrate that scaling earthquake records can, in fact, introduce a bias 
in the nonlinear structural drift response to such records.  The extent of bias depends on the 
period of vibration and overall strength of the structure of interest, and whether its drift response 
is dominated by excitation input at a single or multiple periods (i.e., SDOF versus MDOF 
structures).  The severity of the bias also depends on the characteristics (e.g., Mw-Rclose) of the 
records that are scaled, as well as those of the target ground motion scenario.   For the most part, 
the bias can be explained by systematic differences between the elastic response spectra for 
records that are scaled up (or down) and those that are naturally (without scaling) at a target 
spectral acceleration level. 
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1 Motivation 
 
With the advent of Performance-Based Earthquake Engineering, and the availability of 
sophisticated structural analysis software and faster computers, nonlinear dynamic time-history 
analysis (NDTHA) has recently become more widely used for both design and evaluation of 
structures.  Perhaps one of the biggest obstacles preventing more widespread use of NDTHA is 
the selection of appropriate ground motion records.  Engineers often seek to obtain from 
seismologists real ground motion records that closely match the spectral acceleration at a 
specified hazard level (e.g., 10% in 50 years) as well as the magnitude-distance (Mw-Rclose) 
pair(s) of the events controlling the seismic hazard at the building site.  The spectral acceleration 
of interest at many sites in seismically active regions of the world such as California is often 
relatively large, and the earthquake scenarios that control the hazard are often large magnitude 
events generated by nearby faults.  Despite the recent increase in the number of records provided 
by large earthquakes occurred recently around the world (e.g., the 1999 Mw=7.6 Chi-Chi 
Earthquake, the 1999 Mw=7.5 Kocaeli Earthquake, the 2002 Mw=7.9 Denali Earthquake, and the 
2003 Mw=8.0 Hokkaido Earthquake), the existing database for such spectral acceleration and 
Mw-Rclose conditions is still very limited.  Furthermore, the hazard at a site may be characterized 
by specific rupture-directivity conditions and site classifications (e.g., NEHRP D), further 
limiting the number of earthquake records available.  Given the preference of the vast majority of 
engineers to use synthetic ground motions, scaling real records to obtain accelerograms that are 
consistent with a design target ground motion level is often the only remaining option. 
 
In the seismology and engineering communities, the acceptance of ground motion scaling limits 
varies wildly from one (no scaling allowed) to ten or more (e.g., the earthquake records used for 
the PEER Testbeds were scaled by factors as large as 11).  These limits are based more on a 
“comfort feeling” than on a sound technical basis. This study attempts to provide the quantitative 
technical basis for threshold limits beyond which scaling of a record randomly selected from a 
pool of accelerograms belonging to a magnitude-distance (Mw-Rclose) scenario introduces bias in 
the nonlinear response of structures. The bias is computed with respect to an estimate of the 
“true” structural response that, for these purposes, is taken to be the estimate of the median 
response to records that are, by nature, already at a particular intensity level without any need for 
scaling.  To avoid any misunderstanding, by "ground motion scaling" here we simply mean 
multiplying a record by a constant scalar factor in order to reach a target spectral acceleration 
level.  The time scale (and therefore, the frequency content) of the record is left untouched by the 
scaling operation. 
 
This study was intended to support another PEER Lifelines project (1F01), namely the Design 
Ground Motion Library (DGML), which will develop a library of recorded ground motions 
suitable for use by engineers for dynamic analysis of various structures.  In addition to the library 
of earthquake records, the DGML will likely provide guidance for scaling the recommended 
records, if necessary.  The extent to which earthquake records can be scaled before introducing 
excessive bias in nonlinear structural response, as investigated in this study, is also important for 
deciding on the recommended records themselves. 
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2 Background 
 
The issue of whether ground motion scaling produces different structural response statistics has 
been debated in the engineering community for at least a decade.  The concerns expressed by 
many individuals are mostly based on the knowledge of systematic and unquestionable 
differences in ground motion characteristics (e.g., spectral shape, duration, etc.) for different Mw-
Rclose scenarios and much less on their effects on structures.  The claim that such systematic 
differences in the input caused systematic differences in the response is often based only on 
engineering intuition or, at best, on experience gained in evaluating linear elastic rather than 
nonlinear post-elastic structural responses.  Testing the legitimacy of ground motion scaling for 
assessing nonlinear responses of structures was almost uncharted territory until the studies by 
Cornell and his students at Stanford University (e.g., Sewell 1989; Inoue and Cornell 1991; 
Bazzurro and Cornell 1994; Shome et al. 1998; Luco 2002).  All such studies found that 
judicious scaling was not only legitimate but, under certain conditions, also useful for the 
purpose of efficiently assessing post-elastic response statistics of structures. 
 
Perhaps with the exception of the work by Shome et al., however, all the other cited studies have 
not had a large impact on engineering practice mainly because the main conclusions were 
obscured by arguments heavily based on statistical concepts and findings.  The work by Shome 
et al., although confined in scope (i.e., only one structures was analyzed, only 20 records for 
each of four Mw-Rclose bins were used, and no near-source records were considered) reached out 
to the practicing engineers by addressing their concerns about ground motion scaling more 
directly.  The study, however, did not reach conclusions over the entire spectrum of structural 
periods, and did not state the conditions under which scaling may fail.  Some of the conclusions 
that led to the purported legitimacy of scaling were also made somewhat less conclusive by the 
limited sample size of records adopted.  In the study reported on here, in an attempt to avoid 
obscuring the results we will seek to answer the questions above by keeping statistical arguments 
to a minimum. 
 
Furthermore, Shome et al. addressed the ground motion scaling issue from a slightly different 
perspective than the one used here. The focus there was on the legitimacy of scaling a pool of 
records from a source Mw-Rclose bin to match the median “intensity” level of records belonging to 
the same bin or a different target Mw-Rclose bin.  The legitimacy was assessed in terms of bias of 
the median response generated by scaling the entire suite of source records that were scaled, on 
average, by a certain quantity.  Some of the source records were scaled by a large amount and 
some by a small amount.  Here we also tackle a different but very much related issue. Does a 
record selected at random from a Mw-Rclose bin and scaled (in practice, almost always up but, 
perhaps more academically, also down) to a target intensity level produce a nonlinear structural 
response that is, on average, materially “different” than that generated, on average, by records 
that are already naturally at the target intensity level?  If there is bias, how large is it? Is the bias 
constant or does it vary with structural period and level of nonlinear response? Does the bias 
change if the source record scaled to match the target ground motion is characterized by values 
of Mw and Rclose that are different from those that control the site hazard? Or, in other words, 
given the same level of scaling, do the magnitude and distance of the source and target records 
affect the bias in the nonlinear structural response? 
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3 Objective 
 
Shortly put, the objective of this study is to investigate whether amplitude scaling of input 
earthquake records to a target pseudo spectral acceleration (Sa) level introduces a bias in the 
resulting nonlinear structural drift response.  As alluded to above, the bias is defined as 
 

median response to scaled recordsBias
median response to unscaled records (that are naturally at target )aS

=  

 
This definition is used in this study to quantify the bias (if any) and thereby provide a technical 
basis for limits on scaling. 
 
Also investigated in this study is whether the bias depends on (i) the general characteristics of the 
target ground motion scenario (e.g., Mw and Rclose), (ii) the general characteristics of the records 
that are scaled, (iii) the vibration period(s) of the structure of interest, (iv) the overall strength of 
the structure, and (v) the contribution of higher (than the first) modes of vibration to the 
structural response. 
 
 
4 Organization of Report 
 
In total, 469 earthquake ground motion records grouped into 7 different bins are used in this 
study, as described in Section 5.  As described in Section 6, the nonlinear dynamic response of 
48 single-degree-of-freedom (SDOF) and 2 multi-degree-of-freedom (MDOF) structures is 
analyzed.  The procedure developed to quantify the bias induced by scaling is outlined in Section 
7, and the results are presented in Section 8.  In Section 9 an overall summary of the results is 
provided, some general conclusions are drawn in Section ?, and Section 11 describes a few 
potential topics for future work. 
 
 
5 Description of Earthquake Records 
 
5.1 Bins I to VI 
 
As explained in the introduction, both intra- and inter-bin scaling are investigated in this study.  
Six different bins based on earthquake magnitude (Mw) and closest source-to-site distance (Rclose) 
are defined here, as listed in Table 1. 
 
Besides the Mw and Rclose differences, the other general characteristics of the six bins are 
identical.  More specifically, they each contain 73 earthquake records that are 
 
• from the PEER Strong Ground Motion Database (processed by Dr. Walt Silva) 
• from shallow crustal events, 
• from stations that are situated on stiff-soil sites (USGS B-C or Geomatrix B-D classification), 
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Table 1.  Earthquake moment magnitude, Mw, and closest source-to-site distance, Rclose, ranges 
for six of the bins of earthquake records considered in this report. 

Bin Label Mw Rclose 
I 6.4-6.8 0-15km 
II 6.4-6.8 15-30km 
III 6.4-6.8 30-50km 
IV 6.9-7.6 0-15km 
V 6.9-7.6 15-30km 
VI 6.9-7.6 30-50km 

 
 
• not from instruments on dams or above the lowest level of buildings, and 
• filtered with high- and low-pass corner-frequencies greater than 0.2 hertz and less than 18 

hertz, respectively. 
 
The last constraint above is used because, according to Silva, the widest usable bandwidth of 
such records is 1.25/18=0.07 to 1/(0.2*1.25)=4 seconds.  As described in a subsequent section, 
this covers the range of fundamental vibration periods considered in this study. 
 
A complete list of the earthquake records in each bin is provided in the appendix.  Note that only 
a randomly selected subset of the Chi-Chi records that satisfy constraints described above were 
included in order to minimize the number of records from any one single event. 
 
The "median" (computed as the geometric mean in this paper, unless noted otherwise) of the 
elastic response spectra for each bin of earthquake records (including the "Near-Source Bin" 
described in the next subsection) is shown in Figure 1. 
 
5.2 Near-Source Bin 
 
In addition to the six Mw-Rclose bins of earthquake records described above, a seventh bin of 31 
"near-source" earthquake records is also considered.  This near-source bin very similar to Bin I 
(e.g., Mw=6.5-6.9 and Rclose=0-16km), except that all of its earthquake records are (i) from 
stations in the forward rupture-directivity region, and (ii) strike-normal components of the 
ground motion.  The forward rupture-directivity region is defined using Somerville et al.'s (1997) 
rupture directivity modification factor, by assuming that values greater than unity signify 
forward directivity.  For a detailed description of these near-source earthquake records, the 
reader is referred to (Luco 2002). 
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Figure 1.  Median (computed as geometric mean) elastic response spectra for the seven bins of 
earthquake records considered in this report. 

 
 
6 Description of Structures 
 
As mentioned above, both single-degree-of-freedom (SDOF) and multi-degree-of-freedom 
(MDOF) structures are considered in this study.  In all, 48 SDOF structures of different periods 
and strength and 2 MDOF structures are considered.  The SDOF structures are representative of, 
for example, first-mode-dominated buildings or bridge bents.  Multiple modes contribute 
significantly to the response of the two MDOF structures, which are elastic and ductile models of 
a realistic 9-story steel moment-resisting frame (SMRF) building.  All of these structures are 
described in more detail below. 
 
Note that dynamic time-history analysis of the SDOF structures is performed using a MATLAB 
implementation of Newmark's linear acceleration method (as described in Chopra 1995).  For the 
MDOF structures, DRAIN-2DX (Prakash 1993) is employed, with P-Delta effects included. 
 
6.1 Single-Degree-of-Freedom (SDOF) Oscillators 
 
The SDOF (a.k.a., "lollipop") structures considered have vibration periods of T = 0.1, 0.2, 0.3, 
0.5, 1, 2, 3, and 4 seconds.  The first six periods are the same as those for which the U.S. 
Geological Survey has provided seismic hazard curves (Frankel & Leyendecker 2001), whereas 
the last (and largest) period is based on the filter corners for the earthquake records used (as 
explained above in Section 5.1).  Also like the USGS hazard maps (and typical attenuation 
relations), the damping ratio for each of the SDOF structures is set to ζ=5%. 
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For each vibration period, six different yield forces (Fy's) of the SDOF structures are considered, 
each based on the particular target spectral acceleration (Sa) of interest.  (Note that, in this paper, 
Sa always refers to the spectral acceleration at the fundamental period of the structure under 
consideration).  The largest Fy considered is equal to the target Sa multiplied by the mass (m) of 
the structure (here we use "mass normalized" structures, such that m=1), which corresponds to a 
strength reduction factor of R=1 and therefore elastic response.  The other five yield forces are 
fractions of this largest strength, namely (target Sa)*m/R where R = 2, 4, 6, 8, and 10.  In what 
follows, these strengths of the SDOF structures will be referred to by the corresponding value of 
R only.  Note that R=10 corresponds to a highly inelastic structure. 
 
As depicted in Figure 2, the force-displacement hysteretic behavior of the SDOF structures 
considered is bilinear inelastic with a strain hardening ratio of α=2%. 
 
 

 
 

Figure 2.  Examples of the force-displacement hysteresis and displacement time histories for the 
SDOF structures considered in this paper. 

 
 
6.2 Multi-Degree-of-Freedom (MDOF) Buildings 
 
The two MDOF structures considered are (1) an elastic model and (2) a ductile model of a 9-
story (plus basement), 5-bay steel moment-resisting frame (SMRF) building that was designed 
by consulting engineers for Los Angeles conditions as part of the SAC Steel Project.  As 
illustrated in Figure 3, a two-dimensional model of one of the exterior moment-resisting frames 
of the building is analyzed.  For the ductile model, the beam ends (immediately to the right and 
left of each column) and column ends (immediately above and below each floor, and at the 
column splices) are modeled as plastic hinges with 3% strain hardening relative to the elastic 
stiffness of the beam and column, respectively.  The fundamental period of the building model is 
T=2.3sec, and the first-mode damping ratio is 2%.  For additional details, the reader is referred to 
FEMA 355C (2000) and (Luco 2002). 
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Figure 3.  Elevation of a 9-story steel moment-resisting frame designed by practicing engineers 
for Los Angeles conditions as part of the SAC Steel Project (Phase II).  An elastic and a ductile 
MDOF model of this frame are considered in this report. 

 
 
Note that the two MDOF building models as considered in order to compare the SDOF results 
with those for a more realistic structure, as well as to assess how the contribution of higher 
modes may alter the effects of scaling. 
 
 
7 Outline of Procedure 
 
The procedure developed for quantifying the bias in nonlinear structural response induced by 
scaling of the input earthquake record(s) is relatively simple, and the same procedure is applied 
for both intra- and inter-bin scaling.  For a given structure, the following steps are taken: 
 
(1) Decide on a target spectral acceleration (at the fundamental period of the structure of interest 

and a damping ratio of 5%) that is associated with an earthquake record in the "target" bin. 
(2) For this earthquake record, un-scaled, compute the nonlinear inelastic structural response 

(e.g., inelastic spectral displacement for the SDOF structures).  This is considered to be the 
"true" nonlinear structural response that serves as the basis of comparison. 
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(3) Scale all of the earthquake records in the "source" bin (same as the target bin for intra-bin 
scaling, different for inter-bin scaling) to the target spectral acceleration, and record the scale 
factors. 

(4) Compute the nonlinear inelastic structural response for the scaled earthquake records. 
(5) Plot the ratio of the nonlinear inelastic structure responses for the scaled over un-scaled 

earthquake records versus the scale factors. 
(6) Repeat Steps 1-5 for another target spectral acceleration associated with another earthquake 

record in the target bin, until all of them have been considered. 
 
 
8 Results 
 
The results of the procedure for quantifying the bias induced by intra- and inter-bin scaling are 
first presented for the suite of simple SDOF oscillators (of a range of different periods and 
strengths) and then for the two MDOF buildings (one elastic, the other ductile).  For one of the 
SDOF oscillators, namely that of "moderate" period (T=1sec) and strength (R=4), the procedure 
is demonstrated in a step-by-step fashion.  For the other structures, only a summary of the final 
results presented. 
 
Note that in investigating intra-bin scaling for each of the 48 SDOF structures (8 periods and 6 
strengths), 732 dynamic analyses are carried out for each of Bins I-VI, plus 312 for the Near-
Source Bin, for a total of 1,580,880 dynamic analyses.  Similarly, for 10 different intra-bin 
scaling combinations considered (as described below), a total of 2,263,584 SDOF dynamic 
analyses are performed.  For each of the 2 MDOF structures, however, just 312 and 31x73 
dynamic analyses for intra- and inter-bin scaling, respectively, are carried out, for a total of 6448 
MDOF dynamic analyses. 
 
8.1 SDOF Structures 
 
For each SDOF oscillator of a given period (T), damping ratio (ζ=5%), strength reduction factor 
(R), and strain-hardening ratio (α=2%), note that the nonlinear structural response measure 
considered is the peak relative (to the ground) displacement, a.k.a., the inelastic spectral 
displacement Sd

I. 
 
8.1.1 Intra-Bin Scaling 
 
To reiterate, intra-bin scaling refers to scaling of an earthquake record from a given Mw-Rclose 
"source" bin to a target Sa associated with the same Mw-Rclose bin.  The purpose of intra-bin 
scaling is to obtain a record in the Mw-Rclose bin that is at the Sa level of interest. 
 
The procedure outlined in Section 7 for quantifying the effects of intra-bin scaling on nonlinear 
structural response is demonstrated here in a step-by-step fashion for the Near-Source Bin and a 
moderate period (T=1sec) and strength (R=4) oscillator.  Subsequently, a summary of the results 
is provided (i) for Bins I-VI and the same "moderate" oscillator, and (ii) for all 48 oscillators 
considered and the Near-Source Bin. 
 



 10

8.1.1.1 Near-Source Bin, Moderate Period and Strength Structure 
 
Step 1: 
 
As illustrated in Figure 4a on a plot of the elastic response spectra for all 31 of the earthquake 
records in the Near-Source Bin, the first target spectral acceleration considered is Sa=2.0g.  This 
spectral acceleration value is the largest (at T=1s) in the bin, and is associated with the 1994 
Northridge Rinaldi Receiving Station (RRS) earthquake record. 
 
 

Target Sa = 2.0gTarget Sa = 2.0gTarget Sa = 2.0g

 
 

Figure 4.  Elastic response spectra (a) before and (b) after scaling (intra-bin) the earthquake 
records in the Near-Source Bin to a target spectral acceleration of 2.0g (at a period of 1sec). 

 
 
Step 2: 
 
The inelastic spectral displacement for the un-scaled "target record" specified in Step 1 is shown 
in Figure 5a.  Recall that this value, Sd

I=49.4cm, is taken to be the "true" inelastic spectral 
displacement for this target Sa level.  Also shown in the figure, as a basis of comparison, are the 
Sd

I values for the other records in the bin, before they are scaled in the next step. 
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Figure 5.  Inelastic spectral displacement responses (versus elastic spectral displacement, which 
is proportional to spectral acceleration) (a) before and (b) after scaling (intra-bin) the earthquake 
records in the Near-Source Bin to a target spectral acceleration of 2.0g (or, equivalently, a target 
elastic spectral displacement of approximately 50cm).  Note that the period of the oscillator is 
T=1sec, and the strength reduction factor is R=4. 

 
 
Step 3: 
 
The elastic response spectra after scaling all of the earthquake records in the Near-Source Bin to 
the target Sa=2g (specified in Step 1) are shown in Figure 4b.  Note how the response spectra 
(and the underlying records) are scaled in amplitude only, not in shape.  As depicted in Figure 
5a, the scale factors in this case range from 1 (for the target record) to 29.1, indicative of the 
substantial intra-bin variability in Sa.  
 
Step 4: 
 
The inelastic spectral displacement responses (Sd

I) to the 30 scaled records from Step 3 are 
shown in Figure 5b.  Note that most of the Sd

I values are larger than the "true" Sd
I from the un-

scaled target record. 
 
Step 5: 
 
The ratios of the Sd

I values for the scaled earthquake records (from Step 4) to that for the un-
scaled "target" record (from Step 2) are plotted against the corresponding scale factors in Figure 
6.  Note that there appears to be a trend, albeit noisy, that suggests that the larger the scale factor, 
the larger the median ratio of the scaled to un-scaled Sd

I (the bias).  However, the record-to-
record variability of Sd

I for un-scaled records with the same (or similar) values of Sa, as evident 
in Figure 5a, prevents us from drawing general conclusions before Steps 1-5 are repeated for the 
other 30 target records and Sa levels in the Near-Source Bin.  This is done in Step 6. 
 
 

SF = 29.1 
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Figure 6.  Ratios of the inelastic (R=4) spectral displacement responses to (i) the Near-Source 
records scaled to a target Sa (at T=1sec) of 2.0g versus (ii) the un-scaled Near-Source record that 
is naturally at the target Sa=2.0g (circled in red), all plotted against the corresponding scale 
factors. 

 
 
Step 6: 
 
For the second "loop" of the procedure, the next-to-lowest Sa in the Near-Source Bin, namely 
0.07g, is considered as the target.  The elastic response spectra before and after scaling are 
illustrated in Figure 7, and the corresponding ratios of scaled to un-scaled Sd

I are plotted in 
Figure 8.  Included in this figure are the results that were obtained by scaling to the largest Sa in 
the Near-Source Bin, i.e., 2.0g (first shown in Figure 6).  For those results the scale factors were 
all larger than unity, whereas now the scale factors range from 0.04 to 1.02. 
 
Like in Figure 6, a trend is apparent in Figure 7 that suggests that the median ratio of the Sd

I 
response to scaled versus un-scaled records, i.e., the bias, increases with increasing scale factor 
(nearly linearly in log-log scale).  In one case, however, a small ratio of scaled to un-scaled Sd

I 
(in the 0.1-0.2 range) is observed at a scale factor near one; as mentioned above in Step 5, this is 
due to the record-to-record variability in Sd

I, even for records with similar Sa, and emphasizes the 
need to consider multiple target records. 
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Target Sa = 0.07gTarget Sa = 0.07gTarget Sa = 0.07g

 
 

Figure 7.  Elastic response spectra (a) before and (b) after scaling (intra-bin) the earthquake 
records in the Near-Source Bin to a target spectral acceleration of 0.07g. 

 
 
 
 

 
 

Figure 8.  Ratios of the inelastic (R=4) spectral displacement responses to (i) the Near-Source 
records scaled to a target Sa (at T=1sec) of 0.07g versus (ii) the un-scaled Near-Source record 
that is naturally at the target Sa=0.07g (circled in red), all plotted against the corresponding scale 
factors.  The smaller blue data points with scale factors larger than unity are the same as those 
plotted in Figure 6 above. 
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As another example, the target Sa level that corresponds to the median (found conventionally in 
this case, not computed as the geometric mean) of the Near-Source Bin, namely 0.50g, is 
considered for the third "loop" of the procedure.  The Sd

I responses before and after scaling the 
earthquake records are shown in Figure 9, and, as obtained from Figure 9b, the ratios of the Sd

I 
responses for the scaled records to that for the un-scaled target record are plotted in Figure 10.  
Consistent with the results obtained by scaling to a higher (2.0g) and lower (0.07g) target Sa 
(shown in Figure 8), the results in Figure 10 show a positive trend, albeit mild, with scale factor 
in the scaled to un-scaled Sd

I ratios, abbreviated here as r(Sd
I).  Unlike the previous results, 

however, note that most of the r(Sd
I) values are less than unity, both for scale factors larger and 

less than unity; again, this is more likely an indication that the Sd
I response to the particular un-

scaled target record used in this case is relatively large, not that the Sd
I response to the scaled 

records is in general biased low.  Again, this is why we consider multiple target Sa levels and 
records. 
 
 

 
 

Figure 9.  .  Inelastic spectral displacement responses (versus elastic spectral displacement, 
which is proportional to spectral acceleration) (a) before and (b) after scaling (intra-bin) the 
earthquake records in the Near-Source Bin to a target spectral acceleration of 0.5g (or, 
equivalently, a target elastic spectral displacement of approximately 12cm). 
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Figure 10.  Ratios of the inelastic (R=4) spectral displacement responses to (i) the Near-Source 
records scaled to a target Sa (at T=1sec) of 0.5g versus (ii) the un-scaled Near-Source record that 
is naturally at the target Sa=0.5g (circled in red), all plotted against the corresponding scale 
factors. 

 
 
Finally, for all 31 of the target Sa values in the Near-Source Bin (including the highest, next-to-
lowest, and median values detailed above), the r(Sd

I) versus scale factor results (analogous to 
those in Figure 6, Figure 8, and Figure 10) are shown in Figure 11.  Recall that each of the 31 
records in the bin is scaled to each of the 31 target Sa levels, for a total of 961 data points.  Also 
shown in Figure 11 is a linear (in log-log space) regression fit based on all of the data points.  By 
definition, the regression fit provides the average (expected value) of ln[r(Sd

I)] for a given value 
of the scale factor, and therefore the "bias" defined above in Section 3.  The parameters of the 
regression fit, as listed in the figure, indicate that (i) there is no bias when the scale factor is 
equal to unity (i.e., a=1), as expected (but not pre-specified), and (ii) the bias is proportional (in 
log-log space) to the scale factor, with a slope of b=0.38.  As examples, at a scale factor of 0.1 
and 2 the scaled records result in Sd

I responses that are, on average, 0.4 and 1.3 times higher than 
un-scaled records, respectively. 
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Figure 11.  Intra-bin scaling results for the Near-Source earthquake record and the SDOF 
structure with T=1sec and R=4.  Note that the blue data points include those shown in Figure 8 
and Figure 10 above. 

