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Summary 
Accurate predictions of the intensity and variability of ground motions from future large 

earthquakes depend strongly on our ability to simulate realistic models of the earthquake source. 
In order to make these simulations more accurate, we have developed a procedure to generate 
physically consistent earthquake rupture models.  We term these models pseudo-dynamic because 
they are kinematic models that are designed to emulate important characteristics of fullly 
dynamic rupture models. The user-specified parameters to generate pseudo-dynamic rupture 
models are the earthquake magnitude and hypocenter, with the option of specifying the fault 
dimensions as well.  We construct pseudo-dynamic models by first generating a slip distribution 
as a realization of a spatial random field that is consistent in its overall scaling and spatial 
variability with slip distributions observed in past earthquakes[Mai and Beroza, 2000; Mai and 
Beroza, 2002].  We compute the static stress drop associated with this slip distribution, which in 
turn is used to assign the temporal evolution of slip (rupture velocity, rise time, slip-velocity 
function) by applying a series of empirical relationships derived from the analysis of a set of 
spontaneous rupture models. A simple energy-budget calculation is used to discard source models 
that are not realizable as spontaneous ruptures. 

Our approach is based on the findings of Guatteri et al. [2003], incorporating ideas developed 
by Mai et al. [2001] and Guatteri et al. [2002] for a source characterization that adequately 
describe the dynamics of rupture without having to do full dynamic simulations. The pseudo-
dynamic approach circumvents the limits imposed by the extreme computational demand of 
generating fully dynamic rupture models for simulating multiple realizations of a scenario 
earthquake for strong-ground motion prediction. While the relationships between source 
parameters described in this paper are significant simplifications of the true complexity of the 
physics of the rupture process, they help identify important interactions between source properties 
that are relevant for strong ground motion prediction.  

Introduction 
Statistical models have long been proposed to characterize heterogeneity in earthquake slip and 

to relate it to observable characteristics of earthquake ground motion [Haskell, 1966; Aki, 1967]. 
Andrews [1980b] presented a theoretical formulation for this problem for heterogeneous faults 
that has formed the foundation for most subsequent efforts [Herrero and Bernard, 1994; Frankel, 
1991; Zeng et al., 1994]. Andrews [1980b] showed that a two-dimensional slip function D(x,z) 
with a fractal dimension D = 2 results in a far-field spectral decay of displacement as ω-2. The 
fractal dimension D is related to the wavenumber decay of the two-dimensional Fourier spectrum 
of the slip function, D(k) (where k is the wavenumber); for D = 2, the wavenumber spectra 
decays as k-2. Using this relation, Herrero & Bernard [1994] propose the “k-square” model that 
introduces a source-size dependent length scale Lc as well as a wavenumber-dependent behavior 
of the rise time distribution.  Zeng et al. [1994] develop the composite source model based on the 
model of Frankel [1991] in which elementary circular sources with a fractal size distribution are 
summed to form the complete two-dimensional slip function. An explicit assumption in these 
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models is that stress drop is scale-independent.  Moreover, none of these methods directly takes 
into account slip heterogeneity as imaged using seismic data in finite-source models. 

In order to characterize the slip complexity of past earthquakes, Somerville et al. [1999] adopt a 
deterministic approach to correlate the size and number of asperities with seismic moment for a 
set of finite-source rupture models. Mai and Beroza [2002], in contrast, use a spatial random-field 
model to describe the complexity of earthquake slip distributions. They find that a von Karman 
autocorrelation function for which the correlation length increases with source dimension most 
closely represents the spectral properties of existing earthquake slip models. Increasing 
magnitude and hence increasing source dimensions with constant correlation lengths would mean 
that the rupture would be comprised of many isolated high-slip (high stress-drop) asperities, 
which would show extremely large slip (and stress drop) in order to accommodate the seismic 
moment.  Unless the correlation length grows with earthquake size, these areas of positive stress 
drop will be too weakly connected for the rupture to propagate spontaneously because they will 
be separated by large areas of negative stress drop, and therefore negative elastostatic energy, 
which will act to stop the rupture. 

Guatteri et al. [2002] find that including spatial and temporal variations in slip, slip rise time, 
and rupture propagation that are consistent with dynamic rupture models exerts a strong influence 
on near-source ground motion and has the potential to improve strong ground motion prediction. 
Their results lead to a feasible approach to specify the variability in the rupture time distribution 
in kinematic models consistently with dynamic source properties. Mai et al. [2001] and Guatteri 
et al. [2002] calculate ground motion from a “first-generation” set of pseudo-dynamic models, 
demonstrating the potential of such a procedure. In this paper, we focus on the generation of the 
source models by expanding and improving upon the previous “first-generation” pseudo-dynamic 
source characterization, and leave the ground motion calculation for future applications. 

