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ODbjectives

» Develop simplified procedure to estimate seismic
demands in “ordinary” bridges crossing fault-
rupture zone

» Rooted in structural dynamics theory
» Simpler than nonlinear response history analysis

» Utilize special feature of support motions in fault-
rupture zones
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Current Analytical Procedures
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» Bridge subjected to uniform support excitation

» Linear ELF analysis, NSP, Linear RSA, linear/nonlinear
RHA

» Bridges crossing fault-rupture zones
» Linear/nonlinear RHA for multiple support excitation
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Ground Motions

» Motions at bridge supports on two sides of the
fault are needed
» Bridge supports are very close to the fault
»Supports are within few tens of meters from the fault

» Motions have not been recorded so close to the
fault on both sides

»Recorded motions are at few hundred meters from
the fault

» Support motions were simulated on faults with
various orientations

»Simulations by Prof. Doug Dreger at UC Berkeley
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Motions Across Strike-Slip Fault
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Motions in Fault-Rupture Zones
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Proportional Excitation — Strike-Slip Fault

Ugl(t) = alug.AbuH(t)
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Equations of Motion: Linear Systems
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Peak Response

Peak response from dynamic analysis:
_~¥| Combine peak values from significant

+ UO modes using appropriate combination rule:

SRSS or CQC

u =u

Peak response from quasi-static analysis:

Apply peak support displacements statically

S
Uy = Leff Ugo
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Dynamic Response
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Effective Influence Vector

» Essentially translation in bridges subjected to spatially
uniform support excitation

» Significant torsional motions about a vertical axis in
bridges crossing fault-rupture zones

|

Spatially-Uniform Fault-Rupture Zone
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Analysis: Linear Systems

» RHA: Response history analysis to multiple-support
excitation
» RSA: Response spectrum analysis

» Use ground motions spectrum that is appropriate for
motions in fault-rupture zones

» Carefully select modes that are excited by motions in
fault rupture zones

» RSA:1-Mode: Response spectrum analysis
considering only the most dominant mode

—— » LSA: Linear static analysis due to forces equal to
2.9MuU
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Modes Excited
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Modes Excited
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Mode 1: T=1.08 sec Mode 2: T=0.8249 sec Mode 3: T=0.4191 sec
Mode 4: T=0.3395 sec Mode 5: T=0.3318 sec Mode 6: T=0.3051 sec
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Bridges Selected
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Response of Linear Bridges
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Extension to Nonlinear Bridges

» Superposition assumed to be applicable

» Quasi-static response from nonlinear static analysis
due to peak ground displacements applied
simultaneously at all supports

» Dynamic response from

» MPA: Modal pushover analysis (nonlinear static pushover)
» LDA: Linear dynamic analysis (RSA or RSA: 1-Mode)

» LSA: Linear static analysis due to forces equal to
2.59Muggql
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Response of Nonlinear Bridges
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Recommended Procedure

» Linear Static Analysis Procedure

» Compute the peak value of the quasi-static response
including effects of gravity loads by nonlinear static
analysis of the bridge due to peak ground displacement
applied at all supports simultaneously

» Compute peak value of the dynamic response by linear
static analysis of the bridge due to lateral forces equal to
2.59MuggU

» Carefully compute the effective influence vector, which
differs for bridges in fault-rupture zones

» Compute the total response as superposition of the quasi-
static and dynamic responses
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Recommended Procedure

» Linear static analysis procedure is recommended
because

» It is simple to implement
> |t does not require mode shapes and frequencies

» Provides results that are “accurate” for most practical
applications

» MPA and LDA are more complicated and offer only slight
Improvement
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