 
 
Explanation of Results: 
 
The positive and negative biases observed for scale factors larger and less than one, respectively, 
can be explained by looking at the shapes of the elastic response spectra for records that are 
scaled up versus down.  In Figure 12a, for example, the response spectra for three of the 
earthquake records in the Near-Source Bin are highlighted:  the "target record" that is naturally 
(i.e., without scaling) at the target Sa level (in this case 0.5g), and two records that must be scaled 
by factors of 6.8 and 0.35 to reach the target Sa.  As shown in Figure 12b, after scaling it is 
apparent that the record scaled by a factor of 6.8 has larger spectral ordinates at periods longer 
than T=1sec (the period of the oscillator under consideration) than does the target record.  As the 
period of the oscillator, in effect, elongates due to inelasticity, it is therefore expected that the Sd

I 
response for the scaled record will be larger than that of the un-scaled target record.  This is 
precisely what is observed, on average, in Figure 11 (i.e., positive bias for scale factors greater 
than one).  Conversely, the record scaled by a factor of 0.35 has smaller spectral ordinates than 
the target record at periods to the right of T=1sec (again, see Figure 12b).  It is expected, 
therefore, to result in smaller Sd

I response than the un-scaled target record, again consistent (on 
average) with Figure 11. 
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Figure 12.  Elastic response spectra for three of the earthquake records in the Near-Source bin 
(a) before and (b) after scaling to a target spectral acceleration (0.5g in this case).  Note how the 
spectral ordinates at periods longer than the elastic period of the structure (i.e., T=1sec) are larger 
for the record that is scaled up, and smaller for the one that is scaled down, relative to the un-
scaled response spectrum. 

 
 
Similar to Figure 12a, Figure 13a shows the median of the elastic response spectra associated 
with (i) the 10 earthquake records in the Near-Source Bin that have the largest Sa values (at 
T=1sec), (ii) the 10 that have the smallest, and (iii) the remaining 11 records that have Sa values 
in between.  As noted in the figure, the median of the scale factors needed to reach the target Sa 
level (0.45g in this case) for each of these three subsets of records is (i) 0.5, (ii) 2.9, and (iii) 1.0.  
In a more average sense than Figure 12b, Figure 13b also suggests that the spectral shape for 
records that are scaled up vs. down to the target Sa will result in, respectively, larger vs. smaller 
Sd

I responses than records that are naturally at (or near) the target Sa. 
 
Generally speaking, earthquake records that are scaled up to a target Sa are likely scaled up 
because they exhibit a "pit," or relatively low point in their elastic response spectrum, at the 
period under consideration.  Conversely, records that are scaled down to the target Sa likely 
exhibit a "peak" in their response spectrum at the period of interest.  As demonstrated in Figure 
12 and Figure 13, a pit will generally result in biased high Sd

I response, and a peak in biased low 
Sd

I, both relative to un-scaled records. 
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Figure 13.  Medians of the elastic response spectra for the 10 largest, the 10 smallest, and the 11 
Near-Source earthquake records in between (in terms of their spectral accelerations at T=1sec) 
(a) before and (b) after scaling to a target Sa (0.45g in this case).  Note how the spectral ordinates 
at periods longer than the elastic period of the structure are larger for the records that are, on 
average, scaled up (by a median scale factor of 2.9), and smaller for the ones that are scaled 
down, both relative to the median response spectrum of the records that are, on average, un-
scaled. 

 
 
Aside: 
 
In Figure 11 above, each data point represents the ratio of (i) the Sd

I response to a record scaled 
by the given factor, to (ii) the Sd

I response to an un-scaled record that is naturally at the target Sa 
level.  Above, this type of data is used to quantify the bias (i.e., average of this ratio) induced by 
scaling a record by a single given factor.  Alternatively, one may be interested in quantifying the 
bias induced by scaling a suite of records, all to a target Sa and hence each by a different factor, 
as a function of the median scale factor.  (Again the bias is relative to records that are naturally at 
the target Sa level.)  The same underlying data can be used to investigate this issue, but in a 
slightly different format, as illustrated in Figure 14 and Figure 15. 
 
The data points shown in Figure 14 are the same ones shown above in Figure 10, namely the 
r(Sd

I) ratios versus scale factors for the "loop" of the procedure in which the 31 records in the 
Near-Source Bin are scaled to its median Sa (conventional median, not geometric mean).  Also 
depicted in the figure is the point defined by (i) the median (geometric mean) of the 31 scale 
factors, and (ii) the median of the 31 r(Sd

I) values. 
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Figure 14.  Medians (in green) of the scaled/un-scaled Sd
I ratios and the corresponding scale 

factors from Figure 10 above, which illustrated the results of scaling the Near-Source earthquake 
records to a target spectral acceleration of 0.5g. 

 
 
Shown in Figure 15 are the median r(Sd

I) versus median scale factor data points, like the one in 
Figure 14, obtained after scaling the records in the Near-Source Bin to all 31 of the target Sa 
levels considered.  Also shown in the figure is a log-log linear regression fit to these 31 data 
points, with its parameters noted.  This line gives the bias of the median Sd

I response for a suite 
of records that have been scaled, on average, by a given median scale factor.  Note from the 
parameters that this line is precisely the same as that found in Figure 11 using all 31x31 of the 
underlying data points, as can be expected based upon the nature of (log-log) linear regression. 
Hence, in summary, the bias of a record scaled by a factor of SF is equivalent in value to bias of 
the median a suite of records scaled, on average, by a median factor of SF. 
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Figure 15.  Bias (shown with magenta line) of the median inelastic spectral displacement (at 
T=1sec and R=4) from the suite of 31 Near-Source earthquake records scaled by the median 
factor on the abscissa.  Note that this is equivalent to the bias for a single Near-Source record 
scaled by a given factor, which was presented above in Figure 11.  One of the green data points 
shown in the figure is from Figure 14. 

 
 
8.1.1.2 Bins I-VI, Moderate Period and Strength Structure 
 
Besides the Near-Source Bin, recall that 6 other bins of earthquake records are considered in this 
study (as described in Section 5).  Still for the same T=1sec and R=4 "moderate" oscillator 
considered in the preceding subsection, the bias versus scale factor regression fits (but not the 
underlying data) obtained via the same intra-bin scaling procedure demonstrated above are 
illustrated in Figure 16 for all 7 of the bins.  Plots of the data upon which these regression fits are 
based, as well as the resulting regression parameters (a and b) are provided in the Appendix. 
 
Note from Figure 16 that intra-bin scaling within the Near-Source Bin results in, for this SDOF 
structure, the largest bias in Sd

I response for a given scale factor; at the other end of the spectrum, 
Bin III (Mw=6.4-6.8, Rclose=30-50km) results in the smallest bias.  It is somewhat appropriate that 
these two bins bracket the results, because one might expect the Near-Source Bin and Bin III to 
be, respectively, the most aggressive and most benign of those considered in terms of Sd

I 
response.  The trend over the other 5 bins of records, unfortunately, is not as clear, even in light 
of the median response spectra for all the bins (shown in Figure 2). 
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Figure 16.  Bias in inelastic spectral displacement (for an SDOF structure with T=1sec, R=4) 
induced by intra-bin scaling within each of the seven different bins of the earthquake records.  
Note that the lines for Bins I, II, and IV are nearly coincident.  The line for the Near-Source Bin 
is the same as the regression fit in Figure 11. 

 
 
8.1.1.3 Near-Source Bin, All Structures 
 
To this point, the results presented are for the T=1sec and R=4 oscillator only, but as described 
above in Section 6.1, SDOF structures of several other periods and strengths are considered in 
this study.  In Figure 17, the log-log linear regression fits based on data like those in Figure 11 
(above) are provided for oscillators with (a) a period of T=1sec but strengths ranging from R=1 
to 10, and (b) a strength of R=4 but periods ranging from T=0.1 to 4seconds.  Plots of the data 
upon which these regression fits are based, as well as the resulting regression parameters (a and 
b) are provided in the Appendix. 
 
From Figure 17a it is apparent that the stronger the oscillator (i.e., the lower the R), the smaller 
the bias in Sd

I induced by a given scale factor, at least if T=1sec.  In the limit (R=1), there is no 
bias induced for any scale factor because the oscillator is elastic and hence its response is simply 
equal to the target spectral displacement, which is proportional to the target Sa. 
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Figure 17.  Bias in inelastic spectral displacement induced by intra-bin scaling withing the Near-
Source Bin for SDOF structures with (a) a period of T=1sec but R ranging from 1 to 10, and (b) 
T ranging from 0.1 to 4sec but a strength reduction factor of R=4. 

 
 
From Figure 17b we see that, at the R=4 strength level, the bias for the T=1sec oscillator 
considered in preceding subsections is the larger (for a given scale factor) than that for any of the 
other periods considered.  This may be linked to the predominant period of the pulse-like records 
in the Near-Source Bin.  At the other end of the spectrum, note that for the T=4sec oscillator 
there is nearly no bias in Sd

I induced at any scale factor.  It can be reasoned that at T=4sec the 
"equal-displacements rule" applies (more so than at the other periods), such that the Sd

I response 
is roughly proportional to the target Sa, and hence the results are similar to those for an elastic 
(R=1) oscillator (i.e., no bias, as seen in Figure 17a). 
 
To summarize the results for all 48 combinations of period (T) and strength (R) considered, the 
slope (in log-log scale) of each bias versus scale factor regression fit, denoted b, is plotted as a 
function of T and R in Figure 18.  (The regression parameter a, which gives the bias for a scale 
factor of one, is not plotted because it is always equal to unity.)  As already observed in Figure 
17, the value of b, and thereby the bias at a given scale factor (since a=1), is relatively small for 
the stronger (approaching R=1) and longer period (approaching T=4sec) oscillators. 
 
 
8.1.1.4 Summary 
 
Depending, of course, on the vibration period (T) and strength (R) of the SDOF structure, the 
results presented above demonstrate that scaling earthquake records up can result in nonlinear 
structural responses (in this case inelastic spectral displacements) that are biased high, whereas 
the converse is true for scaling down (i.e., scale factor less than unity).  The magnitude of the 
bias for a given scale factor is smaller for longer period structures and for stronger (closer to 
elastic) structures; it also depends on the characteristics (e.g., Mw and Rclose) of the earthquake 
records that are scaled.  More specific comments regarding the magnitude of the bias can be 
found in Section 9, the overall summary of results. 
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Figure 18.  Slope with respect to scale factor (in log-log space) of the bias in inelastic spectral 
displacement induced by intra-bin scaling within the Near-Source Bin for SDOF structures of a 
range of periods and strength reduction factors.  Note that larger values of the slope b translate 
into larger biases for a given scale factor (since a=1 for intra-bin scaling). 

 
 
8.1.2 Inter-Bin Scaling 
 
To reiterate, inter-bin scaling involves the scaling of an earthquake record from a "source" Mw-
Rclose bin to a Sa level associated with a different Mw-Rclose "target" bin.  The purpose of inter-bin 
scaling is to obtain a record for an empty (or sparsely populated) Mw-Rclose target bin, although 
here the target bins considered must be adequately populated in order to maintain a basis of 
comparison.  It is assumed that the results presented here can be extrapolated to inter-bin scaling 
cases for which the number of records in the target bin is minimal (e.g., Mw>7.6). 
 
Detailed results for two different inter-bin scaling scenarios, namely (i) Bin III to Bin I and (ii) 
Bin I to the Near-Source Bin, are provided here, followed by a summary of results for 8 other 
inter-bin combinations.  The detailed results are for the same moderate period (T=1sec) and 
strength (R=4) oscillator considered above in the detailed intra-bin scaling results (i.e., in 
Sections 8.1.1.1 and 8.1.1.2), but all of the periods and strengths considered are included in the 
summary of results. 
 
8.1.2.1 Bin III to Bin I, Moderate Period and Strength Structure 
 
Recall from Section 5 that the "target bin" for this inter-bin scenario, namely Bin I, includes 
earthquake records with Mw=6.4-6.8 and Rclose=0-15km.  The "source bin," Bin III, on the other 
hand, is also made up of records with Mw=6.4-6.8, but with Rclose=30-50km.  Bin I is used as the 
target bin (and Bin III as the source bin) here because, in general, earthquake records at shorter 
distances are in shorter supply and hence are more likely to be the target for inter-bin scaling. 
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Step 1: 
 
As illustrated in Figure 19a, the first target Sa (at T=1sec) considered is 0.4g.  This target Sa is 
associated with the 1979 Imperial Valley Brawley Airport (H-BCR140) record in Bin I (the 
target bin), whose elastic response spectrum is highlighted in the figure to distinguish it from the 
response spectra for the 73 records in Bin III (the source bin). 
 
 

 
 

Figure 19.  Elastic response spectra (a) before and (b) after scaling (inter-bin) the earthquake 
records in Bin III (Mw=6.4-6.8, Rclose=30-50km) to a target spectral acceleration associated with 
Bin I (Mw=6.4-6.8, Rclose=0-15km).  The response spectrum in red is for the earthquake record in 
Bin I (the target bin) that is naturally at the target Sa=0.4g. 

 
 
Step 2: 
 
Recall that the Sd

I response to the un-scaled target record specified in Step 1 serves as a "true" Sd
I 

for this target Sa level; its value (9.2cm) is shown in Figure 20a, along with the Sd
I values for (i) 

the other un-scaled records in the target bin (Bin I), and (ii) the source bin (Bin III) records 
before they are scaled. 
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Figure 20.  Inelastic spectral displacement responses (a) before and (b) after scaling (inter-bin) 
the earthquake records in Bin III to a target spectral acceleration associated with Bin I (namely 
Sa=0.4g or, equivalently, Sd=10cm).  For comparison, the Sd

I responses to the un-scaled 
earthquake records in Bin I (the target bin) are also shown.  The Sd

I response to the un-scaled 
target bin record (circled in red) serves as the "true" response for this iteration of the procedure. 

 
 
Step 3: 
 
The elastic response spectra after scaling all of the records in the source bin (Bin III) to the target 
Sa (0.4g) are shown in Figure 19b, still with the response spectrum for the target record 
highlighted.  As depicted in Figure 20a, the scale factors in this case range from 0.9 to 20.2. 
 
Step 4: 
 
For all 73 of the source-bin records scaled in Step 3, the Sd

I values are shown in Figure 20b.  
Note that most of the Sd

I values are larger than the "true" Sd
I of the un-scaled target record. 

 
Step 5: 
 
The ratios of the Sd

I values for the scaled source-bin records (from Step 4) to that for the un-
scaled target record (Step 2), which are denoted in the text as r(Sd

I), are plotted against the 
corresponding scale factors in Figure 21.  No trend with the scale factor is apparent, but the 
average ratio appears to be slightly greater than unity, suggesting that the inter-bin scaled records 
are biased high, albeit mildly.  This, perhaps, can be expected given the shape of the response 
spectrum for the target record (shown in Figure 19), but recall (e.g., from the intra-bin scaling 
results that the record-to-record variability of Sd

I for un-scaled records with the same (or similar) 
values of Sa prevents us from drawing general conclusions before Steps 1-5 are repeated (in Step 
6) for the other 72 target records and Sa levels in Bin I. 
 
 

SF = 20.2 

SF = 0.9 
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Figure 21.  Ratios of the inelastic spectral displacement responses to (i) the Bin III (source bin) 
records scaled to the target Sa=2.0g versus (ii) the un-scaled Bin I (target bin) record that is 
naturally at Sa=2.0g, both from Figure 20b.. 

 
 
Step 6: 
 
For all 73 of the target Sa values associated with the earthquake records in Bin I, the r(Sd

I) versus 
scale factor results (including those shown in Figure 21 for the first target Sa) are plotted in 
Figure 22.  Recall that each of the 73 records in the source bin (Bin III) is scaled to each of the 
73 target Sa levels associated with the target bin (Bin I), for a total of 5329 data points.  Also 
shown in Figure 22 is the log-log linear regression fit based on all of the data points, and its 
parameters, a and b.  Recall that the regression fit, by definition, provides the average (expected 
value) of ln[r(Sd

I)] for a given value of the scale factor, and hence quantifies the "bias" induced 
by, in this case, inter-bin scaling.  The parameters of the regression fit indicate that (i) when the 
scale factor is equal to unity, the Sd

I response to the scaled records is biased low (i.e., a=0.61), 
and (ii) the bias increases linearly (in log-log scale) with scale factor (i.e., b=0.19), as found for 
intra-bin scaling. 
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Figure 22.  Inter-bin scaling results for the Bin III to Bin I case and the SDOF structure with 
T=1sec and R=4.  The blue data points include those shown in Figure 21 above.  The magenta 
line gives the bias in inelastic spectral displacement response induced by a given inter-bin scale 
factor. 

 
 
Explanation of Results: 
 
The same "peak versus pit" concept used to explain the intra-bin scaling results can be used to 
explain the r(Sd

I) versus scale factor results observed in Figure 22 for inter-bin scaling.  As 
evident from Figure 20a above, scale factors near unity are usually obtained when a source-bin 
record with a relatively large Sa value for it Mw and Rclose (likely because there is a peak in its 
elastic response spectrum at the period under consideration) is scaled to the target Sa level 
associated with a target-bin record that is naturally at a relatively low Sa value for its Mw and 
Rclose (likely because it is in a pit of its response spectrum).  Since the "peaked" source-bin record 
is expected to produce relatively small Sd

I response, especially as compared to a "pitted" target-
bin record, it is expected that the bias in Sd

I response at a scale factor of unity will be less than 
one (i.e., biased low Sd

I), as was observed in Figure 22. 
 
Given the explanation above, one might expect to find that the Sd

I response to inter-bin scaled 
records is unbiased at a scale factor equal to the average separation (in terms of Sa) between the 
target and source bins.  It is around this scale factor that one would expect to find r(Sd

I) results 
for "peaked" source-bin records scaled to "peaked" target-bin records, for example.  After scaling 
the source-bin (Bin III) records by the ratio of the median Sa for the target (Bin I) and source bins 
(before scaling), the Sa (actually, Sd=Sa*(T/2π)2) and Sd

I values for the two bins are illustrated in 
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Figure 23.  In this case, the ratio of the median Sa values, denoted here as r(m[Sa]), is equal to 
3.8. 
 
 
To check whether the Sd

I response to inter-bin scaled source-bin records is unbiased at a scale 
factor equal to r(m[Sa]), the scale factor axis in Figure 22 is divided by r(m[Sa])=3.8 and re-
plotted in Figure 24.  From the figure we see that there is still a bias at an "adjusted" scale factor 
of one, although it is smaller than before (i.e., a=0.79 versus 0.61 in Figure 22).  As will be 
demonstrated in the subsequent section (for the second inter-bin scaling scenario), the remaining 
bias can be explained by considering the differences in the shapes of the elastic response spectra 
for the source and target bins. 
 
 
Note that in all of the inter-bin scaling results to follow, the scale factors reported have already 
been divided by the ratio of the median Sa values for the target and source bins, r(m[Sa]).  In 
other words, what is reported hereafter is the scale factor after the source-bin has been pre-scaled 
by the average Sa separation between the source and target bins, or r(m[Sa]).  This factor for pre-
scaling can be quantified using an attenuation relation, but here it is calculated based upon the 
specific records in each bin. 
 
 

 
 

Figure 23.  Illustration of "pre-scaling" the earthquake records in the source bin (Bin III) by a 
common factor such that their median spectral acceleration (or spectral displacement) matches 
that of the target bin (Bin I).  This pre-scaling factor is removed (by division) from the scale 
factors in Figure 22 to obtain Figure 24. 
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Figure 24.  Inter-bin scaling results after removing the "pre-scaling" factor illustrated in Figure 
23 from the un-adjusted results shown in Figure 22.  The ratio of the median spectral 
accelerations for the target and source bins is not included in the adjusted scale factor. 

 
 
8.1.2.2 Bin I to Near-Source Bin, Moderate Period and Strength Structure 
 
The results detailed here consider the same target ground motion scenario ("Near-Source") and 
SDOF structure (T=1s, R=4) that was considered in Section 8.1.1.1 on intra-bin scaling.  In order 
to consider inter-bin scaling, here earthquake records from a different "source" bin are scaled, 
namely those from "Bin I".  Recall from the descriptions in Section 5 that Bin I is similar in Mw 
and Rclose to the Near-Source bin, but Bin I includes records from backward as well as forward 
directivity conditions, and is comprised of random horizontal components rather than strictly 
strike-normal components.  As a result, Bin I includes fewer pulse-like records as compared to 
the Near-Source bin. 
 
The ratios of the Sd

I responses to scaled source-bin records versus un-scaled target bin records 
(i.e., r(Sd

I) values) are plotted in Figure 25 as a function of the scale factor.  Recall that each of 
the 73 records in Bin I, the source bin, is scaled to each of the 31 target Sa levels associated with 
the target Near-Source Bin, for a total of 2263 data points.  The log-log linear regression fit to all 
of these data points and its parameters, a and b, are also shown in Figure 25. 
 
 



 30

 
 

Figure 25.  Inter-bin scaling results for the Bin I to Near-Source Bin case, still for the SDOF 
structure with T=1.0sec and R=4.  The scale factor presented here (and hereafter) has already 
been divided by the pre-scaling factor that brings the median Sa of the source bin (Bin I) to that 
of the target bin (Near-Source). 

 
 
Similar to the results for the Bin III to Bin I scenario considered in the preceding subsection, note 
from Figure 25 that there is a bias at a scale factor of unity (i.e., a=0.83).  Recall that here the 
source-bin records have been pre-scaled, all by a single factor, such that the median of their Sa 
values is equal to that of the target bin.  The median elastic response spectrum for (i) Bin I (the 
source bin), after the pre-scaling, and (ii) the Near-Source Bin (the target bin), is illustrated in 
Figure 26.  Note that at periods longer than that of the structure under consideration here (i.e., 
T=1sec), the median response spectrum for Bin I drops off more quickly than that for the Near-
Source Bin.  As a result, it is expected that the Sd

I response to the Bin I records will, on average, 
be smaller than that to the records in the Near-Source Bin.  This is precisely what was observed 
in Figure 25, which indicated that after the pre-scaling alone (i.e., at a scale factor of unity in the 
figure), the Sd

I response of the source-bin (Bin I) records is biased low relative to the target Near-
Source Bin.  If one looks back at the median response spectra (before any scaling) for Bin III and 
Bin I shown in Figure 4, the same explanation can also be made for the inter-bin scaling results 
reported in the preceding section. 
 
Another observation to note from Figure 25 above is that the log-log slope of the bias versus 
scale factor, b=0.33, is rather similar to that observed from the intra-bin scaling results for the 
same target bin and structure, namely b=0.39 from Figure 11.  This similarity will be commented 
on further in the subsequent subsection. 



 31

 
 

Figure 26.  Median elastic response spectra for the earthquake records in Bin I (the source bin) 
and the Near-Source Bin (the target).  Note that the median spectra happen to match at T=1.0sec 
(the period of the structure under consideration), so no "pre-scaling" is necessary.  The higher 
spectral amplitudes at periods above 1.0sec suggest that the inelastic response to the near-source 
records will be larger than that to the records in Bin I. 

 
 
8.1.2.3 Bin I to Near-Source Bin, All Structures 
 
For all of the SDOF structures considered in this study, but still for the Bin I to Near-Source Bin 
inter-bin scaling scenario considered in the preceding subsection, a graphical summary of the 
regression parameters a and b is provided in Figure 27 (for a) and Figure 28 (for b).  Recall that 
the parameter a quantifies the bias in Sd

I induced by merely pre-scaling the source-bin records by 
a single factor such that their median Sa (at the particular T) is equal to that of the records in the 
target bin (i.e., "adjusted" scale factor SF=1).  The parameter b, on the other hand, quantifies 
how quickly the bias increases (or decreases) with increasing (or decreasing) scale factor (not 
including, or after, the pre-scaling). 
 
Similar to what was observed for the b values in the intra-bin scaling results, the values of a for 
inter-bin scaling (shown in Figure 27) approach unity (no bias) for longer period and stronger 
structures (e.g., T=4sec and R=1).  For shorter period and weaker structures, the bias quantified 
by a appears to increase.  The smallest value of a (and most bias) observed is 0.68, for T=0.2sec 
and R=6. 
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(a = 0.83)(a = 0.83)(a = 0.83)

 
 

Figure 27.  Bias at a scale factor of unity (after pre-scaling), given by a, for the Bin I to Near-
Source Bin case and SDOF structures of a range of periods and strengths.  For the most part, this 
bias can be explained by the differences between the median elastic response spectra of the 
source and target bins. 

 
 
The values of b shown in Figure 28a are very similar to those observed in the intra-bin scaling 
results for the same target bin (the Near-Source Bin).  The difference between the two sets of b 
values is plotted in Figure 28b, which shows that the two are nearly the same at all but very short 
periods. 
 