Pseudo-Dynamic Source Characterization 
In this paper we define as a pseudo-dynamic source model a kinematic model in which the 

relevant source parameters (slip, rupture velocity and slip-velocity function) are specified in such 
a way that they emulate both slip distributions of past earthquakes and the temporal behavior of 
spontaneously propagating dynamic rupture models. We developed the pseudo-dynamic approach 
(henceforth abbreviated as PD) by investigating the relationships between kinematic and dynamic 
source parameters for a set of dynamic rupture models representing strike-slip earthquakes with a 
magnitude range of 6.4 < M < 7.2. 

The complexity of the spatial slip distribution in our PD models is characterized as a spatial 
random field [Mai and Beroza, 2002] that is stochastically consistent with slip models for past 
earthquakes. The starting point of the PD model consists of generating a spatial distribution of 
slip as a realization of a spatial random field. 

The characterization of the temporal slip evolution in finite-source rupture models for past 
earthquakes is limited by a lack of resolution of the variability of temporal slip parameters, such 
as rupture velocity and slip rise time. The fundamental idea of our approach is that we can 
overcome this limitation by assuming that dynamic rupture modeling can provide physical 
constraints to the temporal slip evolution characterization, given a spatial slip distribution. We 
therefore perform spontaneous dynamic rupture simulations to develop the relationships between 
kinematic and dynamic rupture parameters to constrain the temporal rupture characteristics. The 
following section describes our dynamic modeling approach and the various steps toward 
defining physically consistent rupture velocity, rise time and slip-velocity functions. 

Initial Dynamic Rupture Modeling 
The first PD source characterization was developed by Mai et al. [2001] and improved by 

Guatteri et al. [2002]. Both their results were based on the set of 6 stochastic-dynamic models 
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developed by Guatteri et al. [2003] computed using a Boundary Integral Method [Boatwright and 
Quin, 1986; Das and Kostrov, 1987; Quin and Das, 1989]. These models were discretized into a 
grid size of 0.75 km, allowing for a maximum frequency of about 2 Hz (for this method), and a 
slip-weakening fault constitutive relationship was assumed [Andrews, 1976; Day, 1982] (Figure 
1).  Table 1 summarizes and defines the relevant dynamic parameters together with a brief 
explanation of how we assign or calculate them to generate our set of stochastic-dynamic models. 
 
 

 
 
Figure 1: Slip-weakening model showing the relevant energy contributions: elastostatic energy Eel (left), 
fracture energy Efr  and relaxation work Erx (center). The right panel displays the case of negative stress 
drop Δτ  for which fracture energy is still defined. See Table 1 for further explanations.  τ1 is the final 
stress, which may be different from the dynamic frictional level. 
 

 
TABLE 1: Relevant dynamic parameters 

General Information In this study 
Parameter Description Value Comment 

1. σn Normal stress 150 MPa Uniform over the fault 

2. µd Coefficient of dynamic friction 0.43 Uniform over the fault 

3. τf Dynamic resistance 
(frictional stress level) 

µdσn Uniform over the fault 

4. Δτ  Stress drop τ0 - τt Calculated from slip 
distribution (eq. 3) 

5. τ0 Initial shear stress Δτ +  τf  
6. Dc Slip-weakening distance Sampled from [0.25 – 0.4] m for 

the whole fault 
Assigned to lower bound 
where Δτ < 0 

7. Efr Apparent fracture energy 
(also termed Gc) 

 
½ Dc (τy - τf )  

Simulated from stress 
drop distribution using 
(eq. 6) 

8. τy- τ0 Strength excess τex Calculated from Efr and Dc values Lower bound τex = 0.5 
where Δτ <0.  Upper 
bound given by Smax 

9. S Strength parameter (τy - τ0 ) / Δτ Upper bound Smax = 2.5 
10. τy Static resistance 

(upper yield stress) 
µsσn Calculated from (eq. 8) 

and (eq. 5) 
11. µs Coefficient of static friction τs / σn  
12. Eel Elastostatic energy - ½ sliptot (τf - τ0 )  
13. Ers Radiated seismic energy Eel – Efr;  

Erx = 0  if the frictional stress τf  is 
equal to the final stress τ1 

Assumption: static stress 
drop is equal to the 
dynamic stress drop 
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We assume the same velocity profile as in Guatteri et al. [2003] derived from Boore and 
Joyner [1997]. We force the rupture to nucleate at a given hypocenter location and to propagate at 
a constant rupture speed within a nucleation area whose size is calculated according to Day 
[1982]. 

Our procedure to generate the new set of stochastic-dynamic models is very similar to that of 
Guatteri et al. [2003]. We first generate our target slip distribution using the method of Mai and 
Beroza [2002], from which we compute the corresponding static stress drop using the method of 
Andrews [1980]. Once we set the hypocenter location, instead of assigning the fracture energy 
distribution by the trial and error procedure as in Guatteri et al. [2003], we applied the empirical 
relationship between fracture energy and stress drop and crack length developed by Guatteri et al. 
[2002]. In a later section in this paper we describe this relationship in detail and discuss how we 
modified it to satisfy the assumption of sub-shear average rupture velocity over the entire fault 
plane for the stochastic-dynamic models. 

