Risk Decision Making for Buildings – From Owners to Society

Mary Comerio *University of California, Berkeley*

PEER Summative Meeting 13 June 2007

Defining Links Between Planning, Policy, Economics and Earthquake Engineering

Workshop in May 1998 Raised Questions:

- How to integrate disciplines and find a common language?
- Can models from various disciplines be linked?
- What should performance standards look like?
- Can a standardized loss-accounting system be developed?
- What are meaningful metrics?
- What are financial implications of performance standards?
- What is known about adoption, implementation and enforcement of performance based codes?

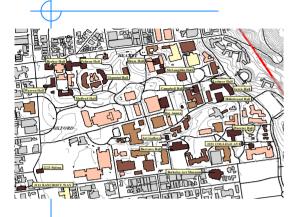
Key Milestone: Defining Loss Metrics

What the 3 D's Mean to Decision Makers

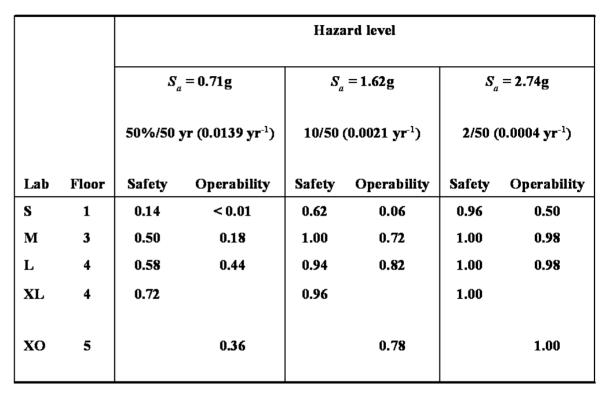
- Deaths
 - Casualty and Injury Prevention
 - Reduces Risks to Users
- Dollars
 - Estimated Losses in Scenarios or Annualized
 - Allows Comparison of Losses vs. Mitigation Costs
- Downtime
 - Impact of Building Damage on Operations
 - Sets value of recovery time

PEER - PBEE Methodology Components

Loss Models Performance (Damage) Models


Simulation Models

• Decision Variable (\$ loss, downtime, life-safety)


- •Damage Measure (condition assessment, necessary repairs)
- Eng. Demand Param. (drift, acceleration)
 - Intensity Measure (Sa, Sv, duration ...)

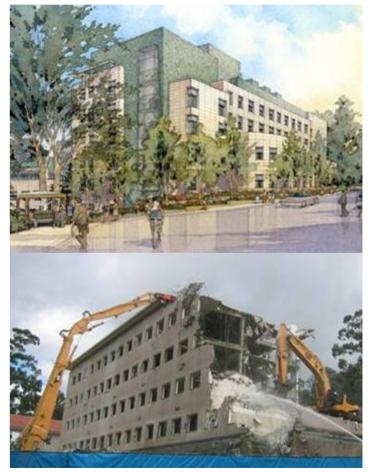
Testbeds Applied Methodology

	Expected NPV (Structural)	D o w n tim e	Deaths
Do nothing	\$0	16 days	0.13
Moderate retrofit	\$142,178	7.6 days	0.06
Extensive retrofit	-\$61,319	3.2 days	0.02

Benchmark Project Integrated Loss Studies

Discussion Point	Beck, Mitrani-Reiser, & Porter	Miranda, Aslani, & Ramirez	Moehle, Stojadinovic, Der Kiureghian, & Yang
Definition of damageable components	Group damageable building components into assembly groups	Divided by building components by floors	Group damageable building components into performance groups sensitive to the same EDP.
Casualty	Use Shoaf and Seligson data to estimate value of a statistical life		
Downtime	Use Comerio data	ABAG/Building Department Data on Wood Residential Buildings: 2 Years to Repair 4 Years to Rebuild Stanford and UC Case Study Experience: 2-3 Years Min Repair of Large Buildings Plus Mobilization Time and External Conditions	

Benchmark Study Integrated "3 D" Losses


Design Description	EAL (\$)	EALD (\$)	EALF (\$)	EAL _{TOTAL} (\$)
A: Baseline perimeter frame design.	66,585	20,519	4,900	92,004
B: Same as A, but with code-min strengths.	95,656	28,362	4,550	128,568
C: Same A, but with uniform beam/column throughout.	51,933	22,207	5,600	79,740
D: Same as C, but no SCWB provision.	112,930	32,726	79,800	225,456
E: Baseline space frame design.	49,422	19,517	3,500	72,439

PEER

UCB Implementation of Performance Goals

- Risk Management: Building-Specific and Inventory Performance Objectives
- No closure > 30 days

UC Risk Reduction – Seismic Retrofits (2000-06)

Source and Loss	Scenario Earthquake Level					
Parameter	Occasional (50%/50 Yrs.)	Rare (M7.0)	Very Rare (M7.25)			
Economic losses w/Closure (\$ millions) - 10 Buildings (approx. \$1.1 billion)						
Before Seismic Retrofit	\$171	\$568	\$761			
After Seismic Retrofit	\$31	\$219	\$337			
Risk Reduction	\$140	\$349	\$424			
Deaths and Serious Injuries based on ECO (approx. 1,350 people)						
Before Seismic Retrofit	23	104	153			
After Seismic Retrofit	0	3	7			
Risk Reduction	23	101	146			

Ref: C. Kircher

ATC 58 Products Use PEER Methods

Federal Emergency Management Agency

FEMA-666

Stakeholders Guide to Performance-Based Seismic Design

- Guidelines for Seismic Performance
- Recommendations for:
 - building officials
 - building owners
 - lenders
 - tenants
 - insurers

how to take advantage of PBEE

Ref: R. Hamburger

Performance Goals for Risk Management

- Non-owners Use Performance to Set and/or Limit Annualized Losses
 - Insurance and Re-insurance
- Real Estate Owners Use Performance Goals to Manage Assets Pre- and Post-Disaster
 - Government, Institutions
 - Lenders, Portfolio Managers
 - e.g. St. Louis Art Museum
 - Set Design Criteria for Addition
 - e.g. Arden Realty, LA
 - Requires Tenant Insurance
 - Plans for Downtime in Leases

PEER Established a Performance Vocabulary

- Defining and Costing Damage to Structural and Nonstructural Systems and Contents
- Defining and Incorporating the Risk to Life in Financial Terms
- Defining Mobilization and Repair Time; Establishing Baseline Data
- Used by Engineers, Owners, Insurance, Portfolio Managers, Government, etc.