 

 
 

Figure 28.  Slope with respect to scale factor (in log-log space) of the bias in inelastic spectral 
displacement induced by inter-bin scaling from Bin I to the Near-Source Bin for SDOF 
structures of a range of periods and strength reduction factors.  The figure on the right shows that 
the difference in minimal between the slope b for this inter-bin scaling case and that for intra-bin 
scaling within the target (Near-Source) bin, except perhaps at short periods. 
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8.1.2.4 Other Inter-Bin Combinations, All Structures 
 
Including the combinations described above (i.e., Bin III to Bin I, and Bin I to Near-Source Bin), 
a total of 10 different inter-bin scaling scenarios are considered, as listed in Table 2.  Plots like 
Figure 27 of the regression fit parameter a for these scenarios are left to the appendix.  The 
associated regression parameters, b, for the most part, are similar to those found for intra-bin 
scaling within the target bin; the latter results are also provided in the appendix. 
 
 

Table 2.  Inter-bin scaling scenarios considered in this study.  Detailed results for these scenarios 
can be found in the appendix. 

 
Scenario 

# 
Source Bin Target Bin 

1 "I" (Mw=6.4-6.8, Rclose=0-15km) "Near-Source" 
2 "Near-Source" "I" (Mw=6.4-6.8, Rclose=0-15km) 
3 "I" (Mw=6.4-6.8, Rclose=0-15km) "IV" (Mw=6.9-7.6, Rclose=0-15km) 
4 "II" (Mw=6.4-6.8, Rclose=15-30km) "IV" (Mw=6.9-7.6, Rclose=0-15km) 
5 "V" (Mw=6.9-7.6, Rclose=15-30km) "IV" (Mw=6.9-7.6, Rclose=0-15km) 
6 "II" (Mw=6.4-6.8, Rclose=15-30km) "V" (Mw=6.9-7.6, Rclose=15-30km) 
7 "III" (Mw=6.4-6.8, Rclose=30-50km) "V" (Mw=6.9-7.6, Rclose=15-30km) 
8 "VI" (Mw=6.9-7.6, Rclose=30-50km) "V" (Mw=6.9-7.6, Rclose=15-30km) 
9 "III" (Mw=6.4-6.8, Rclose=30-50km) "VI" (Mw=6.9-7.6, Rclose=30-50km) 
10 "III" (Mw=6.4-6.8, Rclose=30-50km) "I" (Mw=6.4-6.8, Rclose=0-15km) 

 
 
Note that the majority of the scenarios, i.e., #3-9, considered use one of the three larger 
magnitude bins (IV-VI) as a target and scale records from bins with smaller magnitudes and 
similar or larger distances.  These scenarios are motivated by the fact that the existing database 
contains fewer records from larger earthquake magnitudes and closer source-to-site distances.  In 
practice, therefore, it is more likely that records from smaller Mw and larger Rclose bins are scaled 
to represent larger Mw and smaller Rclose bins, not vice-versa.  (The primary goal of inter-bin 
scaling, recall, is extrapolation to larger Mw and shorter Rclose bins.) 
 
It is also assumed here that scaling from "adjacent" bins is more likely than scaling across bins 
that are more different in magnitude and/or distance (e.g., Rclose=30-50km to Rclose=0-15km).  In 
any case, in this respect only two scenarios are left out:  Bin III and VI to Bin IV.  Recall that the 
inter-bin scenario detailed above Section 8.1.2.1 (i.e., #10), however, does consider scaling 
across two bins in distance (i.e., from Bin III to I), because it is intended to check the most 
extreme inter-bin scaling within the lower magnitude bins. 
 
Finally, note that scenario #2 (Near-Source Bin to Bin I) is merely included to check that its 
results are equal and opposite those from the first scenario (which they are). 
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8.1.2.5 Summary 
 
Inter-bin scaling appears to introduce a bias in inelastic spectral displacement that varies with 
scale factor in a manner similar to that induced by intra-bin scaling within the target bin.  For a 
given scale factor, this bias is smaller for longer period and stronger (i.e., closer to elastic) 
oscillators.  Unlike intra-bin scaling, however, an additional bias that is roughly independent of 
scale factor is also introduced.  The degree of this bias can be related to the difference between 
the shapes of the median elastic response spectra for the source and target bins.  More specific 
comments regarding the magnitude of the bias are left to the overall summary in Section 9. 
 
8.2 MDOF Structures 
 
The same procedure for quantifying the effects of intra- and inter-bin scaling that is applied for 
the SDOF structure in Section 8.1 (as outlined in Section 7) is followed here for the MDOF 
structures considered in this study, namely the elastic and the ductile 2-D models of a 9-story 
steel moment-resisting frame building. 
 
Analogous the peak relative displacement response considered for the SDOF structures (i.e., 
inelastic spectral displacement, Sd

I), the following three drift response measures are considered 
for the MDOF structures: 
 
θroof = the peak roof drift ratio (i.e., peak roof displacement relative to the ground, normalized 

by the height of the roof), 
 
θmax = the maximum, over all stories, peak (over time) inter-story drift ratio, and 
 
θ i = the peak inter-story drift ratio for story i (= 1 to 9). 
 
Like in Sections 8.1.1.1 and 8.1.2.2 for intra- and inter-bin scaling, respectively, the Near-Source 
Bin is used here as the target (for both intra- and inter-bin scaling), and Bin I is used as the 
source of earthquake records to scale (for inter-bin scaling).  Due to the computational intensity 
of analyzing the MDOF structures, these are the only intra- and inter-bin scaling cases 
considered in this study.  However, the analogy between the SDOF and MDOF results described 
below can, perhaps, be used to extrapolate the effects of scaling for the MDOF structures to other 
intra- and inter-bin cases. 
 
One conceptual difference between the SDOF and MDOF results to note is that the strength of 
the ductile MDOF structure is not modified relative to each target Sa value (which, for the SDOF 
structure, created "constant R" results).  Instead, here the strength of the ductile MDOF structure 
remains fixed, and hence "constant strength" results are produced.  This is done because 
modifying the strength of an MDOF structure in a realistic fashion is not a straightforward and 
unique process like it is for SDOF structures.  The implications of this difference are described in 
what follows. 
 
 
 



 35

8.2.1 Intra-Bin Scaling 
 
As mentioned above, intra-bin scaling with the Near-Source Bin of earthquake records is 
considered here, for both the elastic and ductile models of the 9-story SMRF building. 
 
8.2.1.1 Elastic Model 
 
Analogous to Figure 11 above for an SDOF structure with vibration period T=1sec and strength 
reduction factor R=4, the intra-bin scaling results in terms of θroof and θmax are shown in Figure 
29 for the elastic model of the 9-story SMRF building.  Since θroof is dominated by the first mode 
of response and hence is nearly proportional to first-mode spectral acceleration, it is expected, 
and observed (in Figure 29a), that intra-bin scaling does not induce a bias in elastic θroof response 
(i.e., a=1 and b=0).  In contrast, a bias (albeit relatively minor) in θmax is observed that is 
proportional in log-log space to the earthquake record scale factor (e.g., a bias of 9% and 32% 
for scale factors of 2 and 10, respectively).  Recall that the bias increases with scale factor for the 
SDOF structures as well, but for differing reasons, since here the MDOF response is elastic.  As 
one might expect (and as detailed below), the bias in the θmax response is a result of the fact that 
more than just the first mode contributes significantly to it. 
 
For the second, fifth, and eighth stories of the elastic building model, the intra-bin scaling results 
for θ i (i.e., the ratio of the scaled versus un-scaled θ i results as a function of the scale factor) are 
shown in Figure 30, alongside those for the ductile building model results to be discussed in the 
next subsection.  The θ i results for the other six stories, which follow the same trends observed 
here, are included in the appendix. 
 
 

 
 

Figure 29.  Intra-bin scaling results in terms of (a) peak roof drift ratio (θroof), and (b) maximum 
(over all stories) peak inter-story drift ratio (θmax) for the elastic model of the 9-story building 
considered and the Near-Source Bin of earthquake records. 
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Figure 30.  Intra-bin scaling results in terms of the peak inter-story drift ratios (θ i) at the 2nd 
story (top row), 5th story (middle row), and 8th story (bottom row), for the elastic (left column) 
and ductile (right column) models of the 9-story building considered.  The curve fit shown in red 
on the ductile results is obtained via a non-parametric local regression (LOESS).  The analogous 
results for the other 6 of the 9 stories are provided in the appendix. 
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At the 2nd story, practically no scaling-induced bias in θ 2 is observed in Figure 30 (top left panel, 
a=1 and b=0.02) because, like for θroof, the contribution of higher modes to θ 2 is relatively 
minor.  In contrast, higher modes contribute significantly to the response at the 8th story, θ 8, and 
a bias is observed (albeit relatively minor).  Note that the extent of the bias in θ 8 is identical to 
that in θmax (i.e., b=0.12) because the maximum inter-story drift ratio typically occurs in the 
upper stories.  The bias in θ 5 is intermediate to those at θ 2 and θ 8. 
 
The scaling-induced bias observed for the θmax and θ 8 response (in Figure 29a and Figure 30) 
can be explained by looking at the shapes of the elastic response spectra for records that are 
scaled up versus down.  The same approach was taken to explain the observed bias in inelastic 
spectral displacement for the SDOF structures, with one fundamental difference: instead of 
looking at the spectral amplitudes at periods longer than the fundamental period of the structure 
(to reflect inelasticity), here we look at shorter periods, specifically the second-mode period, 
since response spectrum analysis concepts apply. 
 
In Figure 31a the median of the elastic response spectra associated with (i) the 10 earthquake 
records in the Near-Source Bin that have the largest Sa values (at T=2.3sec), (ii) the 10 that have 
the smallest, and (iii) the remaining 11 records that have Sa values in between.  As noted in the 
figure, the median of the scale factors needed to reach the target Sa level (0.23g in this case) for 
each of these three subsets of records is (i) 0.5, (ii) 2.6, and (iii) 1.0.  After scaling all of the 
earthquake records to the target Sa, the median response spectra for the same three subsets of 
records are plotted in Figure 31b.  Note how, on average, the records that are scaled up have 
larger spectral amplitudes at the second-mode period (0.9sec), and those that are scaled down 
have smaller, relative to the un-scaled records.  It is therefore expected, as observed, that the 
second mode contribution to θmax and θ 8 (and hence the overall response, since the first-mode 
component is normalized) will be biased high/low for scale factors larger/less than unity. 
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Figure 31.  Medians of the elastic response spectra for the 10 largest, the 10 smallest, and the 11 
Near-Source earthquake records in between (in terms of their spectral accelerations at T=2.3sec, 
the fundamental period of the 9-story building) (a) before and (b) after scaling to a target Sa 
(0.23g in this case).  Note how the spectral ordinate at the second-mode period, T=0.9sec, is 
larger for the records that are, on average, scaled up (by a median scale factor of 2.6), and 
smaller for the ones that are scaled down, both relative to the median response spectrum of the 
records that are, on average, un-scaled. 

 
 
8.2.1.2 Ductile Model 
 
The analogous results presented in the preceding subsection for the elastic building model are 
presented here for the ductile model of the building.  In Figure 32, the intra-bin scaling results in 
terms of θroof and θmax are presented.  For θroof, the data shown in the figure appear to be very 
similar to that for the elastic building model (shown in Figure 29), up to a scale factor near unity.  
At higher scale factors, there is a slight "upward swing" in the data, suggesting that the θroof 
response to the scaled records is biased high.  The change near a scale factor of unity can be 
explained as a gradual shift from linear elastic to nonlinear inelastic results.  It happens to be the 
case that the overall strength of the ductile building model, in terms of the spectral acceleration 
that induces notable nonlinearity, is roughly near the median Sa (at T=2.3sec) of the target Near-
Source Bin, namely 0.23g.  So, when the target Sa is near 0.23g, and the hence the median scale 
factor is near unity (not including, recall, the "pre-scaling" factor), the θroof (or θmax, θ i) response 
is in the transition between elastic and nonlinear behavior.  At lower scale factors the response is 
essentially elastic, whereas at higher scale factors it is progressively more nonlinear. 
 
As is clear in Figure 32, the "upward swing" in the data described above cannot be captured by a 
log-log linear regression fit.  Hence, a non-parametric LOESS (Cleveland 1979) local regression 
fit is also plotted in the figure, using a "windowing fraction" of 0.75.  The LOESS fit indicates 
that the scaled records provide an unbiased θroof response at scale factors lower than unity 
(roughly), as was observed for the elastic building model in the preceding section.  At higher 
scale factors, however, the θroof response to the scaled records is somewhat biased high (e.g., by 
30% at a scale factor).  This bias can be explained via (again) the illustration in Figure 31 
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(above) of the median response spectra for records that are scaled up versus down.  Although 
difficult to discern, there the median response spectrum of the records scale by a median factor 
of SF=2.6 is shown to be higher at periods longer than the fundamental period of the MDOF 
structures (T=2.3sec), as compared to the median spectrum of the un-scaled records (SF=1).  
Hence, as the fundamental period effectively elongates due to nonlinearity, it is expected (as 
observed) that the θroof response to the records that are scaled up will be biased high. 
 
 

 
 

Figure 32.  Intra-bin scaling results in terms of (a) peak roof drift ratio (θroof), and (b) maximum 
(over all stories) peak inter-story drift ratio (θmax) for the ductile model of the 9-story building 
considered and the Near-Source Bin of earthquake records.  The curve fits shown in red are 
obtained via a non-parametric local regression (LOESS). 

 
 
Unlike the θroof results, the θmax results shown in Figure 32b are very much similar to those for 
the elastic building model, even at large scale factors (and hence, most likely, large target Sa 
values) for which the structural response in notably nonlinear.  At the large scale factors is not 
readily apparent whether the θmax response to the scaled records is biased high because of (i) the 
same higher mode contributions to θmax the resulted in a bias for the elastic building model (in 
Figure 29b), or (ii) the same effect of nonlinearity observed for the θroof response (in Figure 32a).  
As a final remark on the θmax results, it is noted that the linear and LOESS fits (in log-log space) 
are almost identical, except at the very low end of the data (i.e., lowest scale factors). 
 
For the 2nd, 5th, and 8th stories, the θ i results for the ductile building model are presented 
alongside the corresponding results for the elastic building model in Figure 30 (above).  
Comments similar to those made for the elastic results, as well as those for the θroof and θmax 
response of the ductile model, apply. 
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8.2.1.3 Summary 
 
Intra-bin scaling of the elastic MDOF building model introduces a bias in the drift response 
measures that are sensitive to multiple modes (e.g., θmax), but not those that are first-mode-
dominated (e.g., θroof).  For both of these response measures, intra-bin scaling introduces a bias 
for the ductile building model, except for the responses that are first-mode-dominated and 
essentially elastic due to the small target Sa level (typically corresponding to small scale factors). 
 
At lower (than unity) scale factors, the response of even the ductile building model considered is 
more-or-less elastic, and hence no bias is observed in drift responses that are dominated by the 
first mode of vibration (e.g., θroof), whereas the response of multi-mode-sensitive drift responses 
(e.g., θmax) is biased low.  The latter can be explained by the shape of the response spectra for 
records with relatively low scale factors. 
 
At higher scale factors, the multi-mode-sensitive (but not the first-mode-dominated) drift 
responses of the elastic building model are biased high, consistent with the response spectral 
shape for records with relatively large scale factors.  For the ductile building model, on the other 
hand, both the first-mode-dominated and multi-mode-sensitive responses are biased high are 
larger scale factors, to varying degrees.  Again, both can be explained by the shape of the 
response spectra for records with relatively high scale factors, at periods either smaller (for 
higher modes) or larger (for the effects of nonlinearity). 
 
For more specific comments regarding the extent of the biases observed for the MDOF structures 
and intra-bin scaling, as well as a comparison with the SDOF results presented above, the reader 
is referred to the overall summary in Section 9. 
 
8.2.2 Inter-Bin Scaling 
 
The inter-bin scaling results presented here are for the same "target bin" considered in the 
preceding intra-bin scaling section, namely the Near-Source Bin, but a different "source bin," 
i.e., Bin I. 
 
8.2.2.1 Elastic Model 
 
For the elastic model of the 9-story SMRF building considered, the inter-bin scaling results in 
terms of θroof and θmax are plotted in Figure 33.  As expected, practically no bias in θroof is 
observed (a=1.03, b=0.02) because the first-mode-dominated θroof is effectively proportional to 
the target Sa values to which all the source bin records are scaled.  For the multi-mode-sensitive 
θmax response, however, a bias proportional (in log-log space) to scale factor is observed 
(b=0.17), similar to the intra-bin scaling results (b=0.12).  The pre-scaling of the source bin (Bin 
I) records such that their median Sa is equal to that of the target (Near-Source) bin does not 
appear to introduce a significant bias (i.e., a=1.03).  Given the differences between the median 
response spectra for the pre-scaled Bin I and the Near-Source Bin records, shown in Figure 34, 
this lack of bias is somewhat unexpected.  Perhaps other differences between the target and 
source bins not reflected in the response spectra (e.g. time-domain features of the records) 
compensate for the disparity in spectral shape. 
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Figure 33.  Inter-bin scaling results in terms of (a) peak roof drift ratio (θroof), and (b) maximum 
(over all stories) peak inter-story drift ratio (θmax) for the elastic model of the 9-story building 
considered and the Bin I to Near-Source Bin scenario. 

 
 
 

 
 

Figure 34.  Median elastic response spectra for the Near-Source Bin and the earthquake records 
in Bin I scaled by a common factor such that their median Sa matches that of the Near-Source 
Bin at a period of T=2.3sec (the fundamental period of the 9-story building considered).  Note 
that while the spectral ordinates at periods longer that 2.3sec are larger for the Near-Source Bin, 
the opposite is true at the second-mode period 0.9sec. 
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Figure 35.  Inter-bin scaling results in terms of the peak inter-story drift ratios (θ i) at the 2nd 
story (top row), 5th story (middle row), and 8th story (bottom row), for the elastic (left column) 
and ductile (right column) models of the 9-story building considered.  The curve fit shown in red 
on the ductile results is obtained via a non-parametric local regression (LOESS).  The analogous 
results for the other 6 of the 9 stories are provided in the appendix. 
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Like the intra-bin results shown in Figure 30, the inter-bin scaling results for the elastic building 
model are plotted in terms of θ 2, θ 5, and θ 8 in Figure 35, alongside the analogous results for the 
ductile building model.  Comments similar to those already stated for the intra-bin results and the 
inter-bin results for θroof and θmax apply to this figure as well. 
 
8.2.2.2 Ductile Model 
 
Lastly, for the ductile model of the 9-story SMRF building, the inter-bin scaling results for θroof 
and θmax are plotted in Figure 36.  For θroof, the log-log linear regression fit to the data suggests 
that practically no bias is introduced by scaling (a=1.02, b=0.03), which is confirmed by the 
LOEES fit at the smaller scale factors.  At larger scale factors the LOEES fit (and the data itself) 
indicates that the scaled θroof response is biased high (e.g., by about 20% at a scale factor of 10), 
as was observed (and explained) for the intra-bin scaling results presented above. 
 
For θmax, the ductile results shown in Figure 36b are very similar to those for the elastic building 
model (shown in Figure 33b), and in turn the intra-bin scaling results for both the elastic and 
ductile building models.  Also note that the differences between the linear and LOESS regression 
fits to the θmax results are relatively minor, even at the extreme scale factors. 
 
 

 
 

Figure 36.  Inter-bin scaling results in terms of (a) peak roof drift ratio (θroof), and (b) maximum 
(over all stories) peak inter-story drift ratio (θmax) for the ductile model of the 9-story building 
and the Bin I to Near-Source Bin scenario.  The curve fits shown in red are obtained via a non-
parametric local regression (LOESS). 

 
 
8.2.2.3 Summary 
 
Inter-bin scaling appears to have a very similar effect, in terms of the bias in linear or nonlinear 
MDOF response it introduces, to that of intra-bin scaling.  In both cases there is (practically) no 
bias in θroof, θmax, or θ i at a scale factor of unity.  For the inter-bin case, recall, this indicates that 
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"pre-scaling" the source bin records such that their median Sa matches that of the target bin does 
not induce a bias, which is somewhat unexpected given the differences between the (median) 
response spectra for the source and target bins.  For lower and higher scale factors, the bias 
introduced is as described for intra-bin scaling (in Section Error! Reference source not 
found.).  The magnitude of these biases for inter-bin scaling and the MDOF structures, as well as 
those for the other cases considered, are summarized in the next section. 
 
 
9 Summary 
 
An overall summary of the detailed results presented above for both the SDOF and MDOF 
structures is provided here for intra- and inter-bin scaling separately.  A comparison of the results 
for the two types of scaling is made in the inter-bin section (Section 9.2.1.1). 
 
9.2.1.1 Intra-Bin Scaling 
 
The intra-bin scaling results for the SDOF structures covering a range of periods and strengths, 
and considering the seven different bins of earthquake records, indicate the following: 
 
• For elastic or mildly inelastic SDOF structures (i.e., R≤2), the bias in drift response (i.e., Sd

I) 
that is introduced by intra-bin scaling is at most 15% and 60% (i.e., factors of 1.15 and 1.60) 
for scale factors of 2 and 10 (or 1/1.15 and 1/1.60 for 1/2 and 1/10), respectively, with the 
exception of a few short-period cases (T≤0.2sec). 

• For relatively long period SDOF structures (i.e., T≥3sec), the bias introduced is also less than 
15% and 60% for scale factors of 2 and 10, respectively, except for Bin VI containing large 
Mw and long Rclose records, in which case the bias is large as 27% and 119% (respectively). 

• For relatively short periods (i.e., T≤0.5sec), the bias is at least 15% and 60%, and can be as 
large as 90% and 690%, for scale factors of 2 and 10, respectively.  This is true even at the 
R=2 strength level (with only one exception), but with a few lower-bias exceptions (i) at the 
R=4 strength level and (ii) for the Near-Source Bin containing "pulse-like" records. 

• At moderate periods (i.e., T=1 or 2sec), the magnitude of the bias is dependent on the 
characteristics (e.g., Mw, Rclose) of the bin of records that are scaled.  For T=1sec, the bias is 
less than 15% and 60% for scale factors of 2 and 10, respectively, for Bin III and IV, but for 
the other five bins the bias is larger, up to 50% and 280% (respectively).  For T=2sec, the 
bias is less than 15%/60% for all but Bin II, IV, and VI, for which it is still less than 
30%/150% (for scale factors of 2/10). 

 
For the MDOF structure, even the elastic model exhibits a scaling-induced bias, but only for 
those drift responses that are sensitive to higher modes of vibration (e.g., θ 9, θmax).  At most, this 
bias is about 15% and 60% at scale factors of 2 and 10, respectively (i.e., b<0.20).  The ductile 
building model exhibits a comparable bias for the multi-mode-sensitive responses, but also 
displays a bias for first-mode-dominated responses (e.g., θ 1, θroof).  The latter is as large as 25% 
and 80% for scale factors of 2 and 10, respectively, but at scale factors less than about unity there 
is nearly no bias because the response is essentially elastic (and first-mode-dominated). 
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9.2.1.2 Inter-Bin Scaling 
 
The inter-bin scaling results, recall, are very similar to those for intra-bin scaling in terms of the 
variation of bias with scale factor (described above), except perhaps at very short periods (e.g., 
T≤0.5sec).  Inter-bin scaling, however, can also introduce a bias in nonlinear structural response 
at an "adjusted" scale factor of one, i.e., merely by pre-scaling the earthquake records in the 
source bin by a common factor such that their median spectral acceleration (Sa) is equal to the 
median Sa of the target bin.  The magnitude of this additional bias for the SDOF structures and 
10 different inter-bin scaling cases considered shows the following trends: 
 
• For elastic or mildly inelastic SDOF structures (i.e., R≤2), the bias in drift response (i.e., Sd

I) 
that is introduced by inter-bin "pre-scaling" is less than 15% (i.e., between a factor of 
1/1.15=0.87 and 1.15), except at short periods (T≤0.3sec) in some cases. 

• Roughly speaking, the bias tends to increase with decreasing strength (i.e., increasing R), and 
can be as large as 80%. 

• For Bin I to IV (from smaller to larger Mw, for shorter Rclose), Bin V to VI (from intermediate 
to shorter Rclose, for larger Mw), and Bin VI to V (from longer to shorter Rclose, for larger Mw), 
however, the bias is less than 15% for all but a few of the period-strength combinations 
(always with T≤1), in which case the bias is still less than 40%. 

• For the most part, the largest biases are observed for shorter period (T≤0.2) structures, except 
in the Bin III to V case (largest biases at T≥3sec), the Bin VI to V case (largest biases at 
T=1sec), and Bin III to I case (largest biases at T=0.5 or 1sec). 

• Bin V to IV case (for which the bias is less than 18% across all T-R combination), the  
 
Note that for most (but not all) of the inter-bin cases described above, the Sd

I response to the pre-
scaled records is biased low because the earthquake records in the source bin are generally more 
"benign," in terms of the Sd

I response that they induce for a given Sa level, than those in the target 
bin.  In practice, it is typically the more "aggressive" target bin (often of larger Mw and shorter 
Rclose) that is of interest, for which fewer (if any) existing records are available. 
 