The set of stochastic-dynamic rupture models are representative of strike-slip earthquakes 
with a magnitude range of 6.4 < M < 7.2. Table 1 summarizes the important features of the 
dynamic parameters, while Figure 2 schematically shows the roadmap of our PD procedure 
development. Table 2 summarizes the parameters used to define a PD model. 
 
   
 
         
 

 
 
 
     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Stochastic-Dynamic models 
[Guatteri et al., 2003] 

Relationship between 
rupture velocity, v,  
Gc, Δτ, and Lh 
Equations (4,5) 
 

          Δτ  from slip 

Mai et al., [2001] 
• Gc = constant 
• Rise time, τr, based on 

healing front propagating at 
shear-wave velocity 

Guatteri et al., [2002] 
• Gc simulated, Equation (6) 
• τr simulated, Equation (10) 

Fi
rs

t-G
en

er
at

io
n 

ps
eu

do
-d

yn
am

ic
 m

od
el

in
g 

Slip-velocity function parameterization as a 
quasi-dynamic Kostrov function 
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Stochastic-dynamic simulation using Gc from Equation (6) 
             

• New parameterization of τr 
• New parameterization of SVF, including peak slip-velocity, Vmax and time pulse, Tp 

THIS STUDY 
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TABLE 2: Kinematic, dynamic and pseudo-dynamic parameters 

Slip 
Lh, distance from the hypocenter 

Rupture characteristics Assigned kinematic parameters 

 
Δτ, stress drop 
Gc, fracture energy 

Deduced from kinematic, but not 
rupture characteristics 

Intermediate, dynamic parameters 

 
v, rupture velocity 
τr, rise time 
SVF (Vmax, Tp) 

 
Rupture characteristics 

Pseudo-dynamic output parameters 

 

Characterization of Spatial Slip Distribution 
The variability of slip in earthquakes maps directly into high frequency strong ground 

motion [Bernard and Madariaga, 1983; Spudich and Frazer, 1984]. At present, it is not 
possible to anticipate earthquake slip distributions deterministically, but we can anticipate the 
characteristics of slip slip variation in earthquakes of a given size if we have a valid stochastic 
description of the source.  With this statistical description of the earthquake source in hand, we 
can generate many realizations of the slip distribution in a scenario earthquake of interest (with 
accompanying strong ground motions) without the need to know the slip distribution 
deterministically. 

Here we use a spatial random-field model for earthquake slip to represent the slip 
distribution [Mai and Beroza, 2002], but other models characterizing spatially variable slip are 
possible [Andrews, 1980; Herrero and Bernard, 1994; Zeng et al., 1994; Sommerville et al., 
1999]. A spatial random field is characterized either in space by its autocorrelation function, 
C(r), or in the spectral domain by its power spectral density, P(k), where k is the wavenumber. 
Analyzing a set 44 finite-source rupture models, Mai and Beroza [2002] found that a von 
Karman auto-correlation function best represents the power spectral decay of complex 
earthquake slip, with correlation length increasing with increasing magnitude. The power 
spectral density P(k) of  the von Karman auto-correlation function is given by  

 

    P(k) =
4!H

K
H
(0)

a
x
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2 , H being the Hurst exponent, and KH the modified Bessel function of 
the first kind (order H).  The characteristic scale lengths are given by the correlation lengths, ax  
and az in the along-strike and down-dip directions.  The Hurst exponent, H, in the expression for 
the von Karman distribution describes the spectral decay at high wavenumbers. The spectral 

Figure 2: (previous page) Roadmap showing the various phases involved in the development of the pseudo-dynamic 
procedure presented in this paper. 
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decay of 44 source models studied by Mai and Beroza [2002] revealed that H = [0.8 –1.0], and 
that the correlation length scale with magnitude as: 
 
   ax ≈ 2.0 + ⅓ Leff  log(ax) ≈ −2.5 + ½ Mw 
                (2) 
   az ≈ 1.0 + ⅓ Weff log(az) ≈ −1.5 + ⅓ Mw 
 
where Leff, Weff are the effective source dimensions as defined in Mai and Beroza [2000].  

We generate heterogeneous slip distributions for the selected target earthquake magnitudes 
using equations (1) and (2).  Source dimensions for these earthquakes (6.4 < M < 7.2) are 
calculated following Mai and Beroza [2000]. Having calculated the power-spectral density P(k), 
the two-dimensional slip function is obtained by assuming a uniform-random phase and 
subsequent two-dimensional Fourier transformation under the requirement of Hermitian 
symmetry to ensure a purely real valued slip-function. 

