CASE STUDY: 40 STORY BRBF BUILDING LOS ANGELES

Anindya Dutta, Ph.D., S.E.
Ronald O. Hamburger, S.E., SECB

Criteria

- Three separate criteria:
- CODE DESIGN
- PERFORMANCE-BASED DESIGN
- LATBC criteria
- PERFORMANCE +
- PEER TBI Guidelines

Building Description

- Approximate building floor plan
- Tower: 170 ft X 107 ft
- Podium
- four levels of basement
- plan dimensions of $227 \mathrm{ft} \times 220 \mathrm{ft}$

Code Design

- Building located in downtown Los Angeles with Sos $=$ 1.145 and $S_{D 1}=0.52$
- Design follows all applicable building code and standard provisions

except

Code Design - Contd.

- Height limitation ignored

TABLE 12.2-1 DESIGN COEFFICIENTS AND FACTORS FOR SEISMIC FORCE-RESISTING SYSTEMS (continued)

Seismic Force-Resisting System	ASCE 7 Section where Detailing Requirements are Specified	Response Modification Coefficient, \boldsymbol{R}^{a}	System Overstrength Factor, $\Omega_{0}{ }^{g}$	Deflection Amplification Factor, $c_{d}{ }^{b}$	Structural System Limitations and Building Height (ft) Limit ${ }^{\text {c }}$				
					Seismic Design Category				
					B	c	$\mathrm{D}^{\text {d }}$	$\mathrm{E}^{\text {d }}$	$F^{\text {o }}$
22. Prestressed masonry shear walls	14.4	$11 / 2$	$2^{1 / 2}$	$13 / 4$	NL	NP	NP	NP	NP
23. Light-framed walls sheathed with wood structural panels rated for shear resistance or steel sheets	$\begin{gathered} \text { 14.1, 14.1.4.2, } \\ \text { and 14.5 } \end{gathered}$	7	$2^{1 / 2}$	$41 / 2$	NL	NL	65	65	65
24. Light-framed walls with shear panels of all other materials	14.1, 14.1.4.2,	$2^{1 / 2}$	$2^{1 / 2}$	$2^{1 / 2}$	NL	NL	35	NP	NP
25. Buckling-restrained braced frames, non-moment-resisting beam-column connections	14.1	7	2	$51 / 2$	NL	NL	160	160	100
26. Buckling-restrained braced frames, moment-resisting beam-column connections	14.1	8	$21 / 2$	5	NL	NL	160	160	100
27. Special steel plate shear wall	14.1	7	2	6	NL	NL	160	160	100

Code Design

- Gravity framing sized in RAM Structural System
- Lateral Analysis and Design performed in ETABS using 3D response spectrum analysis

SIMPSON GUMPERTZ \& HEGER

Gravity Loading

Description/Location	Superimposed Dead	Live Load	Reducable
Roof	28 psf	25 psf	Yes
Mechanical, Electrical at Roof	Total of 100 kips	-	-
Residential including Balconies	28 psf	40 psf	Yes
Corridors, Lobbies and Stairs	28 psf	100 psf	No
Retail	110 psf	100 psf	No
Parking Garage, Ramp	3 psf	40 psf 1	Yes
Construction Loading	3 psf	30 psf	No
Cladding	15 psf	-	-

PEER document showed 50 psf. SGH considered 40 psf in keeping with ASCE 7-05

Wind Design

- ASCE 7-05 Method 2
- Application of horizontal X and Y pressures in combination with torsion
- Gust factor $\left(G_{f}\right)$ computed using 6.5.8.2 for dynamically sensitive structures with 1\% damping

SIMPSON GUMPERTZ \& HEGER
$\left\lvert\, \begin{aligned} & \text { Engineeringo of Structrues } \\ & \text { and } \\ & \text { onviding Enclosurues }\end{aligned}\right.$