Unlike for the SDOF structures, the inter-bin pre-scaling induces practically no bias in the drift 
response of the MDOF structures.  Hence, the inter-bin scaling results for the MDOF structures 
are very similar to those for intra-bin scaling. 
 
 
10 Conclusions 
 
For a range of SDOF structures of different periods and strengths, as well as two MDOF 
structures of different strengths (one elastic), we have quantified the bias in nonlinear structural 
response induced by scaling input earthquake records to a target spectral acceleration level.  The 
bias is measured with respect to the response to un-scaled records that are naturally at the 
spectral acceleration of interest.  In the case of intra-bin scaling, these un-scaled records have, by 
definition, the same general characteristics (in terms of Mw, Rclose, etc.) as the records that are 
scaled.  In inter-bin scaling, on the other hand, the un-scaled records lie in a "target bin" with 
different characteristics than the "source bin" of earthquake records to scale.  Of course, in 
practice this target bin is devoid of records, but we assume that the inter-bin scaling results 
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presented here can be extrapolated to such cases.  The nonlinear structural response measures 
considered are inelastic spectral displacement for the SDOF structures, and inter-story and roof 
drift for the MDOF structures. 
 
The results of this study demonstrate that scaling earthquake records can introduce a bias in 
nonlinear structural response that increases with the degree of scaling.  As detailed in the 
preceding section, the magnitude of this bias depends on (i) the fundamental period of vibration 
of the structure, (ii) the overall strength of the structure, and (iii) the sensitivity of the nonlinear 
structural response to higher (than the first) modes of vibration.  The bias is also observed to 
depend on the characteristics (e.g., Mw, Rclose) of the earthquake records that are scaled.  In the 
case of inter-bin scaling, however, the characteristics of these "source records" mainly effects the 
bias (if any) introduced by first "pre-scaling" them such that their median spectral acceleration 
matches that of the target bin (e.g., as obtained from an attenuation relation).  Any additional bias 
induced by scaling to a target spectral acceleration level is observed to depend primarily on the 
characteristics of the target bin. 
 
The biases quantified in this study can be used to place limits on the amount scaling that is 
acceptable for comparable structures, once one has decided on a tolerable amount of bias.  
Alternatively, one could, in an approximate fashion, "correct" for a scaling-induced bias by using 
results like those presented in this paper. 
 
 
11 Future Work 
 
In this study the bias in nonlinear structural response induced by scaling is quantified as a 
function of the scale factor only, irrespective of whether it comes from scaling an earthquake 
record with a relatively small spectral acceleration (Sa) up to a moderate Sa level, for example, or 
a moderate Sa record to a high Sa level.  Whether it is necessary to distinguish between these two 
cases (as examples) deserves future consideration. 
 
Given that scaling to a spectral acceleration level can, in fact, introduce a bias in nonlinear 
structural response, other approaches to scaling are worthy of investigation.  If, for example, 
some measure of the shape of the elastic response spectrum at the target spectral acceleration 
level is considered, can the scaling-induced bias be reduced?  Can the effects of scaling be 
avoided altogether by instead interpolating (or extrapolating) the nonlinear structural responses 
to un-scaled earthquake records? 
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Tables A1-2.  Lists of the 73 earthquake records in "Bin I" (Mw=6.4-6.8, Rclose=0-15km), on the 
left, and "Bin II" (Mw=6.4-6.8, Rclose=15-30km), on the right. 
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Tables A3-4.  Lists of the 73 earthquake records in "Bin III" (Mw=6.4-6.8, Rclose=30-50km), on 
the left, and "Bin IV" (Mw=6.9-7.6, Rclose=0-15km), on the right. 
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Table A5-6.  Lists of the 73 earthquake records in "Bin V" (Mw=6.9-7.6, Rclose=15-30km), on the 
left, and "Bin VI" (Mw=6.9-7.6, Rclose=30-50km), on the right. 
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Figures A1-2.  Scatter plots of earthquake magnitude (Mw) versus closest source-to-site distance 
(Rclose) for the earthquake records in "Bin I" (Mw=6.4-6.8, Rclose=0-15km), on the top, and "Bin 
II" (Mw=6.4-6.8, Rclose=15-30km), on the bottom. 



 52

25

30

35

40

45

50

55

6.3 6.35 6.4 6.45 6.5 6.55 6.6 6.65 6.7 6.75 6.8

M

R
 (K

m
)

 
 
 

0

2

4

6

8

10

12

14

16

6.8 6.9 7 7.1 7.2 7.3 7.4 7.5 7.6 7.7

M

R
 (K

m
)

 
 
 
Figures A3-4.  Scatter plots of earthquake magnitude (Mw) versus closest source-to-site distance 
(Rclose) for the earthquake records in "Bin III" (Mw=6.4-6.8, Rclose=30-50km), on the top, and "Bin 
IV" (Mw=6.9-7.6, Rclose=0-15km), on the bottom. 
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Figures A5-6.  Scatter plots of earthquake magnitude (Mw) versus closest source-to-site distance 
(Rclose) for the earthquake records in "Bin V" (Mw=6.9-7.6, Rclose=15-30km), on the top, and "Bin 
VI" (Mw=6.9-7.6, Rclose=30-50km), on the bottom. 
 



 54

 
 

 
 

 
 

Figure A7.  Intra-bin scaling results for a bilinear SDOF structure of period T=1sec and strength 
reduction factor R=4 for the six Mw-Rclose bins of earthquake records considered.  The analogous 
results for the Near-Source Bin are shown in Figure 11 of the main text. 
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Figure A8.  Intra-bin scaling results for the Near-Source Bin and a bilinear SDOF structure of 
period T=1sec but strength reduction factors ranging from R=1 to 10.  The results for R=4 are the 
same as those shown in Figure 11 of the main text. 
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Figure A9(a).  Intra-bin scaling results for the Near-Source Bin and a bilinear SDOF structure 
with periods ranging from T=0.1sec to 2sec and a strength reduction factor of R=4.  The results 
for T=1sec are the same as those shown in Figure 11 of the main text. 
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Figure A9(b).  Intra-bin scaling results for the Near-Source Bin and a bilinear SDOF structure of 
period T=3sec or 4sec and a strength reduction factor of R=4.  The results for periods less than 
3sec are shown in Figure A9(a). 
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Figures A10-12.  Intra-bin scaling results for Bins I-III and the range of SDOF periods and 
strength reduction factors considered.  Note that the parameter "a" is found to equal unity for 
intra-bin scaling (and the SDOF structures), so a larger value of b translates to a larger bias for a 
given scale factor. 
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Figure A13-15.  Intra-bin scaling results for Bins IV-VI and the range of SDOF periods and 
strength reduction factors considered.  Note that the parameter "a" is found to equal unity for 
intra-bin scaling (and the SDOF structures), so a larger value of b translates to a larger bias for a 
given scale factor. 
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Figures A16-18.  Inter-bin scaling results for the Bin I (Mw=6.4-6.8, Rclose=0-15km) to Bin IV 
(Mw=6.9-7.6, Rclose=0-15km), the Bin II (Mw=6.4-6.8, Rclose=15-30km) to Bin IV, and the Bin V 
(Mw=6.9-7.6, Rclose=15-30km) to Bin IV scenarios.  The corresponding values of "b" are very 
similar to those observed for intra-bin scaling within the target bin (shown in Figure A13). 
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Figures A19-21.  Inter-bin scaling results for the Bin II (Mw=6.4-6.8, Rclose=15-30km) to Bin V 
(Mw=6.9-7.6, Rclose=15-30km), the Bin III (Mw=6.4-6.8, Rclose=30-50km) to Bin V, and the Bin 
VI (Mw=6.9-7.6, Rclose=30-50km) to Bin V scenarios.  The corresponding values of "b" are very 
similar to those observed for intra-bin scaling within the target bin (shown in Figure A14). 
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Figures A22-23.  Inter-bin scaling results for the Bin III (Mw=6.4-6.8, Rclose=30-50km) to Bin VI 
(Mw=6.9-7.6, Rclose=30-50km) and the Bin III to Bin I (Mw=6.4-6.8, Rclose=0-15km) scenarios.  
The corresponding values of "b" are very similar to those observed for intra-bin scaling within 
the target bin (shown in Figures A15 and A10, respectively). 
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Figure A24.  Intra-bin scaling results in terms of the peak inter-story drift ratios (θ i) at the 1st, 
3rd, 4th, 6th, 7th, and 9th stories of the elastic model of the 9-story building considered.  The results 
for the other 3 of the 9 stories are given in the main text (Figure 30). 
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Figure A25.  Intra-bin scaling results in terms of the peak inter-story drift ratios (θ i) at the 1st, 
3rd, 4th, 6th, 7th, and 9th stories of the ductile model of the 9-story building considered.  The results 
for the other 3 of the 9 stories are given in the main text (Figure 30). 
 



Post-Elastic Response of Structures to Synthetic Ground Motions 
 

By Paolo Bazzurro1, Brian Sjoberg1, and Nicolas Luco1 

 
Abstract 
 
When real recordings for a specific earthquake scenario are scarce, engineers often use synthetic 
records generated by seismologists as input to nonlinear dynamic analyses of both existing and 
new structures. This practice has sometimes generated concerns among practitioners regarding 
the accuracy of the nonlinear response obtained using simulated ground motions.  This article 
presents a case study where the issue of structural response accuracy is investigated for seven 
simulation techniques whose derived structural responses are statistically compared against the 
“correct” answer provided by real accelerograms. The example involves seven suites of synthetic 
records that emulate real ground motions recorded at 20 stations located within 20km from the 
Northridge fault rupture. The results show that six out of seven simulation methods appear to be 
biased, especially in the short period range, both in the linear elastic and in the nonlinear post-
elastic regimes.  The tendency of these synthetic records is to create linear responses that are 
more severe than those from the real counterparts in the short period range. This tendency is 
reversed in the nonlinear regime where responses from synthetic records in the same short period 
range tend to be less severe than those from real accelerograms. Synthetic records seem to be 
especially benign in relatively weak and stiff structures. Simulated records also tend to produce 
nonlinear responses that are less variable than those caused by real records in the short period 
range and more variable in the long period range. This discrepancy should be taken into 
consideration when using synthetic records for assessing, for example, the safety of a structure 
against collapse.  The results mentioned above were found to be stable to the sensitivity 
performed on different parameters and assumptions of the analyses.  It should be emphasized, 
however, that these conclusions were found from one case study only and their validity may not 
apply to other cases or to different simulation techniques. More research is needed to establish 
the range of applicability of these findings.  
 
1.0 Introduction 
 
Consideration of the post-elastic dynamic response of structures is of fundamental 
importance in earthquake engineering as most buildings are expected to deform beyond 
their linear elastic limit during intense ground shaking.  In recent years, the computation 
of a structure's dynamic inelastic response to an earthquake event has been done more 
frequently than ever before via time-history analysis.  Ideally, the input ground motions 
to such analyses are past recordings of earthquakes with similar characteristics (e.g. 
magnitude, distance, and fault mechanism) to the earthquake scenarios that dominate the 
seismic hazard at the structure's site.  Unfortunately, real recordings of ground motions 
with suitable characteristics are often scarce or non-existent.  This shortage of adequate 
ground motions has led to the engineering practice of modifying real accelerograms to 
meet a prescribed ground shaking intensity level or target elastic response spectrum.  
Techniques often used involve scaling the amplitude of real accelerograms or adjusting 
their frequency content to match a target spectrum.  The alternative to modifying real 
accelerograms is to use completely synthetic (also referred to as simulated) earthquake 
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time-histories, which are founded upon the basic physical principles controlling fault 
rupture and seismic wave propagation from source to site.  This study is concerned with 
this latter alternative and the effect that using simulated time-histories may have on 
seismic performance assessment. 
 
Like the practice of modifying real accelerograms by amplitude scaling or spectrum 
matching, the use of synthetic time histories has caused concern amongst some engineers.  
We interpret these concerns here as being twofold:  
 

• Simulated ground motion records may not produce, on average, the same 
nonlinear structural response as real ground motion recordings with the same 
nominal intensity.  If there were a systematic deviation (sometimes referred to 
here as bias for conciseness sake), then engineers may either not use simulated 
records or account for the bias in their seismic performance analyses when using 
synthetic rather than real recordings. 

• The record-to-record variability of nonlinear structural response produced by 
synthetic and real records with otherwise similar characteristics may not be 
comparable.  This variability has an impact on how likely extreme values of 
structural responses are and, therefore, on the estimates of probability of 
occurrence of extreme events such as collapse.  

 
We investigate these issues by comparing the nonlinear response statistics of nonlinear 
single-degree-of-freedom (SDOF) oscillators of different structural periods and yield 
strengths to both real and simulated records.  In particular, we consider one real ground 
motion dataset, whose response statistics are used as a benchmark, and seven synthetic 
ground motion datasets.  A direct comparison of response statistics is legitimate because 
the seven simulated datasets were developed to match the same earthquake and site 
conditions of the real recordings. 
 
2.0 Description of the Synthetic and Real Ground Motion Datasets 
 
The simulated ground motion time histories that are used here were originally developed 
as part of the PEER K201 project entitled “Ground Motions for the Treasure Island 
National Geotechnical Experimental Site”.  The K201 project compares elastic response 
spectral values from simulated ground motions with those from real recordings of past 
earthquakes for the purpose of validating various ground motion simulation methods.  
The following seismologists developed the synthetic time histories used in the K201 
project and in this project: 
 

1. Igor A. Beresnev2;. 
2. Douglas Dreger3;  
3. Alexander A. Gusev4 et al.; 
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3 Associate Professor of Geophysics, University of California, Berkeley. California. 
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4. Lawrence Hutchings5 et al. (denoted as LLNL hereafter); 
5. Walter Silva6;  
6. Paul G. Somerville7 et al. (denoted as URS hereafter); 
7. Yuehua Zeng8. 

 
Note that both Dreger and Zeng, based on the preliminary results from this study, updated 
their dataset of synthetic motions with respect to those used in the K201 Project.  
 
The seven datasets contain simulated time histories that are intended to reproduce those 
generated by the M6.7 1994 Northridge earthquake at 20 near-field stations that ranged in 
distance from 5.2km to 19.1km (Table 1).  An eighth dataset contains the real recordings 
at the same 20 stations.  Here we used only the horizontal components, whereas the 
vertical components are neglected. Table 2 summarizes the details about the time 
histories provided by each seismologist.  In four (i.e., Dreger, Gusev, URS, and Zeng) out 
of seven cases, the simulated recordings consisted of both horizontal component time 
histories for each of the 20 stations.  Two horizontal components were also available in 
the LLNL dataset but only for 12 stations.  Beresnev and Silva did not provide separate 
horizontal components but rather a single “average” time history of horizontal ground 
motion at each one of the 20 stations.  Therefore, a total of 224 synthetic horizontal 
ground motion time histories were considered as input to the nonlinear dynamic analyses 
carried out in this study.   
 
As discussed above, the available suite of simulated input time histories is partially 
incomplete and somewhat heterogeneous.  Despite this drawback, we intended as much 
as possible to enable a legitimate comparison of nonlinear responses that encompasses all 
seven datasets. To achieve this goal, for five datasets (i.e., Dreger, Gusev, LLNL, URS, 
and Zeng) we computed the spectral responses for the two horizontal components at each 
station and combined them into an “average” spectral response.  For the remaining two 
datasets (i.e., Beresnev and Silva) we computed the responses to the “average” time 
history provided by the developers.  In the former case the average response was 
calculated using two different averaging methods, the geometric mean and the root-mean-
square (rms) value.  For nearly all subsequent comparative analyses, the rms value was 
used to describe the station-by-station structural response for each synthetic ground 
motion dataset that contained separate components.  This alternative was selected 
because it is consistent with the methodology used in the generation of the average 
ground motion time histories.  The geometric mean value was used only secondarily to 
assess whether the trends in the nonlinear responses observed for each modeler would be 
dependent on the particular component averaging method.  The comparison of the results 
obtained with the two averaging methods is reported in Section 4.2. 
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With reference to Table 1, the usable bandwidth of the real records exceeded 0.1 – 4.0 
seconds for all but three recording stations (KAT, LA0, PAR), since the highpass (HP) 
and lowpass (LP) corner frequencies of the causal Butterworth filter used to process such 
records were less than 0.2 Hz and greater than 12.5 Hz, respectively9.  The usable 
bandwidth of a record processed using a causal Butterworth 4-pole filter, such as that 
used for these records, is recommended to be between 1/1.25 times the LP frequency and 
1.25 times the HP frequency due to the significant reduction imposed by the filter in the 
neighborhood of the corner frequencies (Abrahamson and Silva, 1997, PEER 
documentation – http://peer.berkeley.edu/smcat/process.html).  Therefore, for records 
filtered with a high-pass frequency of 0.2 Hz, caution must be exercised when 
investigating the response of a structure with a period greater than 1/(0.2 Hz * 1.25) = 
4.0s.  The reader should also keep in mind that the recommendation on the usable 
bandwidth reported above (and below for the synthetic records) was provided with no 
specific attention to the use of such records as input to structural nonlinear dynamic 
analyses.  The effective structural period of vibration may significantly lengthen outside 
the suggested usable bandwidth of the record as the damage severity progresses.  In this 
study we have not made any attempt to revisit the adequacy of such recommendations in 
this light. This topic deserves further research that is beyond the scope of this study. 
 
For the synthetic records, we limited our analyses to the usable bandwidth specified by 
the developers to ensure that nonlinear response statistics were computed only within the 
intended range of applicability of the ground motion simulation model.  Table 2 lists the 
usable period range of each model, as well as a summary of the type and number of 
records provided in each dataset that were discussed earlier.  Note that all models are 
usable up to 4.0s with the exception of the LLNL model, which is limited to 2.0s.  For the 
interested readers, a brief description of the methodology used by each group of 
seismologists to generate the synthetic time-histories is given in Appendix A.  These 
descriptions were provided directly by the authors of each model. 
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Station Name Symbol
Distance

(km) HW/FW
HP 
(Hz) 

LP 
(Hz) 

Arleta ARL 8.66 NU 0.12 23 
Canoga Park, Topanga Canyon CNP 14.70 HW 0.05 30 
Jensen Filter Plant JEN 5.43 HW 0.08 unknown
Simi Valley - Katherine KAT 13.42 HW 0.5 30 
LA 00 LA0 19.07 NU 0.3 unknown
LA Dam LDM 5.92 HW 0.1 unknown
Newhall NWH 5.92 FW 0.12 23 
Pacoima Dam PAC 7.01 FW 0.16 23 
Pardee - SCE PAR 7.46 FW 0.5 20 
Pacoima Kagel Canyon PKC 7.26 NU 0.14 23 
Sun Valley - Roscoe RO3 10.05 NU 0.1 30 
Rinaldi Receiving Station RRS 6.50 HW unknown unknown
Sylmar Converter Stn. East SCE 5.19 HW unknown unknown
Sylmar Converter Stn.  SCS 5.35 HW unknown unknown
Sepulveda VA SPV 8.44 HW 0.1 unknown
Santa Susana SSU 16.74 HW 0.2 unknown
Northridge - Saticoy STC 12.09 HW 0.1 30 
Sylmar Hospital SYL 5.30 FW 0.12 23 
Tarzana - Cedar Hill TAR 15.60 NU 0.1 23 
Newhall - W. Pico Canyon WPI 5.48 NU 0.05 30 

 
Table 1: List of the twenty recording stations for the 1994 Northridge earthquake accelerograms, including 
the Butterworth filter corner frequencies for the recorded accelerograms.  Legend: HW = hanging wall, FW 
= foot wall, NU = neutral, HP = high-pass corner frequency, LP = low-pass corner frequency. 

 
 
 

Modeler Components # Records Usable Bandwidth 
Beresnev Average 20 0.1s – 4.0s 
Dreger Separate 40 0.1s – 4.0s 
Gusev Separate 40 0.1s – 4.0s 
LLNL Separate 24 0.1s – 2.0s 
Silva Average 20 0.1s – 4.0s 
URS Separate 40 0.1s – 4.0s 
Zeng Separate 40 0.1s – 4.0s 
Real Separate 40 0.1s – 4.0s 

Table 2: Summary of synthetic ground motion datasets. 



3.0 Description of the SDOF Structures 
 
The eight datasets of records described in the previous section were applied to 46 5%-
damped nonlinear Single-Degree-of-Freedom (SDOF) oscillators with natural periods 
ranging from 0.1 to 4.0s.  The backbone force-deformation curve was bilinear with 2% 
post-yield hardening and a hysteretic rule that had no degradation of either strength or 
stiffness.  The selected period range, which encompasses the fundamental periods of 
typical engineering structures, is, with the exception of the LLNL dataset, within the 
usable bandwidth of each ground motion model (see Table 2).  
 
To ensure a response that ranged from mildly inelastic to severely inelastic, we selected 
five “strength” levels for the SDOF system at each oscillator period.  In addition, we also 
included in this study the elastic response case both for completeness and for checking 
purposes.  The nominal strength levels of the SDOF oscillators were set as a fraction of 
peak elastic base shear, which follows the common seismic design practice of reducing 
the structural strength for a ductile structure by a force reduction factor, R.  The five 
selected strength levels are characterized by R values equal to two (mildly inelastic), 
four, six, eight, and ten (severely inelastic). Note that the level of nonlinear responses 
imply, for some SDOF systems, very large ductility values that, of course, may not be 
physically attainable by all real structures. 
 
The peak value of the elastic base shear, or equivalently the peak elastic deformation, 
experienced by an elastic structure is, however, a ground-motion-specific quantity.  
Therefore, one can achieve the same value of R either a) for each record in a dataset or b) 
on an average sense for all the records in the same dataset.   
 
In the former case the same target R value can be achieved by varying the yield 
displacement of the structure, dy, from record to record.  More precisely, for each record 
dy needs to be set equal to the peak elastic displacement for that record divided by the 
desired value of R (see Figure 1).  This case is hereinafter referred to as “constant-R” 
case.  In this set of analyses each record is effectively applied to SDOF systems with 
slightly different strength characteristics.   
 
In the latter case, the same R value can be obtained in multiple ways. In this study we 
kept constant the yield strength, dy, of the oscillator for all the records and we set its value 
equal to the median peak elastic response displacement across all the records in the real 
dataset divided by R.  This is, of course, equivalent to keeping the yield strength, Fy, 
constant.  In this way the same structure, with an “average” strength, that varies with any 
given period and R-value, is used to evaluate the nonlinear response to all the records.  
This case is hereinafter referred to as “constant-strength” (or constant-Fy) case. 
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Figure 1: Schematic of SDOF structure and yield strength definition.  The quantity α is the post-yield 
hardening here set equal to 2%. The yield strength in the figure is called Fy  in this study. 

 
 
In this study, we considered both constant-R and constant-strength analyses.  The 
constant-strength case was selected as the primary focus of our investigations because of 
its simpler physical interpretation.  For conciseness, we often neglected to remind the 
reader that the results were obtained using the constant-strength alternative.  The results 
found using the alternative constant-R approach are, however, clearly marked.  Nonlinear 
response spectra from both sets of analyses are briefly compared and contrasted in 
Section 4.4. 



4.0 Results 
 
The comparison of SDOF responses generated using different datasets is conveniently 
accomplished using the median (calculated as the geometric mean) and a standard 
deviation (of the natural logarithms of the data) of the 5%-damped elastic and inelastic 
spectra computed for the 20 stations (12 for the LLNL case).  The spectra for each station 
are calculated for the “average” horizontal component in the sense explained in Section 2.  
It is legitimate to use statistics across all the stations in this context because they are all 
within 20 kilometers from the fault rupture (Table 1), which is a fairly tight distance 
range.   
 
Figure 2 shows the median elastic pseudo-acceleration spectrum (panel a) and 
corresponding standard deviations (panel b) across stations in log-log scale for each 
synthetic dataset as well as for the real record one.  Figure 3 displays the same results 
plotted as the ratio of the same quantities, that is the median in the top panel and the 
standard deviation in the bottom panel, for each synthetic model to the corresponding 
ones for the real dataset.  A ratio above unity, if statistically significant, means 
overestimation of the response by a model and below unity means underestimation10.  
 
From inspecting the graphs in the top panels of Figures 2 and 3, it is clear that the median 
spectral amplitudes and shapes of the response spectra for some of the seven simulated 
cases is quite different than the median response spectrum from the real recordings.  This 
amplitude difference can be large, especially in the short period range (up to about 80% 
at 0.1s). It is also interesting to note that only the model developed by Gusev provides a 
median elastic spectrum that is within ±20% of the median spectrum from the real 
Northridge records across the entire frequency range.  The LLNL model also is within 
±20% of the target for almost all its range of applicability, which has an upper bound of 
2s.  All the other models tend to overestimate by different amounts the elastic response of 
SDOF systems with periods below 0.3s and, with the exception of the models by URS 
and Zeng, to underestimate it above 0.3s.  The URS and Zeng models seem to provide 
elastic responses even at periods larger than 0.3s that are, always in an average sense, 
either equally or more severe than those of the real records.  Finally, any trend across 
period in the median ratios shown in Figure 3 that departs from a horizontal line suggests 
that the elastic spectra generated by the synthetic model have, on average, a different 
shape than those produce by nature, at least in this Northridge earthquake test case. 
 