 

Calculating Static Stress Drop from Slip Distribution 
The complete stress-time history can only be calculated by knowing the entire slip-time 

evolution of the rupture [e.g., Bouchon, 1997]; however, the goal in this study is to define a 
dynamically consistent slip-time evolution based on the final slip only.  For this purpose we use 
the static stress drop, Δτ, associated with slip occurring on the rupture plane, as a fundamental 
parameter for characterizing the temporal slip evolution.  We relate slip and stress to one another 
by a convolutional integral [Andrews, 1980] expressed as a multiplication in the wavenumber 
domain, as: 

 
   Δτ(k) = − K(k) · D(k)             (3) 

 
where τ(k) and D(k) denote the Fourier transforms of the two-dimensional stress drop Δτ(x,z) and 
slip-function D(x,z), respectively. K(k) represents the static stiffness function that for crustal 
rocks can be approximated as K(k) = −½ µ k. Hence, having simulated a two-dimensional slip 
distribution D(x,z), equation (3) can be used to compute the associated static stress drop Δτ(x,z) 
by means of Fourier transformation of D(x,z) and subsequent inverse Fourier transformation of 
τ(k). 
 

Characterization of Fracture Energy for Temporal Slip Evolution 
The characterization of fracture energy Gc is the critical step in our PD procedure for 

determining the temporal evolution of slip. Our PD approach is built on the following 
relationship derived by Andrews [1976] for a simple homogeneous anti-plane crack: 

 
1 - v2/β 2 = π2 · (Rc  / 2)2,                                                              (4) 

 
where Rc is the dimensionless parameter: 

 
Rc = µ ·Gc  / (Δτ 2·Lh),                                                                              (5) 

 
v is the rupture speed, β is the shear wave speed, µ is the shear modulus, Δτ is the stress drop, and 
Lh is crack length. Guatteri et al. [2003] showed that relationship (4) applies approximately to 3-
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D heterogeneous dynamic models suggesting that rupture velocity variability can be inferred from 
the distribution of dynamic parameters over the fault plane.  
 
Rupture Velocity. The first step towards a temporal slip evolution characterization is to 
determine a distribution of rupture velocity that is physically consistent with a given slip 
realization. Given a slip distribution, Equation (4) allows us to achieve this by determining the 
corresponding stress drop distribution (Equation 3), calculating the crack length Lh which we take 
as the distance of each point on the fault to the hypocenter, and based on that, generating a 
physically consistent distribution of fracture energy, Gc. 
 
Fracture Energy. Different distributions of fracture energy may be consistent with a given slip 
distribution and rupture propagation. Through a trial and error procedure Guatteri et al. [2003] 
imposed the fracture energy distribution on their stochastic-dynamic models such that the 
resulting rupture velocity would be sub-shear on average everywhere over the fault plane. In 
order to avoid this time consuming trial and error approach, Guatteri et al. [2002] used their set 
of stochastic-dynamic models to build an empirical relationship to generate a distribution of 
fracture energy from a given slip model and hypocenter location. After some data exploration 
they developed an empirical relationship based on the normal linear model where the conditional 
expectation of Gc is: 
 
    E(Gc|β, Δτ, Lh) = β0 + β1 Δτ Lh

1/2,                                     (6) 

where β is the vector containing β0 and β1, the regression coefficients that they determined 
through a least squares regression procedure.Figure 3 shows the fracture energy plotted as a 
function of the respective predictor Δτ Lh

1/2  (that is proportional to the stress intensity factor) for 
all points over the fault plane for all the different dynamic models developed by Guatteri et al. 
[2002]. 

Relationship (6) can be used either to assign a fracture energy distribution to compute 
spontaneous rupture models and to apply Equation (5) to calculate a distribution of rupture 
velocity in our PD procedure. Before using it for the latter application, we validated and modified 
it as described below. 

 
 

 
 
 
 
 
 

 
 

We first applied Equation (6) to derive a distribution of fracture energy to compute a new set 
of stochastic-dynamic models. However, unlike Guatteri et al. [2003], in this study we allow the 
dynamic models to have areas of negative stress drop (Figure 1). This difference implies that on 

Figure 3: Fracture energy values as a 
function of stress drop and crack 
distance. Values relative to different 
dynamic models described in Guatteri et 
al. [2003] are shown in different colors. 
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average we need lower values of Gc to maintain a sub-shear rupture velocity over the fault plane, 
because the negative stress drop areas increase the resistance of the fault to rupture. As a result, 
we find that lower values of regression coefficients β0 and β1 are needed than those found 
previously by Guatteri et al. [2002].  

