Development of a New Family of Normalized Modulus Reduction and Material Damping Curves

K.H. Stokoe, II, M.B. Darendeli F.-Y. Menq, W.K. Choi, and R.B. Gilbert University of Texas at Austin

Int. Workshop on Uncertainties in Soil Properties and Site Response March 2004

Dynamic Soil Properties

Examples of Empirical Relationships Based on Laboratory Studies

- Seed et al., 1970
- Hardin and Drnevich, 1972
- Kokusho, 1980
- Seed et al., 1986
- Sun et al., 1988
- Idriss, 1990
- Vucetic and Dobry, 1991
- Ishibashi and Zhang, 1993

Nonlinear Behavior of Sandy and Gravelly Soils

Objective

To generate a new family of empirical $G/G_{max} - \log \gamma$ and $D - \log \gamma$ curves such that the observed effects of various parameters on G/G_{max} and D are represented more accurately:

- Shearing Strain Amplitude, γ
- Soil Type (expressed by PI, C_u, D₅₀)
- Effective Confinement, σ_0'
- Number of Cycles, N
- Loading Frequency, f
- Overconsolidation Ratio, OCR

much like Hardin and Drnevich, 1972

Proposed 5- Parameter Model (Modified Hyperbolic Model)

$D = D_{min} + D_{Masing} * \left(b * (G/G_{max})^{C} \right)$

1.0 0.8 G/G_{max} 0.6 $\gamma_r = 0.01 \%$ **Effect** of 0.4 $\gamma_{r} = 0.03 \%$ **0.2** – γ_r = **0.1** % Reference 0.0 Strain, γ_r , on: 0.0001 0.001 0.01 0.1 1 Shearing Strain, y, % 1. $G/G_{max} - \log \gamma$ 0.04 0.03 2. $\tau - \log \gamma$ MPa 0.02 (a = 1)6 0.01 0.00 0.2 0.4 0.6 8.0 1.0 0.0 Shearing Strain, γ, %

Effect of Coefficient "a" on G/G_{max} – log γ Curves

Masing (1926) Behavior

Masing Behavior: D – log γ

G_{max} Degradation with γ : "c" Parameter

Relationships Between Five Parameters and Soil Type and Loading Conditions: Plastic Soils

- γ_r = f (PI, OCR, σ_0')
- a = constant = 0.92
- $D_{min} = f(PI, OCR, \sigma_0', f)$
- b = f(N)
- c = constant = 0.10

Bayesian Approach

Bayesian Approach is a systematic way of combining information based on experience (or intuition) with observational data.

- The problem is structured analytically.
- Unknown parameters are modeled as random variables.
- Expected values based on experience and confidence intervals associated with these estimates are determined.
- These values are updated such that the likelihood of occurrence of the observational data is maximized.

Recommended Values: Plastic Soils $\gamma_r = (\phi_1 + \phi_2 * PI * OCR^{\phi_3}) * \sigma'_0^{\phi_4}$ $a = \phi_5$

where: $\sigma_o' =$ mean effective confining pressure (atm), PI = soil plasticity (%), OCR = overconsolidation ratio,

and

Recommended Values: Plastic Soils $D_{\min} = (\phi_6 + \phi_7 * PI * OCR^{\phi_8}) * \sigma_0^{'\phi_9} * [1 + \phi_{10} * \ln(f)]$ $b = \phi_{11} + \phi_{12} * \ln(N)$

where: σ_o' = mean effective confining pressure (atm),
PI = soil plasticity (%),
OCR = overconsolidation ratio,
f = loading frequency,
N = number of loading cycles,

and

Effect of σ'_{o} on the Nonlinear Behavior of Sands

Effect of σ'_o on the Nonlinear Behavior of Sands

Effect of Plasticity on Nonlinear Soil Behavior

Effect of Plasticity on Nonlinear Soil Behavior

Standard Deviations for G/G_{max} – log γ

$$\sigma_{\rm NG} = \exp(\phi_{13}) + \sqrt{\frac{0.25}{\exp(\phi_{14})} - \frac{(G/G_{\rm max} - 0.5)^2}{\exp(\phi_{14})}}$$

where:

σ_{NG} = standard deviation for normalized modulus reduction curve

 G/G_{max} = estimated normalized shear modulus, and ϕ_{13} and ϕ_{14} = parameters that relate standard deviation to mean estimate of normalized shear modulus

Uncertainty Associated with the Predicted G/G_{max} – log γ Curves

Standard Deviations for D – log γ

$$\sigma_{\rm D} = \exp(\phi_{15}) + \exp(\phi_{16}) * \sqrt{\rm D}$$

where:

- $\sigma_{\rm D}$ = standard deviation for material damping curve,
 - **D** = estimated material damping ratio, and
- ϕ_{15} and ϕ_{16} = parameters that relate standard deviation to the mean estimate of material damping ratio

Uncertainty Associated with the Predicted D – log γ Curves

Accomplishments

- An empirical formulation to estimate G/G_{max} log γ and D – log γ curves for different soils under various loading conditions was generated.
- This formulation was calibrated using data collected at UT over the past decade (with significant input from ROSRINE/PEER).
- G/G_{max} log γ and D log γ curves predicted using the formulation were observed to be consistent with the general trends reported in the literature and observed during the course of this study.
- The uncertainties associated with the predicted curves were also evaluated within the formulation.

Comparison Between SP, GP, and GW

Problem with Using the Wrong Gmax

Thank You

- Don Anderson, CH2MHill
- I.M. Idriss, UC-Davis
- Richard Lee, Savannah River
- Robert Pyke, Consultant
- Cliff Roblee, Caltrans
- John Schneider, EPRI
- Walt Silva, Pacific Engineering