                                                 
10 In Figure 1 we have used pseudo-acceleration to produce the elastic spectra because most of the 
engineers are accustomed to seeing spectra in acceleration terms rather than in displacement terms. All the 
figures that follow, however, use displacement response spectra because displacement is the quantity most 
widely use when dealing with post-elastic response of structures.  



 

 
 

Figure 2: Median (top panel) and standard deviation (bottom panel) of the 5%-damped elastic pseudo-
acceleration response spectra for the “average” horizontal component computed for all the available 
stations (12 for the LLNL model and 20 in the other seven cases). Note: 981 cm/s/s is equal to one g. 
 
 



Note that the dispersion in the record-to-record ratio of inelastic spectra (not shown here) 
decreases with increasing period.  The values of the COV vary with the model and they 
range between 0.3 at 4s to more than 1.0 at 0.1s.  Hence, given these COV values and a 
sample size of 20 records per model (12 for the LLNL one), we can state that the elastic 
spectral ratios in Figure 3a are different than one with 90% confidence either in the long 
period range, or in the short period range, or in both for all seven models but Gusev’s. 
More precisely, the period ranges where the ratios significantly differ from one are 
approximately above 0.6s for Beresnev, above 0.3s and below 0.15s for Dreger, above 
1.5s for LLNL, between 0.8s and 1.1s and below 0.15s for Silva, above 3s and below 
0.15s for URS, and above 1.5s for Zeng.   
 
The inspection of the bottom panel of Figures 2 and 3 shows that none of the synthetic 
models provide a dispersion measure of the linear responses that is within ±20% of those 
from the real ones across the entire frequency range. The standard deviation across 
frequency from all the models, with the exception of the LLNL one for periods below 
0.8s, is within ±40% with only minor departures from it.  The LLNL model, on the other 
hand, seems in this case to provide records that produce significantly more variable 
elastic responses in the short period range than those from nature.  Recall, however, that 
the statistics for the LLNL model are based on 12 records only and not 20 like in the 
other cases. 
 
We presented here a short summary of the elastic results, which were more thoroughly 
investigated in the PEER K201 Treasure Island project, only to set the stage for the post-
elastic nonlinear results that are the core of this study.  The differences in the elastic 
response between the simulated and real records have an influence on the nonlinear 
response statistics at all strength levels.  This is apparent from Figure 4, which presents 
the ratio of the medians and standard deviations of the inelastic displacement response 
spectra for the R=2 case.  Note that for all the figures that relate to nonlinear post-elastic 
responses we measure the response in terms of spectral displacement rather than pseudo-
spectral acceleration as we did in the linear elastic case. The spectral ratios displayed in 
Figure 3, of course, are not affected by which one of these two variables is used for the 
spectra.  The signature of the elastic results in Figure 3 is obvious in the post-elastic 
ratios displayed in Figure 4.  The trend of the ratios for R=1 and R=2 for each modeler 
are very similar.  A similar statement, although less strong due to the increase in the 
record-to-record response variability for larger values of R, can be made for the more 
severely nonlinear cases.   
 
A convenient way of investigating the effects of each modeling technique above and 
beyond the elastic regime is to normalize the nonlinear displacement response spectra 
generated for a given value of R (greater than one) by the corresponding elastic spectra 
obtained using the same dataset of synthetic records.  We will refer to this ratio of 
inelastic-to-elastic spectra as C, that is: 
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Figure 3: Ratio of the medians (top panel) and standard deviations (bottom panel) of the 5%-damped linear 
elastic displacement response spectra of each synthetic model to the corresponding quantity computed for 
the real record dataset. 

 



Of course, C is a function of the oscillator period, T. In addition, given that we are 
comparing the results from synthetic datasets with the target ones from the real 
recordings, it is useful to divide the quantity C by the inelastic-to-elastic spectra ratio 
obtained for the real records, Creal. The quantity C (or Creal in the case of real records) is 
the response measure for which median values and standard deviations across the twenty 
recording stations (or twelve in the LLNL case) are computed. Also, for conciseness of 
notation, the ratio of C/ Creal is sometime called qc in the sections that follow. Namely: 
 

,
real

C C
Cq =          (2) 

 
The value of C is, on average, greater than one only for short periods (the shorter the 
period, the larger the average value of C), whereas it tends to one for moderate to longer 
periods (e.g., greater or equal to 1.0s).  This is essentially the well-known equal 
displacement rule that was introduced by Veletsos and Newmark (1960) some forty years 
ago.  The quantity C can be interpreted as a correction to the linear maximum elastic 
displacement to obtain the maximum nonlinear displacement of an SDOF oscillator.   
 
In the following sections we will present the differences (as ratios) in C between 
synthetic and real ground motions.  We will also briefly discuss the influence of the 
component averaging method and the impact of the yield strength definition on the 
observed results.  Finally, we will report some results that were obtained by replacing the 
spectral displacement as the nonlinear structural response measure with energy-based 
quantities, such as the input energy and the absorbed energy. 



 

 
 
Figure 4: Ratio of the medians (top panel) and standard deviations (bottom panel) of the 5%-damped 
nonlinear response spectra (R=2) of each synthetic model to the corresponding quantity computed for the 
real record dataset. 
 
 



4.1  Nonlinear Structural Response to Simulated and Real Ground Motions 
 
The median value11, Ĉ, of the inelastic-to-elastic spectral ratio C for each of the seven 
synthetic datasets divided by the median value, Ĉreal, of C for the real records is plotted 
across the period range of 0.1s to 4.0s in panel (a) of Figures 5 to 7.  The bottom panel 
shows the ratio of the standard deviation of C divided by the standard deviation of Creal.  
Attention is focused on the C/Creal results for strength levels R = 2, 4 and 10.  The results 
for strength levels R = 6 and 8 are similar to those for R=10 and, therefore, they are not 
shown here.  
 
4.1.2 Median responses 
 
A deviation above unity of any of the Ĉ/Ĉreal curves in the top panel of Figures 5 to 7 
indicates that, median elastic response for a simulated and the real record datasets being 
equal, the synthetic records in that dataset tend to produce, on average, systematically 
larger nonlinear spectral displacements than those by real records.  Conversely, 
deviations below unity indicate that the simulated records tend to be, on average, more 
benign in producing nonlinear responses than those in nature.  It is emphasized here that 
the equality of the linear responses generated by simulated and real records is postulated 
here only as a tool to compare the effectiveness of synthetic and real records in creating 
nonlinear responses. From Figure 3a, however, it is clear that this equality is often not 
statistically achieved for some of the seven simulated datasets at some period ranges. In 
the rest of this section we will assume that this equality of linear responses holds. 
 
From the top panel of Figures 5 to 7 it is apparent that the difference in the ratio of 
median nonlinear to elastic response between the synthetic datasets and the real records is 
more period-dependent for some ground motion models than for others.  For example, the 
Ĉ/Ĉreal results for R=2 in Figure 5a show that all the models provide nonlinear responses 
that are within ±20% from those of the real ones for all periods larger than about 0.3s. 
For periods shorter than 0.3s the records generated by the models by Beresnev, Dreger, 
LLNL, and, at some periods, Silva tend to be significantly less aggressive than real 
records. Conversely, the model by Zeng seems to create records that are, on average, 
more damaging.  As before, the model by Gusev, being always within ±10% of the target, 
appears to be the more accurate one overall.  For R=4 and R=10 in Figures 6 and 7, the 
models by Gusev, URS, and Zeng produce nonlinear responses that are statistically 
closest to those created by real records. The other four models provide similarly accurate 
results only for long periods, while in the region of shorter periods they seem to generate 
significantly less severe responses than their real counterparts.  These systematically 
benign responses are more prominent at shorter periods for a given R, and in general at 
all periods for larger R values.  A summary of the peak and average values of Ĉ/Ĉreal 
across the period range is given in Table 3, along with the structural periods at which the 
peak values occur.   
 
 
                                                 
11  The median value was computed as the geometric mean, i.e., the exponential of the mean of the natural 
log of the ratios across all the available stations (i.e., 12 for the LLNL case and 20 for all other cases). 



 
 

 
 

Figure 5: Statistics of the inelastic-to-elastic spectral ratio, C, for the seven synthetic datasets, normalized 
by the corresponding quantity, Creal, obtained from the suite of real records, for a level of inelasticity 
defined by R=2.  The top panel presents the ratio of the medians while the bottom panel displays the ratio 
of the standard deviations. 



 

 
 

Figure 6: Statistics of the inelastic-to-elastic spectral ratio, C, for the seven synthetic datasets, normalized 
by the corresponding quantity, Creal, obtained from the suite of real records, for a level of inelasticity 
defined by R=4.  The top panel presents the ratio of the medians while the bottom panel displays the ratio 
of the standard deviations. 



 

 
 

Figure 7: Statistics of the inelastic-to-elastic spectral ratio, C, for the seven synthetic datasets, normalized 
by the corresponding quantity, Creal, obtained from the suite of real records, for a level of inelasticity 
defined by R=10.  The top panel presents the ratio of the medians while the bottom panel displays the ratio 
of the standard deviations. 
 



 R = 2 R = 4 R = 10 
Model Min Tmin Max Tmax Avg Min Tmin Max Tmax Avg Min Tmin Max Tmax Avg 

Beresnev 0.58 0.11 1.15 2.32 0.90 0.38 0.11 1.16 4.00 0.77 0.40 0.11 1.41 4.00 0.78 
Dreger 0.53 0.10 1.06 1.44 0.88 0.30 0.11 1.07 1.44 0.78 0.32 0.11 1.28 0.90 0.86 
Gusev 0.88 0.46 1.07 0.35 0.97 0.78 0.26 1.13 1.44 0.93 0.81 1.92 1.17 0.38 0.98 
LLNL 0.60 0.10 1.07 1.31 0.88 0.39 0.11 1.00 2.00 0.70 0.45 0.21 1.02 2.00 0.62 
Silva 0.74 0.12 1.14 2.32 0.95 0.42 0.12 1.07 0.90 0.82 0.42 0.12 1.12 0.90 0.81 
URS 0.87 0.67 1.15 0.19 1.00 0.69 0.12 1.17 2.55 0.95 0.69 0.12 1.32 2.55 1.04 
Zeng 0.90 0.46 1.41 0.10 1.04 0.81 0.24 1.20 1.44 0.99 0.81 0.12 1.26 1.19 1.02 

Table 3: Peak and average values of Ĉ/Ĉreal for strength levels R = 2, 4 and 10.  The table shows also the 
structural periods at which each peak value of Ĉ/Ĉreal occurred. 

 
To determine the statistical significance of the observed qc=Ĉ/Ĉreal, the 2-sided 90% t-
student confidence limits for qc were calculated across the period range at each strength 
level for each ground motion model.  At oscillator periods where the upper and lower 
confidence limits do not bracket the line Ĉ/Ĉreal = 1, the median nonlinear spectral 
displacement for the synthetic dataset is statistically biased at a 10% level of significance.  
Figures 8 to 14 show the confidence limits for each ground motion model at the three key 
structural strength levels.  As anticipated, only the model by Gusev seems to be unbiased 
across the whole spectrum of periods regardless of the level of nonlinearity. In general, 
with the exception of the two by Beresnev and Dreger, all the models are unbiased for 
R=2 across the entire period range.  All the models but Gusev’s are biased at some 
periods for R=4 and R=10.  The amount of bias is larger for larger R values and for 
shorter periods. In these cases most of the synthetic models create records that are more 
benign than real ones. The model by URS, on the other hand, is the only one that creates 
records that produce statistically more severe inelastic responses at the R=10 level than 
those in nature for SDOF oscillators of 0.8s and longer natural period. 
 
The average deficiency of the nonlinear responses generated by some of these synthetic 
ground motions at short periods (e.g., below 0.3s) is likely due to a systematic difference 
in that period range in the average shape of the linear response spectra generated by 
synthetic and by real records. Figure 2a shows, in fact, that some of the models, such as 
Beresnev and Dreger, on average, produce linear pseudo-acceleration spectra that are 
either flat or falling instead of climbing with increasing periods below 0.3s like the 
spectrum from real records does.  The difference in spectral shape is more evident in 
Figure 3a, which shows the ratio of the elastic spectra for the synthetic models and the 
real ones.  Given this discrepancy, it is not surprising that when the effective period of the 
oscillator lengthens because of the nonlinear behavior of the oscillator these records 
become less aggressive than real ones.  
 



 
Figure 8: Upper and lower 90% confidence limits for qc for constant-strength levels R = 2, 4 and 10 for the 
Beresnev model.  The ratio is significantly different than one at those periods where the unity line is not 
bracketed by the lower and upper bounds of the confidence band.  

 

 
Figure 9: Upper and lower 90% confidence limits for qc for constant-strength levels R = 2, 4 and 10 for the 
Dreger model.  The ratio is significantly different than one at those periods where the unity line is not 
bracketed by the lower and upper bounds of the confidence band. 



 
Figure 10: Upper and lower 90% confidence limits for qc for constant-strength levels R = 2, 4 and 10 for 
the Gusev model.  The ratio is significantly different than one at those periods where the unity line is not 
bracketed by the lower and upper bounds of the confidence band. 

 

 
Figure 11: Upper and lower 90% confidence limits for qc for constant-strength levels R = 2, 4 and 10 for 
the LLNL model.  The ratio is significantly different than one at those periods where the unity line is not 
bracketed by the lower and upper bounds of the confidence band. 



 
Figure 12: Upper and lower 90% confidence limits for qc for constant-strength levels R = 2, 4 and 10 for 
the Silva model.  The ratio is significantly different than one at those periods where the unity line is not 
bracketed by the lower and upper bounds of the confidence band. 

 
Figure 13: Upper and lower 90% confidence limits for qc for constant-strength levels R = 2, 4 and 10 for 
the URS model.  The ratio is significantly different than one at those periods where the unity line is not 
bracketed by the lower and upper bounds of the confidence band. 



 
Figure 14: Upper and lower 90% confidence limits for qc for constant-strength levels R = 2, 4 and 10 for 
the Zeng model.  The ratio is significantly different than one at those periods where the unity line is not 
bracketed by the lower and upper bounds of the confidence band. 

 
4.1.2 Record-to-record nonlinear response variability  
 
The bottom panel of Figures 5 to 7 shows the relative dispersion of nonlinear (still 
normalized by elastic) responses to synthetic records and to real records.  As before, a 
line above unity means relatively more record-to-record variability produced by synthetic 
records whereas the opposite is true for a line below unity.  The relative variability of 
nonlinear responses to synthetic and real records is, again, model-dependent and varies 
with the level of response severity.  For R=2 most of the models, especially those from 
Beresnev, Dreger, and LLNL, seem to underestimate the record-to-record variability of 
the response from real records, in particular at shorter periods.  For the more severe 
responses (R=4 and R=10) the general tendency of most of the models is to 
underestimate the response variability for periods ranging between 0.3s and 0.8s and to 
overestimate it between 0.8s and about 3s.  A summary of statistics of σc/(σc)real  across 
the period range is given in Table 4.  
 
 
 
 



 
 R = 2 R = 4 R = 10 

Model Min Tmin Max Tmax Avg Min Tmin Max Tmax Avg Min Tmin Max Tmax Avg 
Beresnev 0.38 3.09 1.09 0.50 0.76 0.54 0.67 1.76 2.00 0.90 0.49 0.38 3.71 4.00 1.04 
Dreger 0.31 0.81 1.05 0.30 0.75 0.45 0.67 1.31 2.00 0.85 0.40 0.42 1.32 1.31 0.87 
Gusev 0.67 0.74 1.33 1.44 1.00 0.75 0.67 1.55 1.44 0.98 0.64 2.11 1.68 1.31 0.94 
LLNL 0.07 1.92 1.04 1.19 0.69 0.28 0.67 1.37 0.11 0.77 0.31 0.67 1.30 0.10 0.69 
Silva 0.69 2.32 1.50 1.74 1.02 0.80 0.38 1.67 1.31 1.15 0.69 2.11 1.78 1.31 1.14 
URS 0.59 4.00 1.58 2.81 1.04 0.69 0.67 1.95 2.00 1.08 0.57 0.67 1.46 4.00 0.93 
Zeng 0.61 0.16 1.59 0.74 1.01 0.73 0.67 2.01 2.00 1.15 0.72 0.56 1.81 1.31 1.13 

Table 4: Peak and average values of σc/(σc)real , which is the ratio of the standard deviation of C for 
simulated records to the standard deviation of Creal.  The values are reported for strength levels R = 2, 4 and 
10.  Included are also the SDOF periods at which each peak value of σc/(σc)real occurred. 

 
If synthetic records tend to generate less variable nonlinear responses than real ones, then 
simple statistical considerations show that an analyst would be better off using them 
rather than real ones to estimate the median nonlinear response of a structure12 for a given 
earthquake scenario.  From a practical standpoint, the same accuracy would be achieved 
with fewer runs with simulated rather than real records as input. However, if an engineer 
seeks to design a new structure or assess the safety of an existing one against collapse, for 
example, the use of simulated records that tend to generate less variable responses would 
underestimate the likelihood of extreme response values and, therefore, the chances of 
collapse.  This shortcoming should be taken into consideration. 
 

                                                 
12 This statement assumes that the synthetic ground motions generate statistically unbiased responses. If 
that is untrue, like in a few cases among those considered here, the bias needs to be corrected when using 
such records.  



 

4.2 Influence of Response Component Averaging Method 
 
To determine if using the geometric mean of the response to both horizontal components 
at each station rather than the root-mean-square, as done so far, would result in different 
trends in the results, we investigated the following ratio: 
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where ĈRMS and Ĉgeometric are the median values of the inelastic-to-elastic spectral ratio C 
across the available stations computed using the two different averaging schemes.  The 
averaging method is pertinent to only five of the seven simulation models: Dreger, 
Gusev, LLNL, URS, and Zeng. Beresnev and Silva provided only one “average” ground 
motion component per station and, therefore, the results for their models will not be 
affected by the averaging technique.   
 
Using simple mathematics, it can be shown that the ratio of rms to geometric average of 
nonlinear responses divided by their elastic counterparts is almost always greater than 
one and that it tends to one for long periods.  This trend is confirmed in Figure 15, which 
shows qavg computed for a constant-strength level R = 4 for the real records and for each 
of the five synthetic datasets mentioned above.  Therefore, the effect of using the 
geometric mean rather than the rms mean is expected to have a noticeable effect only in 
the short period range. 
 
Replacing the rms mean with the geometric mean when computing the inelastic-to-elastic 
median spectral ratios makes these ratios slightly closer to unity in the short period range 
than the ratios shown in top panels of Figures 5 to 7.  The effect of using the geometric 
instead of the rms mean decreases with increasing R value such that this difference 
almost disappears for R=10.  Figure 16, which is analogous to top panel of Figure 5, 
shows the case where the effect of the averaging technique is largest13. Note that at 
periods above approximately 0.5s the component averaging technique has no effect on 
the assessment of the median response at all the structural strengths considered here. 
 
 

                                                 
13  Beresnev and Silva provided only one component per station. The curves for the Beresnev and Silva 
models in Figures 4 and 15 are different because the different averaging technique affects the computation 
of the normalizing factor that uses two components of the real records. 



 
Figure 15: Ratio qavg based on constant-strength analysis (R = 4).  See Eq. (3) for the definition of qavg.  
Note that only those datasets that contained component pairs of records at each recording station are shown.   

 
Figure 16: Ratio of the medians of the inelastic-to-elastic spectral ratio, C, for the seven synthetic datasets 
normalized by the corresponding quantity, Creal, obtained from the suite of real records. Both C and Creal 
were computed for a level of inelasticity defined by R=2 using the geometric mean of the responses to the 
two horizontal components, when available.  The difference between averaging techniques decreases with 
increasing period and increasing R. This figure should be inspected in conjunction with the top panel of 
Figure 5. 



4.3 Influence of Yield Strength Definition 
 
All the results shown so far were computed for SDOF systems with constant strength (or 
constant yield force, Fy) for all the records.  Therefore, as mentioned earlier, the value of 
R referred to above applies only in an average sense for all the records and not 
necessarily for each single record.  Alternatively, we could keep a constant-R for all the 
records by appropriately modifying Fy for each one. The choice of preferring a constant-
strength to a constant-R approach is, of course, entirely subjective.  Other analysts could 
prefer the use of the constant-R approach instead.  To assess whether the results that were 
shown so far still hold for the constant-R case, we investigated the statistical differences 
in the two following quantities, qc and q’c: 
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The graphs of qc for R=2, 4, and 10 were shown in the top panels of Figures 5 to 7.  The 
computed values of the ratio q’c/qc are shown in Figure 17a, 17b, and 17c for R = 2, 4 and 
10, respectively.  This ratio, which is clearly both model-dependent and R-dependent, can 
be significantly different than unity.  This translates into potentially different systematic 
differences between nonlinear responses generated by the real dataset and the synthetic 
ones if the constant-R definition rather than the constant-strength definition is adopted.   

 
Figure 17a: Trend of the q’c/qc  curves computed for R=2 for the seven simulation models.  Note that q’c 
refers to the constant-R results while qc refers to the constant-strength results that have been discussed 
throughout the report.  See Eq. (4) for the definitions of qc and q’c. 
 



 
Figure 17b: Trend of the q’c/qc  curves computed for R=4 for the seven simulation models.  Note that q’c 
refers to the constant-R results while qc refers to the constant-strength results that have been discussed 
throughout the report.  See Eq. (4) for the definitions of qc and q’c. 
 

 
Figure 17c: Trend of the q’c/qc  curves computed for R=10 for the seven simulation models.  Note that q’c 
refers to the constant-R results while qc refers to the constant-strength results that have been discussed 
throughout the report.  See Eq. (4) for the definitions of qc and q’c. 

 



To quantify the extent of such differences, if any, we repeated all the nonlinear response 
analyses using the constant-R definition for all the datasets, both real and synthetics.  The 
effect on the confidence limits for q’c of using this alternative R definition is shown in 
Figures 18 to 24.  These graphs should be compared with those in Figures 8 to 14. From 
inspecting this second batch of plots one can conclude that none of the conclusions that 
applied to the constant-strength approach are significantly affected by the adoption of the 
constant-R approach to the yield strength definition.  The major differences affect the 
model by LLNL, that becomes unbiased for R=2 and 4 across the entire period range, and 
both the models by Silva and Zeng, whose amounts of bias are slightly worsened.  
 
 
 
 

 
Figure 18: Upper and lower 90% confidence limits for q’c for constant-strength levels R = 2, 4 and 10 for 
the Beresnev model.  The ratio is significantly different than one at those periods where the unity line is not 
bracketed by the lower and upper bounds of the confidence band.  Compare these confidence limits with 
those computed using the constant-strength approach (Figure 8). 



 
Figure 19: Upper and lower 90% confidence limits for q’c for constant-strength levels R = 2, 4 and 10 for 
the Dreger model.  The ratio is significantly different than one at those periods where the unity line is not 
bracketed by the lower and upper bounds of the confidence band.  Compare these confidence limits with 
those computed using the constant-strength approach (Figure 9). 

 
Figure 20: Upper and lower 90% confidence limits for q’c for constant-strength levels R = 2, 4 and 10 for 
the Gusev model.  The ratio is significantly different than one at those periods where the unity line is not 
bracketed by the lower and upper bounds of the confidence band.  Compare these confidence limits with 
those computed using the constant-strength approach (Figure 10).   



 
Figure 21: Upper and lower 90% confidence limits for q’c for constant-strength levels R = 2, 4 and 10 for 
the LLNL model.  The ratio is significantly different than one at those periods where the unity line is not 
bracketed by the lower and upper bounds of the confidence band.  Compare these confidence limits with 
those computed using the constant-strength approach (Figure 11). 

 
Figure 22: Upper and lower 90% confidence limits for q’c for constant-strength levels R = 2, 4 and 10 for 
the Silva model.  The ratio is significantly different than one at those periods where the unity line is not 
bracketed by the lower and upper bounds of the confidence band.  Compare these confidence limits with 
those computed using the constant-strength approach (Figure 12).  



 
Figure 23: Upper and lower 90% confidence limits for q’c for constant-strength levels R = 2, 4 and 10 for 
the URS model.  The ratio is significantly different than one at those periods where the unity line is not 
bracketed by the lower and upper bounds of the confidence band.  Compare these confidence limits with 
those computed using the constant-strength approach (Figure 13).  

 
Figure 24: Upper and lower 90% confidence limits for q’c for constant-strength levels R = 2, 4 and 10 for 
the Zeng model.  The ratio is significantly different than one at those periods where the unity line is not 
bracketed by the lower and upper bounds of the confidence band.  Compare these confidence limits with 
those computed using the constant-strength approach (Figure 14).  