Furthermore, we found that two distinct sets of coefficients are needed, corresponding to 
rupture models with M <= 6.5 and for M > 6.5, respectively. The two sets are β0 = 0.18 and β1 = 
0.0015 for M <= 6.5, and β0 = 2.7 and β1 = 0.0021 for M > 6.5. The difference β0 stems from the 
difference in average stress drop values, while the almost identical slope β1 indicates that the 
dependency of the stress intensity factor is preserved.  We interpret this result as a consequence 
of lower stress drop values in our rupture models with M <= 6.5 than those with a larger 
magnitude, with corresponding different values of available elastostatic energy Eel (Figure 1, 
Table 1). This would imply that the coefficients of the fracture energy distribution in Equation (6) 
vary as a function of earthquake magnitude. 

The possibility that the scaling coefficients for fracture energy Gc are different for 
earthquakes below and above M = 6.5 has interesting implications as this is the magnitude range 
where standard scaling relations may break down [Shimazaki, 1986; Hanks and Bakun, 2003]. 
Once rupture width approaches the thickness of the seimogenic zone, and rupture length L 
becomes larger than about twice rupture width W, ruptures grow in along-strike direction only, 
and the above defined crack length Lh becomes progressively larger for larger/longer earthquakes, 
requiring higher values of fracture energy Gc 

Equation (6) is derived for points on the fault having a positive stress drop. For areas of 
negative stress drop, we assign a constant value of Gc calculated as the area shown in Figure (1c) 
by assuming minimum allowed strength-excess and Dc values (Table 1). Note that the use of 
Equation (6) provides a very simplistic parameterization of fracture energy given a slip 
distribution (and therefore a static stress drop distribution) and hypocenter. The resulting fracture 
energy distribution represents only one possible realization out of the space of physically 
plausible fracture energy distributions consistent with a given slip model. However, Equation (6) 
contributes to the intent of this paper to provide a simple tool to quickly generate a physically 
consistent rupture model.  

Having assumed in our dynamic models distributions of Dc and strength excess that are fairly 
uniform and within assigned limits, the strong dependency of Gc on stress drop in our modeling 
appears to be an artifact of our assumptions. As pointed out by Favreau and Archuleta [2003], 
however, it is plausible that larger values of stress drop are necessary to break stronger barriers of 
energy, or else the rupture would stop. The dependency found between Gc and the stress intensity 
factor may be physically interpreted as corresponding to the increase of energy lost due to the 
occurrence of off-fault microcracking with rupture propagation distance [Andrews, 1976; Peck et 
al., 1985]. 
 

Slip-Velocity Function Parameterization 
A realistic parameterization of the slip-velocity function (SVF) is a critical component of 

earthquake rupture modeling for strong motion prediction. As for the rupture velocity, the 
variability of the SVF is poorly constrained from waveform inversion procedures. In dynamic 
modeling the shape of the SVF at different fault points depends on several factors, such as local 
stress parameters and distance from the hypocenter [Day, 1982; Nakamura and Miyatake, 2000; 
Guatteri and Spudich, 2000; Guatteri et al., 2003]. Typical SVFs of dynamic models governed 
by a slip-weakening friction law are shown in Figure 4. Despite the considerable complexity seen 
in these slip-velocity functions, their time-dependence shows an approximate t-1/2–decay, 
consistent with the quasi-dynamic Kostrov-type slip-velocity function proposed by Archuleta and 
Hartzell [1981]. Note that some points on the fault are characterized by a long tail of low slip-
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velocity. From inversion of strong-ground motion, it is not clear whether such low-amplitude tails 
would be resolved. 

 
 
 

 
 
 
 
 
 
 
 
 
Figure 4:  Slip-velocity functions 
for identical points on the fault 
(each column) at a depth of 9.5 km 
for four spontaneous-dynamic 
rupture models [Guatteri et al, 
2003]. 

 
 

 
 

In this study, we define the rise time as the time from 5% to 95% of the total slip, i.e. being 
representative of the total slip duration. A comparison between the rise time inferred for real 
earthquakes from kinematic inversion procedure [Wald et al. 1994; Beroza and Spudich, 1988; 
Cotton and Campillo, 1995] and the rise time defined for dynamic SVF’s may not be very 
meaningful. In order to characterize the shape of the SVF (impulsive vs. smooth), we define an 
additional time parameter, the ‘time pulse’ Tp, as the time from 5% to 50% of the total slip. For 
very spiky SVF, Tp will be much shorter than for a broad and smooth SVF, while the respective 
rise time may be of comparable size. We believe that Tp is a more relevant time parameter for 
strong-ground motion prediction than the rise time, particularly at high frequencies  

In this study we propose a very simple approximation of the dynamic SVF using a small 
number of parameters in order both to provide a feasible parameterization within the PD 
procedure and to capture the relevant characteristics of the dynamic SVF for strong-ground 
motion prediction. Nakamura and Miyatake [2000] proposed a SVF parameterization that closely 
resembles the SVF obtained in dynamic modeling; their characterization is perhaps superior to 
our proposed approximation, but it is also rather complex to implement within our approach. Day 
[1982] also proposed very insightful relationships between source parameters describing the SVF 
in dynamic models. We make use of both the Day [1982] and the Nakamura and Miyatake [2000] 
results in formulating our parameterization. Table 2 lists the parameters defining the SVF at a 
given point on the fault: the maximum slip-velocity value Vmax, the time pulse Tp, and the rise 
time τr.  

