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Lateral Spreading Analysis for Single Piles
PEER Transportation Systems Research Program
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Department of Civil and Environmental Engineering, University of Washington

Objective:  

 Create a simplified design procedure for piles subjected to lateral spreading which 
recognizes the shortcomings of current methodologies and provides more realistic 
pile bending demands.

Progress to date:
 Have a working 3D finite element model of lateral spreading problem and can 
extract suitable p-y curves for all depths for a given soil profile from this model.

Have identified problems with the use of conventional p-y curves in context of 
lateral spreading.

 Have verified that 1D simulations produce results which are reasonably similar to 
3D modeling effort.

Future Work:
 Use 3D model to obtain a set of suitable p-y curves for various soil profiles.

 Perform a parametric study of the lateral spreading case in 1D to determine 
maximum pile  bending demands for a variety of soil/pile combinations.

 Use results of 1D parametric study to establish a simple lateral spreading design 
procedure which can return realistic pile bending demands applicable to most 
practical applications. 

Procedure:

 Develop a 3D finite element (FE) model for lateral spreading case in OpenSees.  

 Include nonlinear soil behavior through the use of a Drucker-Prager constitutive 
model and include three distinct pile designs which are modeled using beam elements 
and fiber section models.  Beam-solid contact elements model the soil-pile interface.  

 A parametric study using the 3D model is computationally expensive and inefficient.  

 In contrast, a 1D beam-spring model is more efficient in a parametric study, however, 
it is crucial that the proper p-y curves are defined for all depths. 

Modeling Approach: Kinematic Effects:

Liquefied Layer Effects: Conventional vs. Extracted p-y Curves:

 The ultimate lateral resistance pu in the 
unliquefied layers is reduced significantly 
due to the presence of the liquefied layer.

 The initial stiffness kt in the unliquefied 
layers is reduced only slightly. 

 The reduction in pu for the unliquefied layers 
becomes less significant as the depth to the 
liquefied layer increases.

The stiffness reduction remains relatively 
constant for all liquefied layer depths.

 3D FE model

 1D beam/p-y spring model

 Both produce similar pile 
bending demands

 Suitable p-y curves must be 
defined for all depths in order 
to use the 1D approach.

 Three kinematic cases are analyzed.  

rigid 
push 

top 
pushover

lateral 
spreading

 The extracted p-y curves are not independent of pile kinematics.  

 The curves match well where 
displacements are large:

 Comparison of p-y curves using ratios of 
initial stiffness (kt) and lateral resistance:

 For the extracted p-y curves, the distributions of ultimate lateral resistance 
and initial stiffness deviate from conventionally defined distributions.

 At shallow depths, there is 
generally good agreement.  

 At increased depths, there 
are significant differences.  

 The differences can be 
observed in the p-y curves.

 The differences can also be observed in the pile 
bending demands and deformations resulting from 
using each set of curves in the 1D lateral spreading 
model.

 Three reinf. 
concrete pile 
designs are 
considered.
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 The curves match poorly 
where displacements are small:
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 The extracted p-y curves are not independent of the soil layers.  


