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Brietr Overview of State-of-the-Art

* Nonlinear Site Response Analyses

= [-ID famly well validated. Several models available. Material
characterization at different deformation levels well understood.

= Regular incorporation of behavior near liquefaction and that of
dilatant material for 1-ID conditions.

= For relatively simple models, the mmverse problem (i.e., System
[dentification) provides a robust algorithm to obtain model
parameters. Often, it results in non-stationary (i.e., time dependent)
parameters.

= Use of vertical arrays (of accelerometers) to validate methodology/
prediction power over varying range of observed response.



Brietr Overview of State-of-the-Art

* Soil Structure Interaction.

= Shallow foundation: Improvements in energy radiation and
response by mcorporating separation during shaking.

= Deep Foundation: Use of relatively simple methods (elastic) for
small deformations and FEM and or hybrid formulations (i.e.,
nonlinear Winkler Foundation and FEM) for large deformations
mcluding gapping or liquefaction response.
« Fairly well established for 1-D Conditions (small groups)

» For all of them, standard use of numerical procedures such as
FEM, FDM (among others) to predict/estimate performance.

= Reinforced Earth Walls and similar structures not included in this
discussion- significant advancement in the last 5 years.



Emerging Trends

* Nonlinear Site Response Analyses

= Recognition of the importance of stress history and
multidimensional shaking on the predicted response over all levels
o stress and strain. This 1s particularly true for liquefaction
analyses and soft clayey deposits for which anisotropy plays an
important role.

= Recognition of stress level dependence, cementation 1n the
characterization of material response. The use of more
sophisticated soil models that simulate more accurately soil
behavior.

= The mverse problem (i.e., System Identification) for advanced
models to obtain material parameters 1s much more ivolved. Need
to develop robust and efficient methodology. Potential benefit, it
may result in stationary models.



Illustration: Multidirectional Response
Ishihara & Nagase (88) Boulanger et al. (91)
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STRAIN POTENTIAL
Difference between Cyclic and Permanent Strains
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STRAIN POTENTIAL- Multidirectional Shaking

Difference between Cyclic and Permanent Strains
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All "liquefied" Tests

Oval/Circle level ground
Oval dip-oriented

Lc ﬁ- . .
Ines irom Oval strike-oriented

Boulanger (1991)
Figure-8 level ground

Figure-8 dip-oriented
Figure-8 strike-oriented

-D>DD>PPOOO

2-directional linear (ry max)
— 2-directional linear ('y,min)

SSR range
in Boulanger

< =

0.4 0.6

Shear Stress Ratio (SSR)




Residual

Shear
Strain

Potential

(Yr)max 50% 20% 10% 5% 2%

0.6 M ——— | ’
| Fines (<741)=0%]|
a -
< o
s 233
0.5 ® alin 5 @xc2
| ['s [ 2:gs
_O e Y = O e
= — &= o o=
o K e
= : —o- rote
- 04 N © ‘%
o 0- |
= 8- 0058222
©
i '3
@ 0.3 Sy anyal
8 —C; I E'_——Oomszaz.z
- ) v @ E
7p -@Q‘;ﬁ 8 023, 22,0, 8.8
5 0.2 SRR ‘
8 . B 0z0.84 04
e " EREEN
w / o, o circle level ground ||
2 2. 2%, || © oval level ground |
0.1 %% 52 %% | © ovaldip |
- gt % QO oval strike
Ry % Qo figure-8 level ground ||
B oo figure-8 dip i
| 8 figure-8 strike s
o, permanent strain, cyclic strain (single amplitude) — 2-directional linear |

5 10 15 20 25 30 35
Adjusted SPT N-Value

40



<@

g ~— driving stress=
S‘\ applied shear stress

pore pressure ratio
From test results

< / ry=0.95-1.69*SSR

1.0
Shear Stress Ratio

L

i 2

t 73]

[75] [42]
— |8 8
© |@ @ &
= o £ 5
c |£ S 7
2 5 @ £
8_ @ =2 ) :

E © S precise form of
c =] S = relationship unknown
s |5 N8

7 ~

I .

! R,

Shear Stress Ratio



Emerging Trends

* Soil Structure Interaction- Focusing in Deep Foundations.

= Use of relatively simple description of soil structure interaction but
mcorporate all structural elements in the evaluation of global
TESPONSE.

= Use of more detailed description of SSI for areas significantly
stressed during earthquake loading. (Example of incorporation of
gapping with degradation in p-y elements )

= Increased importance of multidirectional shaking and previous
history 1 the response of foundation elements.

= Need/Development of a robust algorithm/procedure to obtain
material parameters based on field response.



Example: Soil-Pile Structure Interaction
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Gapping Behavior m 1-D
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Loading path- Figure 8. D =51 mm, L/D =4
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Emerging Trends

« In both applications: The incorporation of
uncertamty i the simulation of response.

« Elements of uncertainty

s Topology of the problem (geometry, identification
oi soil strata, type of soil)

» Uncertainties of state: (1.e., for a given soil profile,
values of stresses, void ratio, saturation, etc.)

=« Model uncertainty: For each analysis, there 1s
some uncertainty resulting from the choice of
material model-> uncertainty of “memory”
parameters.



Example: Model Uncertainty;

* [Use of More sophisticated material models- Tradeoft
between complexity and predictive power.

* Determination of Shear Stifiness at small stramns, G, .,
= Model formulation

= Application to cemented and uncemented sands

* Shear Modulus Reduction and Damping Factors.
= New hysteretic formulation
= Assessment of Performance/Validation

* Application to Site Response Analysis

= Hierarchical determination of material parameters.



Effect of
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Shear Stiffness at
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Effect of Confining
pressure and void ratio
on the Shear Modulus

Reduction
and Damping Ratio
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EVALUATION
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Correlation of
Material
Parameters with
Index Properties
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Sumimary,

* Significant work to be done- FAR FROM OVER.

« Key elements of Multidirectional response are
currently being developed and incorporated i model
development/framework.

* Use of more sophisticated material models.

* Development of methodology to perform System
[dentification for more complex models.

= Constrained optimization with Bayesian updating. Karman
Filter, allow input of seemingly different type of data in the
analysis.

= Neural networks-like approach