4.4 Effects on Nonlinear Responses Measured by Energy-Based Parameters 
 
An alternative to quantifying the nonlinear dynamic response of a structure by a peak 
measure such as spectral displacement involves the use of a cumulative energy-based 
measure, such as input energy (Ei) or absorbed energy (Ea).  Some researchers prefer the 
use of cumulative rather than peak response measures because they are supposed to 
capture the effects of both strength and stiffness degradation and the ground motion 
duration.  These energy parameters are determined by integrating the equation of motion 
with respect to the relative structural displacement (u).  The energy balance form of the 
equation of motion is given by: 
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where ut is the total structural displacement, fs is the structural restoring force, ug is the 
ground displacement, m is the system mass and c is the system damping.  The first term 
in (5) is the absolute kinetic energy (Ek) at time t, the second term is the damping energy 
(Ed), the third term is the absorbed energy (Ea), and the right-hand side of (5) is the 
absolute input energy (Ei).  An alternative form of (5) may also derived in terms of the 
relative kinetic and input energy, which can differ significantly from their absolute 
counterparts for extremely long and short period structures (Uang and Bertero, 1988). In 
the period range considered here the difference between absolute and relative quantities is 
negligible. 
 
Before plunging into performing additional nonlinear dynamic analyses, we investigated 
the correlation between the response quantity used so far, namely the spectral 
displacement, Sd, and Ei or Ea to determine if an energy-based parameter is likely to 
provide additional insight into nonlinear response bias associated with the ground motion 
simulation techniques.  In this correlation study, we considered the equivalent velocity 
form of the two energy parameters.  The input energy-equivalent velocity (Vi) and 
absorbed energy-equivalent velocity (Va) were chosen because they are commonly used 
energy measures for which attenuation models have been developed (Lawson, 1996; 
Chou and Uang, 2000).  The equations for the energy-equivalent velocities are given by: 
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where m is the mass of the SDOF structure.  Note that in the case of elastic analysis, the 
absorbed energy-equivalent velocity (Va) converges to the pseudo-velocity of the SDOF 
system. 
 
 



 
(a) T = 0.1s 

 
(b) T = 1s 

 
(c ) T = 4s 

Figure 25: Correlation between spectral displacement and both absolute input energy-equivalent velocity 
(Vi) (figures on the left) and absorbed energy-equivalent velocity (Va) (figures on the right) for the twenty 
real records and constant-strength R = 10 at T = 0.1s, 1s, and 4s.  

 
The three figures on the left-hand side of Figure 25 show the relationship between 
spectral displacement and absolute Vi for the twenty real records and constant-strength R 
equal to 10 at a structural periods of 0.1s (Panel a), 1s (Panel b), and 4s (Panel c).  



Similar relationships between Sd and the absorbed energy-equivalent velocity, Va, are 
displayed on the right-hand side of the same figure. The lowest constant-strength 
corresponding to R=10 was chosen to ensure that each of the twenty records produced 
significant nonlinear response to avoid mixing elastic and inelastic behavior in the 
computed absorbed energy results.  It is apparent from Figure 25 that a strong linear 
relationship (i.e., correlation coefficients range from 0.84 to 0.92) exists between spectral 
displacement and each energy-equivalent velocity parameter. Hence, an investigation of 
nonlinear response bias associated with synthetic ground motion time histories using an 
energy-based parameter would most likely not bring any additional insights. One can 
conclude that the systematic differences between energy-based nonlinear responses 
computed by synthetic and real records are similar to those shown in the Figures 5 to 14. 
 
 
5.0 Inelastic Response Spectra for NGA14 Database and Related Software 
 
Developers of synthetic ground motions may have the need to test on their own whether 
the nonlinear responses of SDOF oscillators subject to simulated ground motions are in 
agreement with those produced by real records for the same earthquake scenario.  To help 
this effort we are going to compute the nonlinear displacement response spectra for 
R=2,4,6,8, and 10 for all the records in the soon-to-be-developed NGA database.  The 
horizontal components of this database are rotated into the two directions normal and 
parallel to the fault strike.  The spectra will be computed for 5%-damped nonlinear 
Single-Degree-of-Freedom (SDOF) oscillators with natural periods ranging from 0.1 to 
4.0s, a bilinear backbone force-deformation curve with 5% post-yield hardening15, and a 
hysteretic rule that has no degradation of either strength or stiffness. The nonlinear 
displacement response spectra will be provided in the same format as that used in the 
NGA project to store the elastic pseudo-acceleration response spectra for the same 
records. Also, we will provide a MATLAB subroutine to assist in the computation of 
nonlinear response spectra for additional records not included in this database.  
 
Both the nonlinear spectra and the MATLAB subroutine with instructions for its use will 
be provided to PEER immediately after the NGA database is made available to us. 
 
6.0 Conclusions 
 
This study has investigated whether ground motion simulation techniques produce 
nonlinear displacement response spectra that are statistically distinguishable from those 
created by real records.  The spectra were computed for nonlinear SDOF systems with 
bilinear backbone curves and no degrading stiffness or strength, a hardening ratio of 2%, 
and periods ranging from 0.1s to 4.0s.  The level of response nonlinearity was defined by 
different levels of the force reduction factor, R, ranging from two (mild nonlinearity) to 

                                                 
14 Next Generation Attenuation (NGA) Relationships Project funded by the PEER Lifelines Program. 
15  Note that in this study we have used SDOF systems with only 2% of post-yield hardening. The nonlinear 
displacement response spectra, however, will be provided for 5% hardening ratio rather than 2%. This 
choice is made to be consistent with a currently ongoing research project at Stanford University that is set 
to develop an attenuation relationship for Sd for SDOF systems with 5% hardening.  



ten (severe nonlinearity).  The investigation was done by means of a case study that used 
real accelerograms of the Northridge earthquake recorded at 20 stations located within 
20km of the fault rupture.  The nonlinear responses of the real records were considered as 
the target for the responses produced by the synthetic records that were provided by 
seven groups of seismologists.  The comparisons were performed using the “average” of 
the responses generated by the two horizontal components at each station. 
 
The agreement between elastic responses from records generated by these seven models 
and those from the real recordings for this case study has been thoroughly considered in 
another PEER-funded Project K201. We limit ourselves to saying here that six out of 
seven models were found to produce elastic spectra that have systematic deviations of 
different severity from the elastic spectra of real records, mostly (but not only) at short 
periods.  The synthetic records seem to be more aggressive than those in nature in this 
period range. The deviations are statistically significant at the 10% level.  
 
The core of this study, however, deals with the issue of whether any systematic 
deviations can be detected in the post-elastic nonlinear regime under the assumption that 
the elastic responses of real and synthetic records are in statistical agreement.  To 
separate the elastic from the post-elastic nonlinear results, we considered the ratio of 
nonlinear to linear responses as the quantity to investigate for possible statistical 
discrepancies in the results generated by the synthetic models compared to those from 
real records.  We found, again, that six out of seven models produced statistically biased 
nonlinear response spectra at least at some periods.  Again, the systematic deviation, 
which is significant with 90% confidence, is more prominent at lower periods and at 
larger R values.  Unlike the elastic case, however, the synthetic records tend to be more 
benign than real ones in producing nonlinear responses in stiff structures especially in the 
severe nonlinear range.  One model, however, produces records that at long periods 
generate nonlinear responses for R=10 that are more severe than those from real records.  
The reason for the deficiency in the nonlinear responses to synthetic records at short 
periods lies in the difference that, on average, exists between the linear response spectra 
of these synthetic records and those of real ones in that period range.  When the response 
of an SDOF system becomes severely nonlinear, its effective vibration period lengthens 
significantly and, therefore, it becomes dependent on the frequency content of the record 
in a fairly large bandwidth and not only in the neighborhood of the initial elastic natural 
period of vibration.   
 
Besides the possible bias in the assessment of nonlinear structural responses introduced 
by the use of simulated records, we also compared the variability of nonlinear responses 
generated by simulated and real records.  Most of these models appear to underestimate 
the record-to-record response variability from real records at shorter periods and, for high 
level of nonlinearity (e.g., R≥4) only, to overestimate it at longer periods.  A more limited 
variability may become useful in practice when one wants to assess the median response 
of structures because, once any bias is corrected, the same accuracy can be achieved with 
fewer runs involving synthetic rather than real records.  However, nonlinear response 
variability for simulated records lower or higher than that for real records can affect the 
safety assessment of structures against collapse, for example.  Collapse probability 



estimates are controlled by extreme response values, and if they are less likely to occur 
for synthetic than for real records, such as it seems for some of the models in the short 
period range, then the “true” collapse probability would be underestimated and the safety 
assessment possibly misguided.   
 
These conclusions about systematic differences in nonlinear responses from synthetic and 
real records were tested by evaluating their sensitivity to a) a two different schemes of  
averaging the ground motion horizontal components, b) to an alternative definition of R, 
and c) to the use of a cumulative energy-based ground motion parameter rather than peak 
displacement.  We detected some differences but the conclusions were found to be 
sufficiently robust to all three of these tests.  
 
We must emphasize, however, that all the conclusions drawn here were based on one 
case study involving only 20 stations and one earthquake. They may not apply to other 
cases and/or other simulation techniques. More research should be done to test the 
validity of these conclusions with additional test cases.  
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Appendix A: Simulation Methodologies 
 
Modeler 1: Dr. Igor Beresnev 
 

Simulation of records for the Northridge earthquake was performed using the stochastic 
finite-fault ground-motion modeling technique.  In the method, the fault plane is discretized into 
rectangular elements (subfaults), each of which is treated as a point source and assigned an 
average ω-2 spectrum with a stochastic component superimposed on it, in the same manner as for 
the stochastic point sources introduced by Boore (1983).  The total number of subfaults is 
prescribed by the seismic moment of the target event.  The rupture starts at the hypocenter and 
propagates radially outward with a prescribed constant velocity, triggering subsources as it 
reaches them.  Subsource trigger times are randomized.  The generated subfault acceleration time 
history is propagated to the observation point using empirical (distance-dependent) duration, 
geometric-attenuation, and anelastic-attenuation (Q) models, which are user-defined and thus can 
be adjusted to any specific region.  The contributions from all subsources are summed up in the 
time domain at the observation point, with proper delays accounting for the propagation-distance 
differences.  Site effects can be introduced by specifying a site amplification function and an 
Anderson-Hough low-pass filtering parameter “kappa”.   

 
The subfault size in the method is chosen from the empirical model established from the 

method calibration on 26 large earthquakes,  
 

log ∆l = -2 + 0.4 M, 4 ≤ M ≤ 8,  
 
where log is base 10, ∆l is the subfault linear dimension in km, and M is the moment magnitude 
of the target event (Beresnev and Atkinson, 2002, equation 1).  The only free parameter of the 
simulations is the maximum-slip velocity on the fault, which reflects parametric variability in 
ground-motion predictions for future events.   
 

The method is implemented in the FORTRAN code FINSIM (Beresnev and Atkinson, 
1998a).  The details of the technique and the results of its multiple calibrations are fully described 
in a series of publications by the authors (Beresnev and Atkinson, 1997, 1998a,b, 1999, 2002).   
 
References 
Beresnev, I. A. and G. M. Atkinson (1997).  Modeling finite-fault radiation from the ωn spectrum, 

Bull. Seism. Soc. Am. 87, 67-84.   
Beresnev, I. A. and G. M. Atkinson (1998a).  FINSIM - a FORTRAN program for simulating 

stochastic acceleration time histories from finite faults, Seism. Res. Lett. 69, 27-32.   
Beresnev, I. A. and G. M. Atkinson (1998b).  Stochastic finite-fault modeling of ground motions 

from the 1994 Northridge, California, earthquake.  I.  Validation on rock sites, Bull. Seism. 
Soc. Am. 88, 1392-1401.   

Beresnev, I. A. and G. M. Atkinson (1999).  Generic finite-fault model for ground-motion 
prediction in eastern North America, Bull. Seism. Soc. Am. 89, 608-625.   

Beresnev, I. A. and G. M. Atkinson (2002).  Source parameters of earthquakes in eastern and 
western North America based on finite-fault modeling, Bull. Seism. Soc. Am. 92, 695-710.   

Boore, D. M. (1983).  Stochastic simulation of high-frequency ground motions based on 
seismological models of the radiated spectra, Bull. Seism. Soc. Am. 73, 1865-1894. 

 
 
 



Modeler 2: Dr. Douglas Dreger 
 

The spatial and temporal description of fault slip from Wald et al. (1996) was used for 
Northridge record simulation. The Wald model is a multiple time window parameterization 
following the method of Hartzell and Heaton (1983), and the code for this model (Dreger and 
Kaverina, 2000; Kaverina et al., 2002) is the same. In the Wald model there are six time 
windows. Three describe how slip is released with time following the passage of a constant 
velocity rupture front, and for each time window there are two possible slip directions (55-degree 
and 145-degree (90 degrees apart)). The actual slip direction is the linear sum of these two 
components. The rise time and rupture velocity used by Wald to best fit the data were used in this 
model. The original set of ground motions assumed a triangular rise time function, and in the 
second set an omega-squared model was used. The second set is considered to be better since the 
records do not suffer from spectral nulls that the triangular function suffers from. I also assumed 
The 1D rock velocity model Wald specified was assumed in this model. Given the source 
parametric information and Green's functions from the 1D model the time histories were 
simulated by direct point-source summation where contributions from each of the subfaults for 
each time window and slip direction were delayed according to the rupture trigger time and 
summed. Non-rock sites were adjusted by multiplying by a factor representing the site 
amplification. Factors of 1.4 and 1.78 were used for NEHRP C and D sites, respectively. The 
factors were determined based on vertical SH wave amplifiction from the 1 km/s rock velocity to 
the corresponding NEHRP site velocities. The Wald et al. (1996) model is band limited due to 
their bandpass filtering of the data between 0.1 to 1 Hz. 
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Modeler 3: Dr. Alexander Gusev et al., Institute of Volcanic Geology and Geochemistry 
 

The earthquake ground motion simulation technique in the model was developed by 
A.Gusev and V.Pavlov. It permits the simulation of realistic earthquake ground motions at a site 
and the ability to study the variability of such a motion. Eventually, a suite of design ground 
motions for scenario earthquake(s) may be generated. The technique combines a multiple-point-
source version of a stochastic earthquake fault model and a suite of Green’s functions calculated 
for layered weakly anelastic medium. The source model consists of a grid of point subsources 
with appropriate random time histories. A large number of properties/parameters of the simulated 
earthquake fault can be adjusted in order to: (1) tune the model to a particular seismological 
situation; and/or (2) to analyze the variability and uncertainties of strong motion prediction; or 
also (3) to generate a suite of motions that represents these uncertainties. These parameters 
consist of two large groups: (1) physical parameters that are fixed in a particular run of the 
simulator (their variation produces “parametric variability”) and (2)  “random” parameters that 
are essentially random seeds; they produce “model variability”.  

 
The source simulation module is based on the generalization of the classic Haskell (1966) 

stochastic fault model. Its important modifications are: (1) variable final slip governed by the 
power spectrum that is a power-law with respect to wave number; (2) circular rupture front with 
an arbitrary nucleation point and variable rupture velocity, random with a prescribed mean; (3) 
local slip velocity, or the moment rate of a subsource, is random, with a common duration or rise 
time. The grid of subsources covers the rupture. Individual subsources have no geophysical 
meaning, its number is arbitrary, and can be large if the site in question is located at a small 
distance from a large-magnitude fault. Instead of Haskell’s omega-cube far field spectrum, the 
far-field spectrum of a simulated source is adjusted, in its high-frequency part, to a particular, 
preset, average (regional) spectral scaling law.  

 
To calculate the pulse response of the layered elastic medium from double-couple source for 
distances less than 50 km, a version of the method of Alekseev and Mikhailenko (1976) is used, 
developed by Pavlov (2002) who advanced the "auxiliary functions" approach first introduced by 
Fatyanov and Mikhailenko (1988). The main advantage of this method is the lack of numerical 
instability inherent within propagator methods, because in the auxiliary function method all 
relevant exponential factors are below unity by absolute value. To ensure preset uniform 
numerical accuracy, the number of terms in the series expansion is selected adaptively. The 
developed numerical method provides accurate broad-band representation of ground motions in a 
layered medium, from static terms to high frequencies. 
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Modeler 4: Dr. Lawrence Hutchings et al., LLNL 
 

We numerically compute the discretized representation relation in a form that utilizes 
analytical slip functions and empirical or synthetic Green's functions.  We derive rupture models 
that are consistent with physical understanding of how earthquakes rupture. An important claim 
in this approach is that we use physical and measurable parameters, so that they can be identified 
and bounded in a prediction. Discretization is small enough (for elemental areas) and short 
enough (for time steps) to model continuous rupture to the highest frequency of interest.  
Empirical Green's functions are obtained from recordings of small earthquakes with effectively a 
step-source time functions, and are adjusted for source location and focal mechanism solution to 
model the Green's function from each elemental area.   We often use synthetic Green's functions 
for low frequencies, but we did not do that for this exercise.  Rupture parameters include rupture 
geometry, hypocenter, rupture roughness, rupture velocity, healing velocity, Kostrov slip 
function, asperity size and location, and slip vector.  Slip follows the Kostrov slip function for the 
time required for the rupture front to reach the fault edge from the hypocenter and for a healing 
phase to reach an element from the fault edge.   We used a rupture velocity of 2.9 km/sec and a 
healing velocity of 2.3 km/s. Asperities are modeled as areas with high slip amplitudes and high 
stress drop. Fault displacement for asperities grade from the value of background rupture at the 
edge to greatest at the center. Stress drop is a dependent variable derived from the Kostrov slip 
function; for this exercise it has a value of 180 bars for the non-asperity portion of rupture, and 
between 300 and 600 bars for asperities.  Stress drop also diminishes near the surface at the rate 
of the lithostatic load. Rupture roughness is modeled by a percentage of elemental areas having 
rise time randomly shortened to between 0.1 and 0.9 times the original value.  Roughness is 
implemented by delaying an element's rupture time so that it finishes slip at the same time as 
neighboring elements. Elements with rough rupture have higher stress drop.  In our model of the 
Northridge earthquake 20% of the elements had rough rupture. Our model of the Northridge 
earthquake was previously published (Hutchings, 1994) and utilized previously published reports 
of fault geometry, hypocenter, slip vector, and slip distribution.  We did not iterate around rupture 
parameters to find the best fit to observed seismograms for this exercise. 
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Modeler 5: Dr. Walter Silva 
 
STOCHASTIC FINITE-SOURCE MODEL GROUND MOTION MODEL 
 
In the near-source region of large earthquakes, aspects of a finite-source including rupture 
propagation, directivity source-receiver geometry, and saturation of high-frequency (≥ 1 Hz) 
motions with increasing magnitude can be significant and may be incorporated into strong ground 
motion predictions.  To accommodate these effects, a methodology that combines the aspects of 
finite-earthquake-source modeling techniques (Hartzell, 1978; Irikura 1983) with the stochastic 
point-source ground motion model has been developed to produce response spectra as well as 
time histories appropriate for engineering design (Silva et al., 1990; Silva and Stark, 1993; 
Schneider et al., 1993).  The approach is very similar to the empirical Green function 
methodology introduced by Hartzell (1978) and Irikura (1983).  In this case however, the 
stochastic point-source is substituted for the empirical Green function and peak amplitudes; PGA, 
PGV, and response spectra (when time histories are not produced) are estimated using random 
process theory.   
 
Use of the stochastic point-source as a Green function is motivated by its demonstrated success in 
modeling ground motions in general and strong ground motions in particular (Boore, 1983, 1986; 
Silva and Stark, 1993; Schneider et al., 1993; Silva and Darragh, 1995) and the desire to have a 
model that is truly site- and region-specific.  The model can accommodate a region specific Q(f), 
Green function sources of arbitrary moment or stress drop, and site specific kappa values and soil 
profiles.  The necessity for having available regional and site specific recordings distributed over 
the rupture surface of a future earthquake or modifying possibly inappropriate empirical Green 
functions is eliminated. 
 
For the finite-source characterization, a rectangular fault is discretized into NS subfaults of 
moment MS

0.  The empirical relationship  
 

log (A) = M - 4.0,    A in km2          (A1) 
 
is used to assign areas to both the target earthquake (if its rupture surface is not fixed) as well as 
to the subfaults.  This relation results from regressing log area on M using the data of Wells and 
Coppersmith (1994).  In the regression, the coefficient on M is set to unity which implies a 
constant static stress drop of about 30 bars.  This is consistent with the general observation of a 
constant static stress drop for earthquakes based on aftershock locations (Wells and Coppersmith 
1994).  The static stress drop, defined by Equation A4, is related to the average slip over the 
rupture surface as well as rupture area.  It is theoretically identical to the stress drop which 
defines the omega-square source corner frequency assuming the rupture surface is a circular crack 
model (Brune, 1970; 1971).  The stress drop determined by the source corner frequency (or 
source duration) is usually estimated through the Fourier amplitude spectral density while the 
static stress drop uses the moment magnitude and an estimate of the rupture area.  The two 
estimates for the same earthquake seldom yield the same values with the static generally being 
the smaller.  In a recent study (Silva et al., 1997), the average stress drop based on Fourier 
amplitude spectra determined from an empirical attenuation relation (Abrahamson and Silva, 
1997) is about 70 bars while the average static stress drop for the crustal earthquakes studied by 
Wells and Coppersmith (1994) is about 30 bars.  These results reflect a general factor of about 2 
on average between the two values.  These large differences may simply be the result of using an 
inappropriate estimate of rupture area as the zone of actual slip is difficult to determine 
unambiguously.  In general however, even for individual earthquakes, the two stress drops scale 



similarly with high static stress drops (> 30 bars) resulting in large high frequency (> 1 Hz for M  
5) ground motions which translates to high corner frequencies. 
 
The subevent magnitude MS is generally taken in the range of 5.0-6.5 depending upon the size of 
the target event.  MS 5.0 is used for crustal earthquakes with M in the range of 5.5 to 8.0 and MS 
6.4 is used for large subduction earthquakes with M > 7.5.  The value of NS is determined as the 
ratio of the target event area to the subfault area.  To constrain the proper moment, the total 
number of events summed (N) is given by the ratio of the target event moment to the subevent 
moment.  The subevent and target event rise times (duration of slip at a point) are determined by 
the equation  
 
 

log τ = 0.33 log M0 - 8.54           (A2) 
 
 
which results from a fit to the rise times used in the finite-fault modeling exercises, (Silva et al., 
1997).  Slip on each subfault is assumed to continue for a time τ.  The ratio of target-to-subevent 
rise times is given by 
 

( )SMM5.010 −=
τ
τ

       (A3) 

 
and determines the number of subevents to sum in each subfault.  This approach is generally 
referred to as the constant-rise-time model and results in variable slip velocity for nonuniform slip 
distributions.  Alternatively, one can assume a constant slip velocity (as do Beresnev and 
Atkinson, 2002) resulting in a variable-rise-time model for heterogenous slip distributions.  This 
approach was implemented and validations resulted in an overall “best” average slip velocity of 
about 70 cm/sec, with no significant improvement over a magnitude dependent rise time 
(Equation A3).  The feature is retained as an option in the simulation code. 
 
Recent modeling of the Landers (Wald and Heaton, 1994), Kobe (Wald, 1996) and Northridge 
(Hartzell et al. 1996) earthquakes suggests that a mixture of both constant rise time and constant 
slip velocity may be present.  Longer rise times seem to be associated with areas of larger slip 
with the ratio of slip-to-rise time (slip velocity) being depth dependent.  Lower slip velocities 
(longer rise times) are associated with shallow slip resulting in relatively less short period seismic 
radiation.  This result may explain the general observation that shallow slip is largely aseismic.  
The significant contributions to strong ground motions appear to originate at depths exceeding 
about 4 km (Campbell, 1993; Boore et al., 1994) as the fictitious depth term in empirical 
attenuation relation (Abrahamson and Silva, 1997; Boore et al., 1997).  Finite-fault models 
generally predict unrealistically large strong ground motions for large shallow (near surface) slip 
using rise times or slip velocities associated with deeper (> 4 km) zones of slip.  This is an 
important and unresolved issue in finite-fault modeling and the general approach is constrain the 
slip to relatively small values or rise time to large values in the top 2 to 4 km.  For the composite 
source model, the approach is to taper the subevent stress drop to zero from a depth of 5 km to the 
ground surface (Yehua Zeng, personal communication 1999).  This approach is also followed in 
the stochastic finite source model.  For earthquakes with significant shallow slip, greater than 
20% moment released in the top 5 km, expected short period (< 1 - 2 second) motions are 
significantly lower (20 – 50%) than those of deep slip events, of the same magnitude (Silva et al., 
1997).  To capture this effect, shallow slip earthquakes are modeled with a 5 bar, rather than 30 
bar subevent stress drop, over the entire rupture surface, based on the validation exercises (Silva 



et al., 1997).  These results imply significantly different source processes affecting short periods 
between earthquakes which do not interact with low stresses associated with shallow rupture and 
those earthquakes which have deep rupture only.  The implications to seismic hazard are obvious. 