Figure 5 shows our proposed parameterization of the SVF as a simple approximation of the 
SVF typical of dynamic models governed by a slip-weakening friction law (Figure 4). The SVF is 
composed of two overlapping triangles, T1 and T2 with a total base equal to the rise time, τr. T1 
is an isosceles triangle having an area A equal to half of the local total slip S, height equal to Vmax 
and base equal to the pulse width Tp. T1 is the portion of the SVF that contributes the most to the 
seismic radiation. T2 is a rectangular triangle with height equal to V2 = cVmax. The area of the 
non-overlapping part of T2 is equal to A. In this study we set c = ½, but other values may be 
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The following system of equations applies to our SVF parameterization (Figure 5): 
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Figure 5. Slip-velocity function 
parameterization in our PD approach, 
characterized by two overlapping triangles, 
an isosceles triangle T1 and a rectangular 
triangle T2. 
 
 
 

Vmax. The value of peak slip-velocity is mainly controlled by the local value of stress drop, of Dc, 
and distance from the hypocenter [Day, 1982; Andrews, 1985; Ohnaka and Yamashita, 1991; 
Nakamura and Miyatake, 2000; Guatteri and Spudich, 2000]. Because for a given stress drop 
distribution, different choices of Dc result in different peak-slip velocities (a small Dc results in a 
large Vmax, and a large Dc in a low Vmax) [Guatteri and Spudich, 2000], we cannot provide a 
unique parameterization for Vmax for a given slip distribution. However, the user has the option to 
set a value of Dc within a given range and tune the SVF shape in a manner consistent with the 
frequency band of interest in ground motion simulation. 

The analysis of our set of dynamic models suggests that the following relationship, modified 
from Day [1982], for Vmax provides an adequate description of the Vmax distribution observed in 
dynamic models: 

 
( )!µ" vWVV pfRemaxmax

5.0= ,           (10) 
 

where W is the width of the fault, τp = max(Δτ, w(τs − τd))  and VmaxRef = 0.9 Dcfc, where Dc is a 
chosen value of slip-weakening distance, τs − τd  = 2Gc/Dc, and fc is a frequency parameter 
defined in Ohnaka and Yamashita [1989]. The equation for VmaxRef   has been adapted from 
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Ohnaka and Yamashita [1989]. Our definition of τp is based on the idea that, if the value of 
strength excess is very high compared to the stress drop, then it has a large effect on Vmax. In our 
parameterization, we found that w=0.6 for areas with Δτ >0 and w=1 for areas with Δτ <= 0 
gives a satisfactory fit with the Vmax distribution of the dynamic models.  
 
Pulse width Tp. As Figure 4 shows, short values of Tp correspond to large values of Vmax. Figure 
6 displays the relationship between Tp and the value of total slip S divided by Vmax for the points 
on the fault with a slip and slip-velocity larger than 50% of the maximum slip and maximum slip-
velocity over the fault, respectively. A linear relationship provides a simple parameterization of a 
Tp given Vmax and the total slip: 
 

max
1 V
STp != ,                         (11) 

where β1 =0.84. Let Vave be the average slip-velocity during Tp, then 0.45 S = Vave Tp, implying 
that Vave Tp ≈ 1/2·Vmax Tp that justifies our parameterization 0.5·S = 0.5·Vmax Tp. Note that this 
relationship is derived for areas of large slip and slip-velocity that are the areas of the fault with  
large seismic energy radiation, and hence contribute the most to strong-ground motions.  
 

 
 
 
 
 
 
 
 
 
 
Figure 6. Tp values of the set of 9 dynamic 
models plotted as a function of the 
corresponding value of slip/ Vmax. This plot 
shows the relationship for the points on the 
fault having slip and Vmax values larger than 
50% of the maximum slip and slip-velocity, 
respectively, over the fault. 
 
