A Comparison of Site-Specific and Empirical Methods for Site Response Evaluation

Jonathan P. Stewart University of California, Los Angeles

Mehmet B. Baturay Geosyntec Consultants, Oakland, CA

March 18, 2004

Outline

- Can we model site effects? Two views:
 - Geotechnical studies
 - Lee and Anderson (2000)
- Two procedures for site response evaluation
 - Empirical: amplification factors
 - Site specific: 1D wave propagation analyses
- Application of procedures for calibration sites
- Analysis of residuals
- Summary and recommendations

Can we model site effects?

- Geotechnical perspective
 - Vertical array studies

Ref: Borja et al., 1999

Can we model site effects?

- Geotechnical perspective
 - Vertical array studies
 - Nearby soil-rock recordings

Ref: Dickenson, 1994

Can we model site effects?

- Lee and Anderson (2000)
 - Sites with multiple recordings
 - Evaluated residuals from soil attenuation relation
 - If site effect relative to attenuation site factor is significant...
 - Conclusion: sitespecific effects not repeatable

Ref: Lee and Anderson, 2000

Outline

- Can we model site effects? Two views:
- Two procedures for site response evaluation
- Application of procedures for calibration sites
- Analysis of residuals
- Summary and recommendations

- Reference motion:
 - Rock attenuation
- Apply amplification factor
 - Classify site
 - Adjust median
 - Modify standard deviation

Period (s)

Methods of Site Response Evaluation: Site Specific

- Input data:
 - Site soil profile
 - Time history suite
- 1D analysis routine

- Interpretation of output
 - Bias of median?

- Interpretation of output
 - GR standard deviation?

Outline

- Can we model site effects? Two views:
- Two procedures for site response evaluation
- Application of procedures for calibration sites
- Analysis of residuals
- Summary and recommendations

Application

- Site selection
- Generation of input motions
- Protocols for performing wave propagation analyses
- Form of results

Application: Site Selection

- Well characterized sites (soil types, V_s measurements)
- Strong motion recordings
- Results: 50 sites with 93 recordings

Application: Input motions

- Target spectrum
 - Rock attenuation
 - Event term, directivity correction
- Select rock time histories
- Scale time histories
 - Each record match target for *T*=0-1s (avg. sense)
 - Median match target for *T*=0-3 s

Application: Performing analyses

- Equivalent-linear modeling (SHAKE91)
- Site-specific V_s profile
- Modulus reduction and damping

Soil Type	Condition ¹	Curve
Sand and silty sand	Z < 100 m	Seed et al. (1986) upper bound sand G/G _{max} and
		lower bound β
	Z > 100 m	EPRI (1993): Z = 76 - 153 m
Clays, silty clays, loams	PI = 15 & Z < 100m	Vucetic and Dobry (1991): $PI = 15^2$
	PI = 15 & Z > 100m	Stokoe et al. (1999), CL curve, Z > 100 m
	PI >= 30	Vucetic and Dobry (1991): PI >= 30
	Bay Mud	Sun et al. (1988)
	Old Bay Clay	Vucetic and Dobry (1991): $PI = 30^3$
Bedrock	Vs < 900 m/s	Soil curves for appropriate material type and condition
	Vs > 900 m/s	Schnabel (1973)

 1 Z = depth, PI = plasticity index

² Consistent with Stokoe et al. (1999), CL curve, Z < 100 m

³ Consistent with Guha et al. (1993) material testing

Application: Form of output

- Ground response:
 - Suite of spectra
 - Prediction taken as the median
- Amplification factors:
 - Prediction taken as $S_{a,r}$ $\times AF$

Application: Form of output

- Ground response:
 - Suite of spectra
 - Prediction taken as the median
- Amplification factors:
 - Prediction taken as $S_{a,r}$ $\times AF$
- Residual = data model

Outline

- Can we model site effects? Two views:
- Two procedures for site response evaluation
- Application of procedures for calibration sites
- Analysis of residuals
- Summary and recommendations

Analysis of Residuals

- Statistics of residuals within site categories
 NEHRP C, D, Hlm
- Dependence of residuals on:

$$-V_{s-30}$$

- Depth to $V_s = 1.0 \text{ km/s} \equiv z_1$
- Shear strains

Analysis of Residuals: Categories

- Median residuals
 - AF provides baseline
 - Negligible bias for T < 1 s
 - Positive bias for T > 1 s:
 underprediction

Analysis of Residuals: Categories

- Standard deviation of residuals
 - C-D: Small difference
 - Suggests 1D analysis is not removing site-tosite variations in ground motion

Analysis of Residuals: Categories

- Standard deviation of residuals
 - Hlm: Statistically significant difference for *T* < 1 s

- V_{s-30}:
 - GR & AF: no dependence
 - Atten: significant dependence

- V_{s-30}
- *z*₁:
 - Significant dependence at long period

- V_{s-30}
- *z*₁
- Average shear strain:

- V_{s-30}
- *z*₁
- Average shear strain:
 - No significant dependence

Summary and Recommendations

- Site specific analyses:
 - Justified for sites with significant impedance contrast (soft soils)
 - Not justified for most stiff soil sites
- Median is unbiased
- Standard deviation
 - Aleatory from source, path, imperfect physics, etc.
 - "Known" variability in sitespecific AF from input motion and soil property variability