 
To introduce heterogeneity of the earthquake source process into the stochastic finite-fault model, 
the location of the sub-events within each subfault (Hartzell, 1978) are randomized as well as the 
subevent rise time (σln = 0.8).  The stress drop of the stochastic point-source Green function is 
taken as 30 bars, consistent with the static value based on the M 5.0 subevent area using the 
equation  
 

∆σ =  7
16

 ( M
R

)e

e
3

                               (Brune, 1970, 1971)             (A4) 

 
where Re is the equivalent circular radius of the rectangular sub-event. 
 
Different values of slip are assigned to each subfault as relative weights so that asperities or non-
uniform slip can be incorporated into the methodology.  For validation exercises, slip models are 
taken from the literature and are based on inversions of strong motion as well as regional or 
teleseismic recordings.  To produce slip distributions for future earthquakes, random slip models 
are generated based on a statistical asperity model with parameters calibrated to the published slip 
distributions.  This approach has been validated by comparing the modeling uncertainty and bias 
estimates for the Loma Prieta and Whittier Narrows earthquakes using motion at each site 
averaged over several (30) random slip models to the bias and uncertainty estimates using the 
published slip model.  The results show nearly identical bias and uncertainty estimates suggesting 
that averaging the motions over random slip models produces as accurate a prediction at a site as 
a single motion computed using the "true" slip model which is determined from inverting actual 
recordings. 
 
The rupture velocity is taken as depth independent at a value of 0.8 times the shear-wave velocity, 
generally at the depth of the dominant slip.  This value is based on a number of studies of source 
rupture processes which also suggest that rupture velocity is non-uniform.  To capture the effects 
of non-uniform rupture velocity, a random component is added through the randomized location 
of the subevents within each subfault.  The radiation pattern is computed for each subfault, a 
random component added, and the RMS applied to the motions computed at the site when 
modeling an average horizontal component.  To model individual horizontal components, the 
radiation pattern for each subfault is used to scale each subfault’s contribution to the final 
summed motion. 
 
The ground-motion time history at the receiver is computed by summing the contributions from 
each subfault associated with the closest Green function, transforming to the frequency domain, 
and convolving with the appropriate Green function spectrum.  The locations of the Green 
functions are generally taken at center of each subfault for small subfaults or at a maximum 
separation of about 5 to 10 km for large subfaults.  As a final step, the individual contributions 
associated with each Green function are summed in the frequency domain, multiplied by the 
RMS radiation pattern, and the resultant power spectrum at the site is computed.  The appropriate 
duration used in the RVT computations for PGA, PGV, and oscillator response is computed by 
transforming the summed Fourier spectrum into the time domain and computing the 5 to 75% 
Arias intensity (Ou and Herrmann, 1990). 
 



As with the point-source model, crustal response effects are accommodated through the 
amplification factor (A(f)) or by using vertically propagating shear waves through a vertically 
heterogenous crustal structure.  Soil nonlinearity is accommodated through the equivalent-linear 
approximation.  Propagation path damping, through the Q(f) model, is incorporated from each 
fault element to the site.  Near-surface crustal damping is incorporated through the kappa operator 
(Equation A1).  To model crustal propagation path effects, the raytracing method of Ou and 
Herrmann (1990) is applied from each subfault to the site. 
 
Time histories may be computed in the process as well by simply adding a phase spectrum 
appropriate to the subevent earthquake.  The phase spectrum can be extracted from a recording 
made at close distance to an earthquake of a size comparable to that of the subevent (generally M 
5.0 to 6.5).  Interestingly, the phase spectrum need not be from a recording in the region of 
interest (Silva et al., 1989).  A recording in WNA (Western North America) can effectively be 
used to simulate motions appropriate to ENA (Eastern North America).  Transforming the Fourier 
spectrum computed at the site into the time domain results in a computed time history which then 
includes all of the aspects of rupture propagation and source finiteness, as well as region specific 
propagation path and site effects. 
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Modeler 6: Dr. Paul Somerville et al., URS Corporation 
 

The primary reference for the simulation procedure and its application to the 1994 Northridge 
earthquake is Somerville et al. (1996), pages S-116 through S-118.  The application of the simulation 
procedure to the generation of ground motion time histories and response spectra at the sites of steel 
buildings in the FEMA/SAC Steel Project is described in Somerville et al. (1995). 

 
The simulation procedure is based on rigorous seismological representations of the earthquake 

source and wave propagation.  To simulate broadband time histories, a hybrid method is used which 
computes the ground motions separately in the short period and long period ranges and then combines 
them into a single time history (e.g. Somerville et al., 1996).  The earthquake source is represented as a 
shear dislocation.  The ground motion time history is calculated in the time domain using the 
elastodynamic representation theorem.  In order to represent near-fault effects, ground motion simulations 
need to be based on the summation of complete Green’s functions that contain near-, intermediate-, and 
far-field terms.  This is done using the elastodynamic representation theorem, which states that the ground 
motion U(t) can be calculated from the convolution of the slip time function D(t) on the fault with the 
Green's function G(t) for the appropriate distance and depth, integrated over the fault rupture surface (Aki 
and Richards, 1980): 

 
U(t) = ∑ D(t) * G(t) 

At long periods, theoretical source models including the theoretical radiation pattern are used, 
while at short periods, empirical source functions derived from the recordings of small earthquakes are 
used that incorporate the radiation pattern empirically.  For both procedures, the fault rupture plane is 
discretized into a number of equal size sub-fault regions.  Fault asperities are represented by spatial 
variations in the amount of slip or slip velocity.  The Green's functions are generated using frequency-
wavenumber integration for long-periods and generalized rays for short periods. 
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Modeler 7: Dr. Yuehua Zeng 
 

Based on fundamental earthquake source physics and seismic wave propagation, we have 
developed and improved a numerical simulation procedure to compute synthetic strong motion 
seismogram using a composite source model (Zeng et al., 1994).  The method has been successful 
in generating realistic strong motion seismograms.  The realism is demonstrated by comparing 
synthetic strong motions with observations from the recent California earthquakes at Landers, 
Loma Prieta (Su et al., 1994a,b) and Northridge (Zeng and Anderson, 1996; Anderson and Yu, 
1996; Su et al., 1998), earthquakes in the eastern US (Ni et al., 1999) and earthquakes in 
Guerrero, Mexico (Zeng et al., 1994; Johnson, 1999), Turkey (Anderson et al., 2001) and India 
(Khattri et al, 1994; Zeng et al, 1995).  We have also successfully applied the method for 
earthquake engineering applications to compute the ground motion of scenario earthquakes.  
During the process of continuing development, we have included scattering waves from small 
scale heterogeneity structure of the earth, site specific ground motion prediction using weak 
motion site amplification, and nonlinear soil response using the geotechnical engineering model.  
We have evaluated the numerical procedure for simulating near-fault long-period ground motions 
and rupture directivity, revisiting some of the above earthquake events, including Loma Prieta, 
Landers and Northridge.  We also tested its ability to predict the near-fault ground motion 
observation from the 1979 Imperial Valley, California earthquake and the 1995 Kobe event (Zeng 
and Anderson, 2000). 

 
The composite source model assumes a large earthquake is a superposition of smaller 

subevents that all break during the earthquake rupture processes.  The number and radius of the 
subevents follow the Guttenberg and Richter frequency-magnitude relation given in form of a 
power law distribution of radii,  prrN −~)( , where p is the fractal dimension. The source is 
kinematic, but this source description has the capability to generate realistic accelerograms with 
the proper frequency content (Zeng et al., 1994), and has a capability to predict ground motions 
(e.g. Anderson and Yu, 1996; Anderson et al., 2002).  Also, it is possible, using a genetic 
algorithm, to find specific composite sources that are consistent with both the statistics and the 
phase of observed records (e.g. Zeng and Anderson, 1996).  Several physical parameters of 
earthquake source (radiated energy, stress drops) can be expressed in terms of the composite 
source model parameters (Anderson, 1997).  The high frequency radiation of the model is 
controlled by the subevent stress drops, maximum subevent radius and rupture velocity. 
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SUMMARY 
 
The residual capacity against collapse of a mainshock-damaged building can be coupled with the 
aftershock ground motion hazard (demand) at its site to make an objective decision regarding the 
occupancy of the building based on its probability of collapse in an aftershock.  For a case-study building, 
a relatively simple nonlinear static-pushover approach to computing residual capacities is found to 
underestimate the median results of more accurate nonlinear dynamic analyses.  By reflecting the 
dependence observed from the dynamic analyses of residual capacity on residual roof drift, a "calibrated" 
static approach is proposed that computes more consistent residual capacities. 
 

INTRODUCTION 
 
In the aftermath of a major earthquake, structural engineers must assess whether damaged buildings can 
continue to be occupied, with due consideration to the threat of aftershocks.  An objective and 
quantifiable criterion that can be used to green/yellow/red-tag a damaged building is the probability 
(within a specified time period) of its localized or complete collapse in an aftershock.  Computing this 
collapse probability can be accomplished by convolving the aftershock ground motion hazard (demand) at 
the site, e.g., [1], with the probabilistic residual capacity of the damaged building to withstand aftershock 
shaking (i.e., its "aftershock fragility").  The residual capacity can be computed via nonlinear structural 
analyses, e.g., [2,3,4,5], but if a tagging decision needs to be made soon after the mainshock, such 
analyses should be conducted a priori for a range of potential post-mainshock damage states. 
 
As part of Phase I of a project for the Pacific Earthquake Engineering Research Lifelines (PEER-LL) 
Program and Pacific Gas & Electric, Bazzurro et al. [6] have developed guidelines for tagging that 
involve nonlinear structural analyses performed prior to a mainshock to determine the residual capacity of 
a given building in several different states of potential damage.  To be more practical, the guidelines call 
for a static-pushover (SPO) analysis and the use of a tool called SPOIDA [7,8] to infer dynamic response 
rather than carrying out more accurate nonlinear dynamic analyses (NDA's).  Phase II of the PEER-LL 
project has been to verify whether the results of the "static" computations called for in the guidelines are 
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consistent with those of a dynamic approach involving back-to-back NDA's of the building model for 
numerous mainshock and aftershock pairs of earthquake records.  Part of this verification phase is 
summarized in this paper.  For a summary of the guidelines by Bazzurro et al. [6], refer to the 13WCEE 
paper 1708 [9]. 
 

OBJECTIVES 
 
The general objectives of this paper are three-fold: (i) to demonstrate for a case-study building the 
dynamic and the static approaches to computing the residual capacity of a mainshock-damaged building, 
(ii) to compare the results of the dynamic and the static computations, and (iii) to use the results of the 
dynamic approach to calibrate the static approach.  In all of the approaches, residual capacities are 
computed for a range of potential post-mainshock damage states obtained via static or dynamic analyses. 
 

CASE-STUDY BUILDING 
 
The building considered in this paper is borrowed from one of the case studies presented in the guidelines 
by Bazzurro et al. [6].  The building is a 3-story steel moment-resisting frame (SMRF) constructed in San 
Francisco in 1989.  It is roughly symmetric, so only one of its 3-bay MRF's is modeled.  The beam-
column connections are modeled as brittle, with fracture occurring at a plastic hinge rotation of 0.03 
radians, at which point the moment strength drops to 30% of the plastic value.  A static pushover (SPO) 
curve for the building model computed using the RAM-Perform V1.04 [10] structural analysis program is 
shown in Figure 1.  The SPO analysis is ceased when the first shear-tab fails, which is assumed to occur 
at a plastic hinge rotation of 0.07 radians.  At this point of local collapse, the SPO curve is assumed to 
drop to zero base shear. 
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Figure 1. Nonlinear static-pushover (SPO) curve for the intact, or undamaged, three-story SMRF case-study 

building.  The quadrilinear approximation is the SPO curve for the SDOF idealizations of this 
first-mode dominated building that are analyzed in this paper.  The five post-mainshock damage 
states considered are also identified.  This figure was excerpted, with few modifications, from [6]. 
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Figure 2. Examples of the hysteretic behavior of the bilinear, peak-oriented, and pinching SDOF building 

models analyzed in this paper.  The backbone for all three models is the same as the quadrilinear 
approximation of the SPO curve for the first-mode dominated case-study building (shown in 
Figure 1). 

 
Mainly because the dynamic computation of residual capacity involves a large number of NDA's, three 
single-degree-of-freedom (SDOF) idealizations of the first-mode-dominated 3-story building model 
described above are analyzed in this paper.  All three SDOF building models have the same fundamental 
period (T1=0.73s) and approximately the same force-deformation backbone curve (see Figure 1) as the 
full multi-degree-of-freedom (MDOF) building model.  The three SDOF models differ only in their 
hysteretic behaviors.  As illustrated in Figure 2, the hysteresis rules considered are bilinear, peak-oriented 
(or "Clough" [11]), and pinching, which are the three options available in the SDOF time-history analysis 
program used [12]. 
 

POST-MAINSHOCK DAMAGE STATES 
 
The five post-mainshock damage states considered for the case-study building are identified on its SPO 
curve in Figure 1 above.  Note that DS1 corresponds to the onset of damage, so in this state the building is 
still in its intact, or pre-mainshock, condition.  At the opposite end of the range of potential damage states, 
DS4 corresponds to collapse, or in this case local failure of a shear-tab.  As defined in the guidelines case-
study by Bazzurro et al. [6,9], DS2 and DS3 correspond to fracture of the exterior and interior beam-
column connections at the first floor, respectively.  The intermediate DS3.5 is added in this paper without 
regard to the corresponding physical damage, but it could be determined from the SPO results.  These 
descriptions of physical damage could be used by an inspector to determine which damage state the case-
study building is in after an earthquake. 
 
Also based on the SPO results, each post-mainshock damage state is linked to a peak (during the 
mainshock) roof drift, as illustrated in Figure 1 above and summarized in Table 1 below.  For the SDOF 
models of the case-study building, these peak roof drifts are synonymous with the associated post-
mainshock damage states.  In fact, in this paper the results for each damage state are usually plotted 
versus the corresponding peak roof drift.  To estimate results for damage states not considered in this 
paper, one could interpolate between the corresponding peak roof drifts. 
 
 

Table 1. Peak roof drift (normalized by roof height) associated with each of the five post-mainshock damage 
states identified in Figure 1 on the SPO curve for the case-study building. 

DS1 (Intact) DS2 DS3 DS3.5 DS4 (Collapsed)
0.009 0.016 0.024 0.036 0.048

Peak Roof Drift (Ratio)

 



DEFINITION OF RESIDUAL CAPACITY 
 
In the guidelines by Bazzurro et al. [6,9], the residual capacity of a building in a given post-mainshock 
damage state is defined as the smallest ground motion spectral acceleration (at T1 and a damping ratio of 
5%) that would induce localized or complete collapse in an aftershock.  This residual capacity is a random 
quantity in the sense that it varies across potential aftershock ground motions (among other things).  In 
this paper, only the medians (calculated as the geometric means) of the residual capacity as computed via 
the dynamic and static approaches are compared.  Although not reported here, the dispersion of the 
residual capacity, which can be coupled with the median to arrive at the "aftershock fragility" of a 
mainshock-damaged building, has also been computed. 
 

DYNAMIC COMPUTATION OF RESIDUAL CAPACITY 
 
The dynamic approach to computing the median residual capacity of a building in each post-mainshock 
damage state involves the following steps: 
 
1. Obtain multiple realizations of the building in each post-mainshock damage state by performing NDA 

of the intact building model subjected to multiple mainshock ground motions, each one scaled (in 
amplitude only) to induce the roof drift associated with each damage state. 

2. Compute residual capacities for each of these realizations of the building by subjecting them, via 
NDA, to aftershock ground motions scaled to induce the roof drift associated with collapse. 

3. Calculate the median residual capacity for each damage state over all the pairs of mainshock-damaged 
building realization (Step 1) and potential aftershock ground motion (Step 2). 

 
The details of these steps and their results for the three SDOF models of the case-study building are 
discussed in the subsections below.  To simplify the comparison of results from this dynamic approach 
with those from the static approach presented in the next section, the same 30 earthquake recordings used 
by Vamvatsikos [7,8] in developing the SPO2IDA tool are also used here.  Furthermore, this single set of 
earthquake recordings is used to represent both potential mainshock and aftershock ground motions.  If, 
instead, different sets of earthquake recordings are used to represent mainshocks and aftershocks, the 
median residual capacity for each damage state may change, but its value relative to that for DS1 (e.g., 
see Figure 9 below) is expected to remain the same. 
 
Step 1:  NDA of intact building subjected to mainshocks 
In addition to multiple realizations of the building in each post-mainshock damage state, three by-
products of the NDA's of the intact building model subjected to multiple mainshock ground motions are 
(i) incremental dynamic analysis (IDA) curves, (ii) residual roof drifts in each damage state, and (iii) 
capacities against collapse of the intact building.  These results are noteworthy because (i) the IDA curves 
depict the mainshock spectral accelerations that lead to each damage state, which can be used before an 
earthquake has occurred to compute the annual probability of experiencing each damage state [6,9], (ii) 
the residual roof drifts have an effect on the residual capacities, as demonstrated later in this paper, and 
(iii) the intact capacities serve as a basis of comparison for the residual capacities.  The three by-products 
are also results of the static approach demonstrated in the next section.  In the section after the next, those 
static results are compared with the dynamic results summarized in the subsections below. 
 
IDA Curves 
Scaling an earthquake record to obtain a realization of the building in each post-mainshock damage state 
is an iterative process not unlike computing a constant ductility response spectrum.  The first by-product 
of this iterative scaling is an IDA curve that relates the spectral acceleration of the ground motion 
(proportional to the scale factor) to the peak roof drift of the building.  Figure 3(a) shows, for the 



 
Figure 3. Incremental Dynamic Analysis (IDA) curves computed while obtaining multiple realizations of 

each post-mainshock damage state.  Panel (a) shows, for the pinching building model, the 
individual IDA curves for the 30 mainshock ground motions considered.  Panel (b) shows the 
median IDA curves across the 30 mainshocks for all three of the case-study building models. 

 
pinching model of the case-study building, the 30 IDA curves obtained for the 30 "mainshock" 
earthquake records.  Also shown in Figure 3(a) is a median IDA curve established by connecting the 
median spectral accelerations that induce the peak roof drifts associated with the five damage states.  The 
median IDA curves for the bilinear, peak-oriented, and pinching building models are shown in Figure 
3(b).  Note their similarity despite the differences in hysteretic behavior. 
 
Residual Roof Drifts 
Each earthquake record that is scaled to induce the peak roof drift associated with a post-mainshock 
damage state will also induce a residual roof drift.  For the 30 mainshock earthquake records and the 
pinching building model, the residual roof drifts (absolute values) in each damage state are plotted in 
Figure 4(a); also plotted is a curve connecting the median residual roof drift values for the five damage 
states.  The median residual roof drifts for all three building models are plotted in Figure 4(b). 
 

  
Figure 4. Residual roof drifts for each post-mainshock damage state (or associated value of peak roof drift).  

Panel (a) shows, for the pinching building model, the residual roof drifts caused by the 30 
mainshock ground motions considered.  Panel (b) shows the median residual roof drift across the 
30 mainshocks for all three of the case-study building models. 



Recall that in DS1 the building is still elastic, so there is no residual roof drift.  As the damage (or peak 
roof drift) increases, so does the median residual roof drift, particularly for the bilinear building model.  
The stiffness reductions in the peak-oriented and pinching hysteresis loops have a "self-centering" effect 
that leads to relatively small residual drifts, as observed by other researchers as well, e.g., [13,14,15]. 
 
Intact Capacities 
From each of the median IDA curves in Figure 3(b) above, the spectral acceleration that induces the peak 
roof drift associated with collapse (i.e., DS4) is the median capacity of the intact building.  For the 
bilinear, peak-oriented, and pinching models of the case-study building, these median intact capacities are 
2.78g, 2.86g, and 2.77g, respectively.  Like the median IDA curves themselves, the median intact 
capacities for the three building models are very similar (within 4% of each other).  Note that these intact 
capacities are also the residual capacities in DS1, which provides a convenient basis of comparison for the 
median residual capacities computed in the next step for the other damage states. 
 
Step 2:  NDA of mainshock-damaged building subjected to aftershocks 
For each realization of a mainshock-damaged building created in Step 1, residual capacities are computed 
by performing NDA with aftershock earthquake records, each one scaled to induce the peak roof drift 
associated with collapse.  As for the mainshocks in Step 1, scaling the aftershocks is an iterative process.  
Unlike the mainshocks, however, scaling the aftershocks by positive and negative factors typically results 
in two different spectral accelerations (both absolute values) that trigger collapse.  The smaller value is 
kept, since the residual capacity is defined (above) as the smallest aftershock spectral acceleration that 
induces collapse.  Over all of the realizations and mainshocks considered in this paper, the larger of the 
two spectral accelerations is on average 1.23 times and at most 3.19 times the smaller value. 
 
In effect, back-to-back mainshock-aftershock NDA's are performed in Steps 1-2, as illustrated in Figure 5 
for the pinching building model.  In this example, the mainshock NDA produces a realization of the 
building in DS3 (i.e., peak roof drift ratio of 0.024), whereas the aftershock NDA results in collapse (at a 
peak roof drift of 0.048).  The spectral acceleration of the aftershock ground motion is the residual 
capacity for this particular realization of the pinching building model in DS3.  The residual capacities for 
all 30x30 of the mainshock-aftershock pairs considered are listed in Table 2. 
 
 

 
Figure 5. Example hysteresis loops and roof drift time histories from the back-to-back mainshock-

aftershock dynamic analyses performed to compute the residual capacity of a mainshock-damaged 
building.  The mainshock ground motion is scaled to induce the peak roof drift associated with 
DS3, and the aftershock ground motion is scaled to induce the peak roof drift associated with 
collapse (DS4). 