 

 
 
Slip Rise Time. As for the characterization of the fracture energy distribution, Guatteri et al. 
[2003] built an empirical relationship for slip rise time based on the dynamic models, consistent 
with our stochastic-dynamic models. Assuming a slip-weakening friction model [Day, 1982, 
Andrews, 1985], the duration of slip at a given point on the fault is controlled mainly by the total 
fault rupture duration. Figure 7 shows the rise time values τr plotted as a function of the 
difference between the total effective fault rupture duration, Totrup, and the corresponding rupture 
time value, Trup. The total effective fault rupture duration is the maximum rupture time value 
among the fault boundary locations aligned with the hypocenter. Figure 7 suggests a normal 
linear model for an empirical relationship for rise time 
 

E(τr|β, Totrup, Trup) = β0 + β1( Totrup- Trup).                          (12) 
 
Although we have derived an empirical relationship for τr (Equation 12), we require that τr be 
consistent with Equation (9). Tp is one of the most important time parameters in terms of its 
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influence on the calculated ground motion. Therefore, we follow a 2-step approach to assign all 
the parameters for SVF such that the consistency with the given slip distribution is satisfied. First, 
we calculate an initial guess for τr from the empirical relationship for the purpose of imposing an 
upper bound to Tp. Then, from Equation (10), we can solve for τr as a function of Tp as follows: 

 

max
cV

S
Tpr +=! .                        (13) 

 
Figure 8 shows a comparison of PD SVF’s derived by applying the parameterization described 
above with the corresponding dynamic SVF’s. 
 
 

 
 
 
 
 
 
 
  

 
 

 
 
 

 
 
Figure 8. Comparison between the dynamic SVF with the PD SVF parameterization proposed in this paper for two 
selected points on the fault for two different models. The rupture times of the dynamic model has been aligned to that 
of the PD model for better comparison.  

Figure 7. Slip rise time as a function of total fault 
rupture duration and rupture time. Values 
corresponding to different dynamic models are 
shown with different colors. 
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Summary of PD-approach:  
 
The basic steps involved in the development of a pseudo-dynamic source realization are the 
following  

1. Define the target earthquake magnitude and event type. 
2. Assign or determine the fault dimensions [Wells and Coppersmith, 1994; Somerville et 

al, 1999; Mai and Beroza, 2000]. 
3. Set the hypocenter location. 
4. Generate a stochastic slip distribution [Andrews, 1980; Somerville et al, 1999; Mai and 

Beroza, 2002]. 
5. Compute the corresponding stress drop distribution [Andrews, 1980]. 
6. Generate a distribution of fracture energy (Gc) using Equation (6). 
7. Calculate rupture velocity and rupture time distributions using Equation (5). 
8. Calculate Vmax distribution from Equation (10). 
9. Apply 2-step procedure to derive the distribution of Tp and τr using Equations (11-13). 

 
Figure 9 shows an example of a pseudo-dynamic source model for a M=6.5 strike-slip 
earthquake. Figure 10 shows a comparison of a fully dynamic source model and its corresponding 
pseudo-dynamic source characterization. The common constraints to the two source 
characterizations are the fault geometry, the hypocenter location, the slip distribution and the 
requirement of sub-shear rupture propagation.  
 

 
Figure 9. Example representing the pseudo-dynamic 

procedure. The starting point is a slip realization generated 

as a spatial random field [Mai and Beroza, 2002]. The 

corresponding stress drop distribution is computed using the 

method of Andrews [1980]. 
 

 

Figure 10. Comparison between a fully 

dynamic rupture model (left) and a 

corresponding pseudo-dynamic source model 

(right). Notice that the main characteristics of 

the dynamic rupture are represented in the PD 

model, such as the variation in the rupture 

velocity, the areas with large and low peak slip-

velocity, and the areas with short Tp.   
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Discussion: The energy budget of earthquake rupture 
The pseudo-dynamic source characterization developed here is not intended to be a perfect fit 

to the corresponding spontaneous dynamic rupture models, which are themselves only models of 
what actually happens in nature during earthquake rupture. The features of the earthquake source 
most important for realistic strong-ground motion simulations, however, are well described by 
our PD parameterization. The main correlation between source parameters can be described in 
plain English as follows: the distribution of stress drop is the main factor affecting the distribution 
of the other dynamic rupture parameters. The rupture velocity correlates with stress drop, Vmax 
correlates with stress drop, and Tp and τr are inversely proportional to stress drop. Finally, the 
position of the hypocenter affects the distribution of parameters, and certain hypocenter positions 
are not plausible as those would not lead to spontaneous rupture propagation. To further 
investigate this last statement, we analyzed the energy budget during earthquake rupture. 
 
Plausible Models Based on Energy Budget and Hypocenter Location 

It is a common and frustrating experience of many dynamic modelers to initiate spontaneous 
rupture calculations that subsequently abort before rupturing to the desired earthquake size 
[Nielsen and Olsen, 2000; Oglesby, 2002; R. Archuleta, pers. comm.; R. Harris, pers. comm.].  

While the investigation of the underlying physical process distinguishing small and large 
earthquakes is well beyond the scope of this paper, we focus on identifying those target slip 
distributions that are not consistent with a given hypocenter location based on a simple energy 
budget calculation. Our approach helped us both to speed up the computation of successful 
spontaneous rupture models and to select physically plausible (realizable) PD models. 