Wind Design

Parameter	Value
Basic Wind Speed, 3 sec. gust (V)	85 mph
Basic Wind Speed, 3 sec gust (V), for serviceability wind demands based on a 10 year mean recurrence interval	67 mph
Exposure	B
Occupancy Category	II
Importance Factor (I_{w})	1.0
Topographic Factor (K_{zt})	1.0
Exposure Classification	Enclosed
Internal Pressure Coefficient (GC ${ }_{\mathrm{pi}}$)	± 0.18
Mean Roof Height (h)	$544^{\prime}-6 "$
Wind Base Shear along Two Orthogonal Directions	1436 kips and 2629 kips

- Wind loads were statically applied in ETABS and brace forces computed

Seismic Design

- Seismic analysis performed using the response spectrum provided by PEER
- Base Shear scaled to 85% of the static lateral base shear obtained from equivalent static lateral force analysis
- Base Shear is the story shear immediately above podium

Design Spectrum

Seismic Design

Parameter	Value
Building Latitude/Longitude	Undefined
Occupancy Category	II
Importance Factor $\left(\mathrm{I}_{\mathrm{e}}\right)$	1.0
Spectral Response Coefficients	$\mathrm{S}_{\mathrm{DS}}=1.145 ; \mathrm{S}_{\mathrm{D} 1}=0.52$
Seismic Design Category	D
Lateral System	Buckling restrained braced frames, non moment resisting beam column connections
Response Modification Factor (R)	7
Deflection Amplification Factor $\left(\mathrm{C}_{\mathrm{d}}\right)$	5.5
System Overstrength Factor $\left(\Omega_{0}\right)$	2.0
Building Period (T) using CI. 12.8.2	3.16 sec ${ }^{1}$
Seismic Response Coefficient $\mathrm{C}_{\mathrm{s}}($ Eq. 12.8-1)	0.051 W (Governed by $\mathrm{C}_{\mathrm{s} \text {-min }}$ from Eq. 12.8-5)
Scaled Spectral Base Shear	3504 kips (85\% of Static Base Shear)
Analysis Procedure	Modal Response Spectral Analysis

1. Actual period from dynamic model: $T_{Y}=5.05 \mathrm{sec} ; \mathrm{T}_{X}=3.62 \mathrm{sec}$

Member Design

- Member design performed using ANSI/AISC 341-05
- Beams designed for unbalanced force corresponding to adjusted brace strenath

UCSD Testing Program: PowerCat Braces
Based on data for all braces

$$
\begin{aligned}
& \text { Assumed } \omega=1.25, \beta=1.1 \\
& R y=1.1 \text { and } F y=38 \mathrm{ksi}
\end{aligned}
$$

SIMPSON GUMPERTZ \& HEGER

Member Design

- Columns designed for accumulated force (sum of vertical components)corresponding to adjusted brace strengths
- Led to large compression and tension design forces for columns and foundations (Note: Attachment of columns to foundations needs to be designed for same forces used for column design)
8.5a Required Axial Strength

The required axial strength of column bases, including their attachment to the foundation, shall be the summation of the vertical components of the required strengths of the steel elements that are connected to the column base.

Member Design

- Accommodation of the large forces required use of steel box sections filled with concrete
- Upside: Using Chapter I of AISC $13^{\text {th }}$ Ed. a composite Eleff can be used. This contributed significantly to the
 lateral stiffness.
- Braced frame beams were sized for horizontal adjusted brace forces and unbalanced loading.

(2) BOX COLUMN SCHEDULE

Typical Member Sizes

Transverse Frame (Below 10 ${ }^{\text {th }}$ Floor)
Longitudinal Frame (Below 10 th Floor)

LATBC-Performance Based Design

- Wind and Gravity Design per code.
- Seismic Design
- Service level design
- 2.5\%-damped 25-year event
- Essentially elastic behavior
- Maximum drift of 0.005
- MCE Verification
- Nonlinear response history analysis used to verify adequacy for "collapse prevention" performance

LATBC Design - Service Level

- Used linear response spectrum analysis in ETABS. Max drift was $0.34 \%(<0.5 \%)$

- Brace sizes governed by wind design

LATBC Design - Findings

- Member sizes more economical.
- Additional bays required in the transverse direction below $10^{\text {th }}$ floor eliminated.