Table 2. Residual capacities (i.e., minimum spectral accelerations to cause collapse) of the pinching building 
model in damage state DS3 for the 30x30 potential mainshock-aftershock pairs considered. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
1 1.68 2.83 3.19 2.10 3.30 2.48 2.95 2.24 2.19 2.09 3.74 2.13 5.41 4.72 1.90 1.04 2.48 1.41 1.34 3.88 2.03 2.37 2.72 7.75 2.18 4.19 2.70 4.03 1.39 2.11
2 1.67 2.73 3.16 1.97 3.25 2.46 2.87 2.24 2.16 2.03 3.37 2.06 5.30 4.12 1.86 1.05 2.48 1.33 1.34 3.71 1.95 2.27 2.68 7.20 2.09 3.99 2.62 4.13 1.34 2.11
3 1.67 2.67 3.14 1.96 3.32 2.46 2.83 2.12 2.19 2.02 3.37 2.06 5.29 4.20 1.84 1.06 2.34 1.32 1.34 3.71 1.96 2.25 2.70 6.80 2.07 4.04 2.65 4.17 1.32 2.11
4 1.72 3.38 3.38 2.10 3.30 2.49 3.97 2.31 2.06 2.47 5.10 2.13 6.34 5.13 2.07 0.95 2.82 1.41 1.42 5.10 2.00 2.37 2.88 8.91 2.55 5.00 2.87 4.05 1.57 2.78
5 1.66 2.63 3.09 1.68 3.25 2.43 2.78 2.00 2.18 1.98 3.37 2.06 5.22 4.14 1.79 1.06 2.25 1.30 1.34 3.64 1.95 2.22 2.66 6.54 2.04 3.95 2.69 3.89 1.27 2.11
6 1.66 2.62 3.09 1.68 3.24 2.43 2.78 2.00 2.18 1.97 3.37 2.06 5.22 4.14 1.79 1.06 2.24 1.30 1.34 3.62 1.95 2.22 2.66 6.94 2.04 3.96 2.69 3.89 1.27 2.11
7 1.68 2.69 3.16 2.00 3.26 2.47 2.86 2.16 2.18 2.04 3.37 2.06 5.32 4.18 1.87 1.06 2.48 1.34 1.34 3.74 1.97 2.28 2.71 7.10 2.09 3.99 2.67 4.16 1.34 2.25
8 1.68 2.74 3.17 2.00 3.26 2.47 2.89 2.24 2.17 2.08 3.59 2.06 5.32 4.15 1.87 1.05 2.48 1.35 1.34 3.82 2.00 2.28 2.69 7.40 2.11 4.00 2.64 4.15 1.36 2.11
9 1.68 2.78 3.19 2.10 3.28 2.48 3.08 2.38 2.17 2.25 3.85 2.13 5.53 5.13 1.90 1.04 2.65 1.41 1.34 4.14 2.05 2.37 2.64 8.28 2.33 4.20 2.74 4.03 1.43 2.27
10 1.70 2.59 3.09 1.94 2.99 2.45 2.78 2.03 2.26 1.97 3.15 2.06 5.25 4.38 1.80 1.09 2.19 1.28 1.34 3.60 2.00 2.27 2.78 6.89 2.06 4.00 2.80 4.10 1.27 2.11
11 1.67 2.75 3.20 2.00 3.25 2.48 3.20 2.45 2.13 2.23 3.95 2.12 5.58 5.13 1.89 1.02 2.69 1.41 1.34 4.14 2.04 2.37 2.65 8.37 2.38 4.71 2.75 3.99 1.43 2.38
12 1.67 2.68 3.15 1.99 3.35 2.46 2.84 2.14 2.19 2.04 3.37 2.06 5.30 4.19 1.86 1.05 2.36 1.33 1.34 3.74 1.97 2.25 2.71 6.92 2.08 3.96 2.66 4.18 1.33 2.11
13 1.67 2.64 3.09 1.73 3.27 2.44 2.80 2.01 2.19 2.00 3.37 2.06 5.25 4.14 1.81 1.06 2.28 1.31 1.34 3.68 1.96 2.23 2.68 6.59 2.05 3.99 2.71 4.11 1.27 2.11
14 1.68 2.74 3.17 2.00 3.26 2.47 2.88 2.24 2.17 2.07 3.56 2.06 5.32 4.17 1.87 1.06 2.48 1.34 1.34 3.79 1.96 2.27 2.70 7.29 2.10 3.99 2.64 4.16 1.35 2.11
15 1.66 2.69 3.09 1.71 3.32 2.43 2.84 2.13 2.15 2.03 3.37 2.06 5.26 4.08 1.84 1.03 2.48 1.32 1.34 3.72 1.93 2.24 2.65 7.00 2.06 4.00 2.63 3.92 1.32 2.11
16 1.67 2.73 3.18 1.98 3.25 2.46 2.98 2.24 2.15 2.14 3.80 2.11 5.38 4.43 1.87 1.03 2.64 1.36 1.34 3.93 2.02 2.29 2.54 7.83 2.17 4.07 2.67 4.11 1.39 2.11
17 1.67 2.65 3.09 1.71 3.28 2.45 2.81 2.02 2.19 2.01 3.37 2.06 5.26 4.15 1.82 1.06 2.27 1.31 1.34 3.69 1.97 2.24 2.69 6.61 2.05 4.00 2.72 4.13 1.27 2.11
18 1.68 2.69 3.15 1.98 3.26 2.46 2.86 2.15 2.18 2.00 3.37 2.06 5.31 4.20 1.86 1.06 2.38 1.33 1.34 3.66 1.96 2.28 2.69 7.05 2.08 4.01 2.66 4.14 1.33 2.11
19 1.68 2.73 3.18 1.99 3.25 2.47 2.93 2.24 2.16 2.12 3.69 2.11 5.33 4.03 1.87 1.04 2.48 1.35 1.34 3.88 2.01 2.28 2.64 7.62 2.12 4.02 2.66 4.13 1.37 2.11
20 1.69 2.70 3.17 2.10 3.27 2.48 2.87 2.24 2.19 2.05 3.37 2.06 5.33 4.21 1.88 1.05 2.48 1.35 1.34 3.76 1.98 2.29 2.72 7.16 2.10 4.01 2.65 4.18 1.35 2.27
21 1.66 2.60 3.09 1.70 3.22 2.42 2.77 2.05 2.17 1.93 3.19 2.06 5.20 4.14 1.78 1.06 2.20 1.29 1.34 3.52 1.95 2.22 2.65 6.91 2.03 3.97 2.68 3.63 1.27 2.11
22 1.67 2.75 3.18 2.10 3.27 2.48 2.94 2.24 2.17 2.12 3.73 2.12 5.37 4.75 1.88 1.05 2.48 1.36 1.34 3.90 2.02 2.30 2.67 7.71 2.15 4.08 2.68 4.14 1.38 2.11
23 1.72 3.44 3.31 2.10 3.28 2.50 3.86 2.37 2.06 2.47 4.80 2.14 6.12 5.13 1.98 0.96 2.81 1.41 1.41 4.91 2.03 2.37 2.80 8.91 2.54 4.89 2.89 4.06 1.51 2.76
24 1.66 2.73 3.19 1.98 3.25 2.45 3.08 2.36 2.14 2.19 3.84 2.12 5.49 5.13 1.93 1.02 2.64 1.41 1.34 4.14 2.03 2.37 2.63 8.17 2.30 4.17 2.71 3.98 1.42 2.30
25 1.75 3.57 3.33 2.10 3.34 2.54 3.84 2.42 2.12 2.47 5.10 2.16 6.17 5.13 2.07 1.00 2.84 1.41 1.42 5.10 2.11 2.43 2.76 8.91 2.67 5.01 2.93 4.13 1.53 2.91
26 1.68 2.66 3.09 1.98 3.30 2.46 2.82 2.04 2.23 2.01 3.37 2.06 5.29 4.22 1.84 1.06 2.28 1.33 1.34 3.67 1.98 2.26 2.72 6.82 2.07 3.97 2.66 4.19 1.31 2.11
27 1.70 3.13 3.23 1.99 3.23 2.49 3.77 2.36 2.06 2.47 4.51 2.12 5.90 5.13 1.94 0.97 2.76 1.41 1.39 4.59 2.01 2.37 2.70 8.91 2.48 4.72 2.83 4.00 1.48 2.70
28 1.67 2.77 3.17 1.88 3.24 2.46 2.89 2.24 2.15 2.06 3.61 2.06 5.30 4.09 1.86 1.04 2.48 1.34 1.34 3.78 1.99 2.27 2.65 7.42 2.09 3.99 2.63 4.12 1.35 2.11
29 1.65 2.64 3.21 1.72 3.21 2.49 3.20 2.40 2.06 2.27 4.08 2.06 5.62 5.13 1.88 0.98 2.72 1.41 1.34 4.14 2.01 2.37 2.65 8.91 2.36 4.69 2.72 3.96 1.44 2.56
30 1.69 2.77 3.18 2.10 3.28 2.48 2.90 2.24 2.20 2.08 3.59 2.13 5.35 4.70 1.89 1.05 2.48 1.36 1.34 3.83 1.98 2.30 2.73 7.43 2.13 4.06 2.68 4.18 1.36 2.11

Mainshock Residual S a  Capacity (g ) for Aftershock

 
 
Note from Table 2 that the residual capacities vary much less across the realizations of mainshock 
damage (rows of the matrix) than they do across potential aftershocks (columns of the matrix), suggesting 
that the nature of the mainshock that induces the given damage state (in this case DS3) has relatively little 
effect on the residual capacity.  As discussed later in this paper, what little variation there is across the 
mainshocks is related to the residual roof drifts.  In the next step, the median residual capacity over all 
30x30 mainshock-aftershock pairs is computed for each of the three building models and each damage 
state. 
 
Step 3:  Calculate median of residual capacities for each post-mainshock damage state 
The median residual capacity over all 30x30 pairs of mainshock-damage realizations and potential 
aftershocks is reported in Table 3 for the three case-study building models in each damage state.  Note 
that the values for DS1 are equal to those computed for the intact building in Step 1.  In DS4, there is no 
(zero) residual capacity because collapse has already occurred.  As expected, the median residual capacity 
decreases with increasing severity of the damage state, particularly for the bilinear building model.  
Overall, though, the reductions in capacity may seem to some to be surprisingly small considering the 
degradation in strength and stiffness.  The differences among the three hysteretic models are discussed in 
the section after the next, which compares the results of the dynamic approach presented in this section 
with those of the static approach presented next. 
 

Table 3. Median residual capacities (over the 30x30 potential mainshock-aftershock pairs) for the three 
case-study building models in each damage state.  In DS1, the residual capacities are equal to those 
of the intact building.  Once in DS4, the building has no residual capacity against collapse. 

Building
Model DS1 (Intact) DS2 DS3 DS3.5 DS4 (Collapsed)

Bilinear 2.78 2.64 2.09 1.64 0
Peak-Oriented 2.86 2.75 2.52 2.35 0

Pinching 2.77 2.70 2.53 2.35 0

Median Residual S a  Capacity (g )

 



STATIC COMPUTATION OF RESIDUAL CAPACITY 
 
The static approach to computing the median residual capacity for each post-mainshock damage state of a 
building, as proposed in the guidelines by Bazzurro et al. [6,9], involves the following steps: 
 
1a. Obtain a realization of the building in each post-mainshock damage state by performing a SPO 

analysis of the intact building model up to the peak roof drift associated with the damage state, 
followed by unloading to zero base shear. 

1b. Obtain a SPO curve for the building in each damage state by re-loading the realization obtained in 
Step 1a up to collapse. 

2. Compute the median residual capacity by inputting the SPO curve for each damage state from Step 1b 
into the SPO2IDA tool for inferring dynamic response. 

 
The details of these steps and their results for the SDOF models of the case-study building are discussed 
in the subsections below.  Note that the results for the bilinear, peak-oriented, and pinching models are 
identical, because the backbone and un/re-loading rule to/from zero base shear, and hence the SPO curve 
for each damage state, is the same for all three building models. 
 
Step 1a:  SPO of intact building (simulates mainshock response) 
The SPO analyses (including unloading) of the intact building model called for in Step 1a, which each 
produce a realization of the building in one of the post-mainshock damage states, are illustrated in Figure 
6 for the SDOF building models.  Note that the unloading stiffness is parallel to the elastic stiffness, 
which is true for all three of the hysteretic models (e.g., see Figure 2).  The residual roof drifts for the five 
post-mainshock damage states that are implied by these SPO analyses are circled in the figure (at zero 
base shear); their values will be compared with the results of NDA in the next section. 
 
Step 1b:  SPO of mainshock-damaged building (simulates aftershock response) 
Since the re-loading stiffness for each of the damaged-building realizations obtained in Step 1a is parallel 
to the elastic stiffness (for all three hysteretic models), Figure 6 also shows the SPO curves for the five 
post-mainshock damage states.  Note that the triangular SPO curve for DS4 is not used in Step 2 to 
compute a median residual capacity, because collapse has already occurred in DS4. 
 
 

 
Figure 6. Static pushover (SPO) curve in each post-mainshock damage state for all three of the SDOF 

building models considered.  Circled at zero base shear are the implied residual roof drifts.  The 
SPO curves are input into the SPO2IDA tool [7,8] to compute the median residual capacities. 



 
Figure 7. Median IDA curves computed using SPO2IDA [7,8] for each post-mainshock damage state.  The 

curves are the same for all three models of the case-study building.  The median residual capacity 
for each damage state is circled, as given by the spectral acceleration at which each IDA reaches a 
peak roof drift of 0.048 (corresponding to collapse, or DS4). 

 
 
Step 2:  SPO2IDA for mainshock-damaged building (simulates aftershock response) 
SPO2IDA [7,8] is a spreadsheet tool that, as its name suggests, converts a static pushover curve into 
incremental dynamic analysis curves (median and 16th- and 84th-percentiles).  The tool is based on NDA's 
of numerous SDOF oscillators with various quadrilinear backbone curves and pinching hysteretic 
behavior, all subjected to the 30 ground motion recordings that are also used in this paper. 
 
Using SPO2IDA, the SPO curve obtained in Step 1 for each post-mainshock damage state (DS1-DS3.5) is 
translated into a median IDA curve, as shown in Figure 7.  The spectral acceleration at the plateau of this 
median IDA curve, which is also the spectral acceleration that induces the peak roof drift associated with 
collapse, is the median residual capacity for the damage state.  These median residual capacities are 
circled in Figure 7 and enumerated in Table 4.  Note that there is no (zero) residual capacity in DS4, 
which corresponds to collapse.  These results apply to all three of the models of the case-study building, 
and will be compared with the results of the dynamic approach in the next section. 
 
It should be kept in mind that, although it is used here and in the guidelines by Bazzurro et al. [6,9] for 
such, SPO2IDA was not designed to provide IDA curves for mainshock-damaged buildings with residual 
roof drifts.  Hence, the median residual capacities computed here via the static approach cannot 
necessarily be expected to agree with the results of the more accurate dynamic approach.  In concept, an 
"aftershock" version of SPO2IDA could be developed using back-to-back mainshock-aftershock NDA's 
like those performed in the dynamic approach. 
 
 

Table 4. Median residual capacities for each post-mainshock damage state computed via the static approach.  
The values are the same for all three models of the case-study building.  In damage state DS4, local 
collapse has already occurred, implying zero residual capacity. 

DS1 (Intact) DS2 DS3 DS3.5 DS4 (Collapsed)
2.77 2.50 2.39 1.43 0

Median Residual S a  Capacity (g )

 



COMPARISON OF DYNAMIC VERSUS STATIC RESULTS 
 
Despite their differences, the dynamic and static approaches to computing the median residual capacity of 
a mainshock-damaged building both generate, as by-products, a median IDA curve and a median capacity 
for the intact building (i.e., for DS1), and an estimate of the residual roof drift in each post-mainshock 
damage state.  These results from the two approaches, in addition to the median residual capacities for 
each damage state, are compared in this section. 
 
Median IDA curves and median capacities for the intact building 
For brevity, the median IDA curves for the intact building computed via the static (i.e., SPO2IDA) and 
dynamic (NDA) approaches are not re-plotted here, but a visual review of the intact IDA curve in Figure 
7 and those in Figure 3(b) reveals that the two approaches provide nearly the same results.  From these 
IDA curves it is also apparent that the median capacity of the intact building (or the building in DS1) 
computed via the static approach is close to those computed via nonlinear dynamic analyses.  In fact, the 
median "intact" capacity from the static approach (2.77g – see Table 4) is within 4% of those computed 
via the dynamic approach (2.78g, 2.86g, and 2.77g for the bilinear, peak-oriented, and pinching models, 
respectively – see Table 3).  The results are especially close in part because the same 30 earthquake 
recordings used by Vamvatsikos [7,8] to develop the SPO2IDA tool are also used here. 
 
Residual roof drifts for each post-mainshock damage state 
For each of the post-mainshock damage states (or corresponding peak roof drifts) considered, the residual 
roof drift implied by the static approach is compared in Figure 8 with the median values computed NDA 
of the bilinear, peak-oriented, and pinching building models.  Note that what is plotted in the figure is the 
residual roof drift normalized by the peak roof drift associated with each damage state, and hence the 
ordinate is at most equal to one.  Except in DS1, when there is no residual roof drift because the building 
is elastic, the residual roof drift implied by the SPO curve for each damage state clearly over-estimates the 
median results of NDA.  This is to be expected, since the SPO curves do not allow for the possibility that 
the building may oscillate in the opposite direction after reaching its peak roof drift.  As noted above in 
the dynamic computation section, the median residual roof drifts from NDA of the bilinear building 
model are larger than those for the peak-oriented and pinching models, and hence are closer to those 
implied in the static approach. 
 
 

 
Figure 8. Comparison of (i) the median residual roof drifts (normalized by the peak roof drift) computed via 

nonlinear dynamic analyses of the three case-study building models with (ii) the residual roof drift 
implied by the static pushover curve for each post-mainshock damage state. 



 
Figure 9. Comparison of the median residual capacities (normalized by the corresponding median intact 

capacities) computed via the static versus dynamic approaches.  Recall from Tables 3 and 4 that 
the median intact capacities (i.e., median residual capacities in post-mainshock damage state DS1) 
are approximately the same for the three case-study building models whether computed via the 
static or dynamic approaches. 

 
Median residual capacities for each post-mainshock damage state 
The principal results of the dynamic and static computations, namely the median residual capacity for 
each post-mainshock damage state, are compared in Figure 9.  What is actually plotted in the figure is the 
median residual capacity normalized by the median intact capacity (i.e., the median residual capacity for 
DS1).  This residual/intact ratio, which measures the drop in median capacity resulting from mainshock 
damage, is used in the guidelines by Bazzurro et al. [6,9] as a basis for tagging decisions.  Note that 
Figure 9 would look nearly the same if the median residual capacities were plotted instead of the 
residual/intact ratios, because the median intact capacities computed via the static and dynamic 
approaches (for all three building models), recall, are approximately the same. 
 
From Figure 9 it is apparent that the static approach generally underestimates the median residual 
(normalized by intact) capacities computed via the dynamic approach, at least for the peak-oriented and 
pinching building models.  For the bilinear building model, the static results underestimate by a lesser 
amount, or even overestimate (in DS3), those computed via the dynamic approach.  The error in the static 
computation of median residual/intact capacity, expressed as a percentage of the dynamic result, is 
provided in Table 5.  Note the relatively large error for the peak-oriented and pinching building models in 
DS3.5.  All of the (non-zero) errors are reduced by the calibrated static approach proposed in the next 
section. 
 

Table 5. Error in the median residual (normalized by intact) capacities computed via the static approach, 
expressed as a percentage of the more accurate dynamic results also shown in Figure 9.  The errors 
for DS1 are zero because, by definition, the residual/intact ratio is always one.  In DS4, local 
collapse has already occurred, so there are no residual capacities to compute. 

Building
Model DS1 (Intact) DS2 DS3 DS3.5 DS4 (Collapsed)

Bilinear 0 -5.1% 14.9% -12.5% --
Peak-Oriented 0 -6.1% -2.1% -37.0% --

Pinching 0 -8.0% -5.3% -39.1% --

Error in Median Residual/Intact Capacity from Static Computation

 



CALIBRATED STATIC COMPUTATION OF RESIDUAL CAPACITY 
 
As shown in the preceding section, overall the results of the static approach are most similar to the 
dynamic results for the bilinear building model, both in terms of the median residual capacities and the 
residual roof drifts.  This observation, coupled with intuition, suggests that the median residual capacities 
computed via the static and dynamic approaches might be more similar, particularly for the peak-oriented 
and pinching building models, if the residual roof drifts were more consistent as well.  The median 
residual roof drifts from the dynamic analyses can be reflected in the static approach by appropriately 
"shifting" the SPO curve for each damage state obtained in Step 1.  As demonstrated below, this shifting 
is the second step of the "calibrated" static approach. 
 
Step 2:  Shift SPO curve for each post-mainshock damage state to "expected" residual roof drift 
As an example, in Figure 10(a) the SPO curve for DS2 is shifted back horizontally until its origin is at the 
median residual roof drift (also in DS2) from NDA of the pinching building model.  Note that the roof 
drift associated with collapse (i.e., 0.048), which is considered an intrinsic property of the building, is not 
shifted.  The resulting median residual capacity computed via SPO2IDA of the shifted SPO curve is 
larger and, in this example, closer to the value computed via the dynamic approach.  For other potential 
residual roof drifts between zero and the peak roof drift associated with collapse (i.e., 0.048), the resulting 
median residual (normalized by intact) capacities are plotted in Figure 10(b) for DS2 through DS3.5.  
Note that each of these plots is simply a mirror image of the median IDA curve that is inferred from the 
damaged SPO curve shifted to have zero residual roof drift. 
 
Also shown in Figure 10(b) are the median residual/intact capacities versus median residual roof drifts 
computed via the dynamic approach.  Recall that the largest median residual roof drift (and smallest 
capacity) in each damage state is observed for the bilinear building model.  From the dynamic results, it 
appears that the median residual capacity approaches the median intact capacity as the median residual 
roof drift approaches zero.  Although not presented in this paper, this is also observed if the residual roof 
drift caused by each of the 30 mainshocks considered is plotted against the median residual capacity 
across the 30 potential aftershocks.  Unlike these dynamic results, the static results in Figure 10(b) for 
DS3 suggest that the median residual capacity is greater than the median intact capacity if the residual 
roof drift is small.  Correcting for this discrepancy is the next step of the calibrated static approach. 
 

 
Figure 10. Median residual capacities after Step 2 of the calibrated static approach, i.e., shifting the SPO 

curve for each post-mainshock damage state to the expected (or measured) residual roof drift.  
Panel (a) shows an example for the pinching building model in DS2.  Panel (b) shows the results 
for the range of potential residual roof drifts, and compares them with the dynamic results. 



 
Figure 11. Median residual (normalized by intact) capacities computed via the calibrated static approach for 

a given residual roof drift.  For DS3.5, the curve matches the results of the dynamic approach 
more closely if the updated "all periods" version of SPO2IDA [16] is used. 

 
Step 3:  Scale median residual capacity for each post-mainshock damage state 
In order to be consistent with the dynamic results when there is no residual roof drift, the median 
residual/intact capacities computed in Step 2 over the range of potential residual roof drifts [see Figure 
10(b)] are divided by their value at zero residual roof drift.  A close-up of the resulting median 
residual/intact capacities plotted against the residual roof drifts is shown in Figure 11.  As a result of this 
scaling, the median residual capacity is equal to the median intact capacity when the residual roof drift is 
zero, consistent with the trend of the dynamic results also shown in the figure. 
 
The errors in the median residual/intact capacities computed via the calibrated static approach, expressed 
as percentages of the dynamic results, are enumerated in Table 6.  Here the residual roof drifts assumed 
for the calibrated static approach are the median values computed via NDA of the three building models 
(see Figure 8 above).  Compared to the errors from the "un-calibrated" static approach (see Table 5 
above), the errors from the calibrated approach are smaller for all of the building models in DS2 through 
DS3.5.  In fact, the errors are less than about 5%, except for the bilinear building model in DS3.5.  For all 
three of the building models in DS3.5, the errors can be reduced further (to less than 2.3%), without 
affecting much the errors for DS2 and DS3, if one uses the version of SPO2IDA that covers "all periods" 
[16] instead of just "moderate periods."  The latter is used in this paper merely to be consistent with the 
case studies presented in the guidelines by Bazzurro et al. [6], which are being updated to incorporate the 
calibrated static approach.  Using the updated "all periods" version of SPO2IDA, the median residual 
capacities computed via the calibrated static approach have been found to be within about 5% of those 
computed via the dynamic approach for three other SDOF building models and an MDOF model of the 
case-study building. 
 

Table 6. Error in the median residual (normalized by intact) capacities computed via the calibrated static 
approach, expressed as a percentage of the more accurate dynamic results also shown in Figure 11. 

Building
Model DS1 (Intact) DS2 DS3 DS3.5 DS4 (Collapsed)

Bilinear 0 2.4% 5.6% 11.5% --
Peak-Oriented 0 2.4% -0.3% 5.1% --

Pinching 0 0.7% 1.5% 4.8% --

Error in Median Residual/Intact Capacity from Calibrated Static Computation

 



Summary of steps for calibrated static computation 
Subsequent to obtaining an SPO curve for the building in each post-mainshock damage state (i.e., Step 1 
of the "un-calibrated" static approach), the additional steps involved in the "calibrated" static computation 
of median residual capacity can be summarized as follows: 
 
2a. Shift the SPO curve for each post-mainshock damage state to be consistent with the expected (or 

measured, as discussed below) residual roof drift, and compute the resulting median residual capacity 
using SPO2IDA. 

2b. Repeat Step 2a supposing no (i.e., zero) residual roof drift. 
3. Divide the median residual capacities computed in Step 2a by the corresponding median residual 

capacities compute in Step 2b, and multiply by the median intact capacity (i.e., the median residual 
capacity for DS1, which has no residual roof drift).  If, in fact, the residual roof drift is zero, the 
resulting median residual capacity for each damage state will equal the median intact capacity, 
consistent with the results of dynamic analyses. 

 
Left open is the matter of determining the "expected" residual roof drift used in Step 2a.  In the 
demonstration of the calibrated static approach above, recall that the expected residual roof drifts were set 
equal to the median residual roof drifts computed via NDA's of the three building models.  Needless to 
say, NDA's are not carried out in the calibrated static approach, but expected residual roof drifts can be 
estimated from generic NDA results.  For example, results like those in Figure 8 above, or from other 
researchers, e.g. [15,17], can be used to estimate the expected residual roof drift as a fraction of the peak 
roof drift associated with each damage state.  Alternatively, but also based on NDA results, the expected 
residual roof drift could be estimated as a fraction of the residual roof drift implied by the SPO curve for 
each damage state (before shifting).  As mentioned in Step 2a, even the residual roof drift measured in the 
field could be used.  In this case, the median residual capacity for each post-mainshock damage state 
should be computed prior to the mainshock for a range of potential residual roof drifts, like in Figure 11 
above. 
 

CONCLUSIONS 
 
Based on the results of back-to-back mainshock-aftershock nonlinear dynamic analyses (NDA's) of case-
study building models, a "calibrated" static approach is developed for computing the median residual 
capacity of a mainshock-damaged building in terms of the aftershock ground motion it can withstand 
without collapsing.  As originally proposed by Bazzurro et. al. [6], the static computation involves static 
pushover (SPO) analysis and use of the SPO2IDA spreadsheet tool [7,8] to infer the corresponding 
dynamic capacity.  The "calibrated" computation takes into account the residual roof drift of the 
mainshock-damaged building, as either (i) measured in the field or (ii) expected for the observed state of 
damage based on, for example, generic research results of NDA's of buildings.  The calibration also 
reflects the observation from the mainshock-aftershock dynamic computations that, as the residual roof 
drift approaches zero, the median residual capacity approaches the median capacity of the building in its 
undamaged state.  Without the calibration, the static computation of median residual capacity is observed 
to underestimate the more accurate results of the dynamic computation.  In fact, the median residual 
capacities computed via the dynamic approach in this paper (for the case-study building models over a 
range of potential post-mainshock damage states) may seem to some to be surprisingly large considering 
the degradation in strength and stiffness.  This resilience of mainshock-damaged buildings has also been 
observed by other researchers, e.g., [3,4], and is somewhat corroborated by the historical rarity of 
aftershock-induced collapses.  Given the economic and other costs associated with restricted or denied 
occupancy (i.e., yellow or red tags), it is important that the residual capacities of mainshock-damaged 
buildings be computed accurately.  To this end, both the calibrated static and dynamic approaches to 
computing residual capacities should be investigated further. 
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