In describing the energy budget during earthquake rupture, we follow Favreau and Archuleta 
[2002]. Each point on the fault provides a seismic energy Ers =  Eel – Efr – Erx, where the various 
terms are defined in Table 1. For simplicity, in this study we neglect the relaxation work Erx spent 
at the arresting the rupture (Figure 1). As noted by Favreau and Archuleta [2002], the fault can 
be characterized by locally negative seismic energy density values, but its integral on the fault 
must be positive. Based on this physical requirement, we consider that, as a fundamental 
condition for its growth, the rupture must be propagating such that the integral of Ers on the 
rupture area is remains always positive. In other words, while there can be local sinks of energy 
over the fault, an earthquake process cannot be described overall as a sink of energy. For a given 
earthquake magnitude, we might expect a more stringent constraint such as a minimum value of 
radiated seismic energy, but we leave this as an open question for future studies. 

It is important to note that the placement of the hypocenter exerts a strong influence on the 
energy budget as it affects both the specific fracture energy parameterization, as well as the 
determination of the areas of the fault over which we incrementally integrate Ers. The distribution 
of elastostatic energy Eel can be calculated from the target slip model and the corresponding stress 
drop. The fracture energy distribution is assigned through Equation (6), and finally the seismic 
energy density distribution is calculated as shown in Table 1. Although our calculated energy 
budget strongly depends on our fracture energy parameterization, it provides a consistent 
approach with our dynamic source modeling and PD procedure. 

The integrated seismic energy over the ruptured fault area should remain positive in order to 
allow rupture growth. In other words, if the integrated seismic energy becomes negative, there is 
no more energy available for the rupture to grow, and hence the rupture would stop. This is the 
idea proposed originally by Husseini [1977] and is consistent with the idea that a small 
earthquake is like a large earthquake that ran out of energy.  

Figure 11 shows the energy budget calculation for a given slip distribution (Figure 11a; the 
hypocenter location is shown by the star). Figure 11e shows the seismic energy integrated over 
concentric areas around the hypocenter in order to mimic simplified rupture propagation. Notice 
that around the hypocenter there is an area that is a large sink of energy. In Figure 11* the 
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Figure 12*. Dynamic model for the rupture 
parametrization shown in Figure 12. Note that the 
dynamic rupture indeed propagated over almost 
the entire fault, in agreement to Figure 12, but 
contrasting to Figure 11. 

corresponding spontaneous rupture model with identical stress drop and Gc distributions is 
consistent with the lack of available energy necessary to maintain a rupture growth beyond the 
nucleation area where the rupture is forced.  Figure 12 shows the energy budget calculation for 
the same slip distribution but a different hypocenter. This model results in a positive integrated 
seismic energy over the entire fault and is consistent with the rupture propagating over the entire 
fault (Figure 12*). The same result may be achieved by lowering the Gc, and this approach could 
be used to test the space of Gc and hypocenters consistent with a given slip distribution, especially 
before running spontaneous rupture models. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 

 

 

Figure 11. Simulated slip distribution for a M=7 
strike-slip earthquake (top left) and the 
corresponding energy calculations for the PD-
model. Note of Ers (bottom left) indicated 
incomplete rupture propagation. 

Figure 11*. Dynamic model for the slip 
distribution shown in Figure 11. Note how the 
rupture terminated at an early stage, in accordance 
to what Figure 11 indicates. 

Figure 12. Same slip distribution as shown in 
Figure 11, but different hypocenter location; the 
PD-energy calculations indicate that the rupture 
would propagate farther in this case. 
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Conclusions and Caveats 
Dynamic rupture modeling has the advantage with respect to kinematic modeling of 

providing a physically self-consistent earthquake source characterization. Guatteri et al. [2003] 
showed that it leads to a realistic representation of ground motion time histories and to a realistic 
prediction of ground motion intensity from future earthquakes. In our work we have shown that a 
pseudo-dynamic source characterization has the potential to improve the source model design 
(physically based) in probable earthquake scenarios. Pseudo-dynamic modeling is a feasible 
approach for the simulation of suites of ground motion time histories, merging naturally with the 
probabilistic approach usually taken for seismic hazard analysis. However, the pseudo-dynamic 
procedure outline above has focused on strike-slip earthquakes in the magnitude range from 6.4 
to 7.2. Future work will be devoted to investigate and develop a PD-model that also includes dip-
slip earthquakes, and is potentially applicable over a wider magnitude range. At the time of 
writing this report, we have only limited experience in applying the PD-approach to large-
magnitude earthquakes [Mai et al, 2001] that already suggest that at least size-dependent 
relationships for the fracture energy Gc should apply. The application of our PD-model to 
earthquake scenarios that are clearly out of the range for which the current characterization has 
been developed warrants extra care and validation of the results. 
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