LATBC Design- MCE Analysis

- Non linear response history analysis performed using CSI Perform ($\mathrm{Tx}=6.5 \mathrm{~s}, \mathrm{Ty}=4.5 \mathrm{~s}$)
- 7 ground motion pairs provided by PEER

LATBC Design - MCE Acceptance Criterion

- Acceptance based on mean demands from 7 analyses
- 3% maximum interstory drift
- BRBs limited strain to 10 times yield (~ 0.013) based on observance of data from a large number of tests.

LATBC Design - MCE Story Drift

PEER TBI- Performance "+"

- Wind and Gravity Design follow code.
- Seismic Design
- Service level - 2.5\% damped 43-year spectrum
- Essentially elastic performance
- Drift limited to 0.005
- MCE level
- Max transient drift <0.03 average 0.045 any single run
- Max residual drift < 0.01 average 0.015 any single run
- BRB's respond within range of acceptable modeling
$7 \rightarrow$ SERVICE•LEVEL•EVALUATION $\|$
. ${ }^{7.1 \rightarrow \text { Generalf }}$
This Chapter provides guidelines' for Service-level evaluations 'including's shaking hazardlevel, performance objectives, modeling requirements, design parameters' and acceptance criteria. 5
$.7 .2 \rightarrow$ Service-level-Earthquake-Shakingf
Service-level earthquake shaking shall'have: a mean return' period of 43 'years' (50% probability of exceedance- in-30-years). As a minimum. Service-level. Earthquake elastic acceleration response spectrum. - If nonlinear response history analys is isperformed, ground motions shall be selected and modified to: be compatible with the
Service-level'spectrum in accordance with the recommendations of.Chapter 5 .

Commentary:-in the procedures contained in these guidelines, since - no -designlevel earthquake evaluation is required, many engineers- will use the service-level earthquake - shaking, together with wind-demands, to -set the minimum- strength-foratrucfure's preliminary- design, that will then be conifmed for adequacy- as part- of th seismicity including-Los-Angeles, San-Franciscoand-Seattle, the service-levelearthquake will result in required strength for the builing that is comparable- to thestrength that would- be - required -for a-buiding designed using- the buid ding- code
procedures. However, in some -ities with lower seis micity, including - Portland procedures. However, in-some- oities withtower- seismicity, including- Portland, earthquake will result in substantially less strength than-would conformance- with the buiding code Engineers des digning buidings in-locations with this tower seismicityshould be-aware of this and that the service-level- oheck may- not result in - abuidingof ade
$8 . \pi$

Aumber of studies have aftempted to charactenze- the effective damping in real buidings. -Studies -have-ranged from-system-identification performed with-low Using data -obtained from- 8 strong motion earthquakes- in-California, -Goel-and Chopra- (1997)-found that effective damping for buildings- in excess of 35 -stonies tallranged -from-about- 2% to-4\% - Using data obtained from- Japanese earthquakes, atake et. al. -(2003)-found-effective damping- in- such-structures to -be in the -range of fora-buidd that has -not yet been-constructed, a- default: value of 25%-damping- forallt modes has been recommended as a reasonable estimate for use in Service-leve) evaluations. -
ASCE 7.0
ASCE-7. 05 -requires that buildings-assigned to-Ocoupancy-Category- 111 and-IV-havebuidings in -lower Coccupancy-Categones..- One way to achieve compatibibity with this requirement is to increase the amplitude of the Service-level-spectrum for such-

PEER TBI Design

- Started with LATBC design
- Drift not satisfied above $30^{\text {th }}$ floor
- Addition of outriggers at $40^{\text {th }}, 30^{\text {th }}$ and $20^{\text {th }}$ floors to control drift to $<0.5 \%$
- Upsize some columns \& braces

PEER TBI Design - MCE Story Drifts

Peak Interstory Drift in X Directio

Summary \& Conclusions

- Three prototype designs developed
- Code Design(without height limit)
- LATBSDC-Performance Based Design
- PEER TBI Performance Based Plus Design

Summary \& Conclusions

- Performance-based Design resulted in more economical member sizes and more practical column base connection
- Building code for BRBs seems to be overly conservative for high rise structures
- Assumption that all braces yield simultaneously incorrect

