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Lateral Spreading Analysis for Single Piles
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Objective:  

 Create a simplified design procedure for piles subjected to lateral spreading which 
recognizes the shortcomings of current methodologies and provides more realistic 
pile bending demands.

Progress to date:
 Have a working 3D finite element model of lateral spreading problem and can 
extract suitable p-y curves for all depths for a given soil profile from this model.

Have identified problems with the use of conventional p-y curves in context of 
lateral spreading.

 Have verified that 1D simulations produce results which are reasonably similar to 
3D modeling effort.

Future Work:
 Use 3D model to obtain a set of suitable p-y curves for various soil profiles.

 Perform a parametric study of the lateral spreading case in 1D to determine 
maximum pile  bending demands for a variety of soil/pile combinations.

 Use results of 1D parametric study to establish a simple lateral spreading design 
procedure which can return realistic pile bending demands applicable to most 
practical applications. 

Procedure:

 Develop a 3D finite element (FE) model for lateral spreading case in OpenSees.  

 Include nonlinear soil behavior through the use of a Drucker-Prager constitutive 
model and include three distinct pile designs which are modeled using beam elements 
and fiber section models.  Beam-solid contact elements model the soil-pile interface.  

 A parametric study using the 3D model is computationally expensive and inefficient.  

 In contrast, a 1D beam-spring model is more efficient in a parametric study, however, 
it is crucial that the proper p-y curves are defined for all depths. 

Modeling Approach: Kinematic Effects:

Liquefied Layer Effects: Conventional vs. Extracted p-y Curves:

 The ultimate lateral resistance pu in the 
unliquefied layers is reduced significantly 
due to the presence of the liquefied layer.

 The initial stiffness kt in the unliquefied 
layers is reduced only slightly. 

 The reduction in pu for the unliquefied layers 
becomes less significant as the depth to the 
liquefied layer increases.

The stiffness reduction remains relatively 
constant for all liquefied layer depths.

 3D FE model

 1D beam/p-y spring model

 Both produce similar pile 
bending demands

 Suitable p-y curves must be 
defined for all depths in order 
to use the 1D approach.

 Three kinematic cases are analyzed.  

rigid 
push 

top 
pushover

lateral 
spreading

 The extracted p-y curves are not independent of pile kinematics.  

 The curves match well where 
displacements are large:

 Comparison of p-y curves using ratios of 
initial stiffness (kt) and lateral resistance:

 For the extracted p-y curves, the distributions of ultimate lateral resistance 
and initial stiffness deviate from conventionally defined distributions.

 At shallow depths, there is 
generally good agreement.  

 At increased depths, there 
are significant differences.  

 The differences can be 
observed in the p-y curves.

 The differences can also be observed in the pile 
bending demands and deformations resulting from 
using each set of curves in the 1D lateral spreading 
model.

 Three reinf. 
concrete pile 
designs are 
considered.
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API (1987)
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 The curves match poorly 
where displacements are small:
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 The extracted p-y curves are not independent of the soil layers.  


