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WHAT IS THE OBJECTIVE?
The objective is to develop a Bayesian network (BN)‐
based framework for seismic infrastructure risk 
assessment/management and decision‐support to aid:
 Pre‐event decisions (e.g. identification of critical 
components, prioritization of retrofit/mitigation)

 Immediate post‐event decisions (e.g. dispatch of 
emergency personnel and inspectors)

 Longer‐term post‐event decisions (e.g. prioritization 
of reconstruction efforts)

BAYESIAN 
NETWORK SERVES 
AS A FRAMEWORK 
FOR PROCESSING 

PROBABILISTIC 
INFORMATION 

BETWEEN MULTI-
DISCIPLINARY 

MODULES

WHY USE BNS? 
BNs:
 Are graphical & intuitive (tool for end‐users)
 Can account for sources of uncertainty
 Can be probabilistically updated in near‐real time
 Can model multiple hazards and interdependencies
 Can model distributed and interacting systems
 Can be used to identify critical components/cutsets
 Can be extended by utility & decision nodes to solve 
decision problems

EFFICIENT SYSTEMS ANALYSIS FORMULATIONS

WHAT IS A BN? 
A BN is a probabilistic graphical model representing random 
variables (nodes) and their dependencies (links)

WHAT ARE THE CHALLENGES?
 BNs can be computationally demanding/intractable for 
complex systems with dependent components

 Methods must be developed to construct the BN models 
in optimal/efficient formulations

 Approximation methods must be developed to balance 
accuracy and computational demands
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(4) Explicit Connectivity formulation
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(5) Explicit Disconnectivity formulation

COMPONENT PERFORMANCE MODELS

(1) Naïve formulation (2) MLS formulation (3) MCS formulation
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The performance of components in an infrastructure system
can be modeled using fragility functions. Fragility functions
define the conditional probability of exceeding the kth

damage state (DS) given a ground motion intensity (GMI) :
P(exceeding DS k|GMI).
The conditional probability of a component being in the kth

DS can then be defined:
P(component in DS k|GMI) =
P(exceeding DS k|GMI) ‐ P(exceeding DS k+1| GMI)
where k=0 implies the intact component damage state.

Fragility functions

Efficiency 
considerations

DECISION 
SUPPORT MODELS

BNs can be extended to include decision nodes
(rectangles) and utility nodes (diamonds) to create
an influence diagram. Links from chance nodes
(ovals) to decision nodes indicate information that is
known prior to making a decision. Utility nodes
specify a consequence/benefit as a function of a
particular outcome of a chance node or decision.
A decision support model is currently under
development to aid post‐earthquake inspection
prioritization.

GROUND MOTION INTENSITY MODELED AS 
SPATIALLY DISTRIBUTED  RANDOM FIELD

The intra‐event errors terms are in fact spatially correlated (a structure that is computationally inefficient to model using BN). Thus, a transformation of the
form ε = TU+SV is sought (where T is a transformation matrix, S is a diagonal matrix, and U,V are vectors of statistically independent standard normal random
variables). The terms of the transformation matrix can be interpreted as factors on the links between U‐nodes and ε‐nodes. Because sparsely connected BNs
are more efficient (and densely connected BNs can be intractable), it is necessary to eliminate as many links between U‐nodes and ε‐nodes as possible (i.e.
terms of the transformation matrix are set to zero). An investigation into the modeling of random fields via BN has suggested a numerical optimization
scheme for determination of the transformation matrix and elimination of a large number of links without significant loss of accuracy.
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WHAT ARE THE PROPOSED 
APPLICATIONS?
 The general framework has been developed to aid risk 
assessment/management and decision support for general 
lifelines systems (e.g. transportation networks, pipelines, 
electrical distribution systems)

 The framework is currently being applied to the proposed 
California High Speed Rail system to act as a prototype for 
future applications

Prototype system: 
California High Speed Rail

The seismic demand model provides distributions of ground motion (GM) intensity at different sites across an infrastructure system by modeling GM intensity as a
spatially distributed random field:

GM prediction equations can be used to compute the median GM intensity ( ) at each site as a function of source and site characteristics. The seismic demand
model accounts for uncertainty in finite rupture length, uncertainty in GM prediction equations (εm,εr,i), as well as incorporating directivity effects (fdir). The
Seismic Demand Model BN utilizes objects, represented by rectangles with rounded corners, behind which are hidden additional BNs. There are three different
objects in this seismic demand BN shown below: (1) rupture length and location object, (2) intra‐event error object, and (3) site‐specific GM prediction object.
The seismic demand model is capable of considering multiple sources by using source‐specific local coordinate systems.

ln(𝑆𝑖) = ln(𝑆𝑖%)+ 𝑓𝑑𝑖𝑟 + 𝜖𝑚 + 𝜖𝑟 ,𝑖  
𝑆𝑖%  

correlated intra‐event error terms 
decomposition of intra‐event error terms 

decomposition of error correlation with approximation (elimination of nodes/links) 
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Five formulations have been developed for modeling system performance using BNs. Three of the formulations were developed based
on classical systems analysis techniques:
(1) The Naïve formulation links all nodes directly into the system node requiring the consideration of all combinations of component

states. This quickly renders the BN intractable even for small systems.
(2) The Minimum Link Set (MLS) formulation requires the enumeration of all MLSs, each of which is represented by a node. Links

connect components to the MLSs of which they are a part. For binary‐state components (BCs), a MLS node is in survival state only if
all its components are in survival state. The state of the system is a function of the MLS nodes and, for BCs, the system is in survival
state if any MLS node is in survival state.

(3) The Minimum Cut Set (MCS) formulation is the dual of the MLS formulation (i.e. the MCS formulation uses the MCSs instead of MLSs
and the functional relationships are defined oppositely).

These three classical formulations are not sufficiently efficient for modeling system performance within the context of BNs and can result
in exponentially increasing computational demands. To address this, the classical‐analysis‐based formulations are adapted to produce
more efficient explicit formulations:
(4) The Explicit Connectivity (EC) formulation arranges sequences of events known as survival path sequences (SPSs) which are comprised

of “survival path events” (SPEs). SPEs are functions of their corresponding components and the preceding survival path events in the
sequence. The SPSs can be constructed manually for small systems, but require use of MLSs for complex systems.

(5) The Explicit Disconnectivity (EDC) formulation is the dual of the EC formulation. It is a pessimistic approach, creating “failure path
sequences”made of “failure path events.”

The explicit formulations arrange nodes into chain‐like structures instead of the converging structure used in the classical formulations. It
has been seen, in general, that such formulations are more efficient within the context of BNs. To automate the construction of the
explicit formulations, a heuristically augmented binary integer optimization program is in the later‐stages of development.

Incoming information propagates throughout the 
BN to probabilistically update modules. 


