

Engineering of Structures and Building Enclosures

CASE STUDY: 40 STORY BRBF BUILDING LOS ANGELES

Anindya Dutta, Ph.D., S.E. Ronald O. Hamburger, S.E., SECB

Criteria

- Three separate criteria:
 - CODE DESIGN
 - PERFORMANCE-BASED DESIGN
 - LATBC criteria
 - PERFORMANCE +
 - PEER TBI Guidelines

Building Description

Approximate building floor plan

- Tower: 170 ft X 107 ft
- Podium
 - four levels of basement
 - plan dimensions of 227 ft X 220 ft

Code Design

- Building located in downtown Los Angeles with S_{DS} = 1.145 and S_{D1} = 0.52
- Design follows all applicable building code and standard provisions

Code Design – Contd.

Height limitation ignored

TABLE 12.2-1 DESIGN COEFFICIENTS AND FACTORS FOR SEISMIC FORCE-RESISTING SYSTEMS (continued)

Seismic Force-Resisting System	ASCE 7 Section where Detailing Requirements are Specified	Response Modification Coefficient, R ^a	System Overstrength Factor, $\Omega_0^{\ g}$	Deflection Amplification Factor, Cd ^b	Structural System Limitations and Building Height (ft) Limit ^c Seismic Design Category				
									в
					22. Prestressed masonry shear walls	14.4	11/2	21/2	13/4
 Light-framed walls sheathed with wood structural panels rated for shear resistance or steel sheets 	14.1, 14.1.4.2, and 14.5	7	21/2	41/2	NL	NL	65	65	65
 Light-framed walls with shear panels of all other materials 	14.1, 14.1.4.2, and 14.5	21/2	2 ¹ /2	21/2	NL	NL	35	NP	NP
25. Buckling-restrained braced frames, non-moment-resisting beam-column connections	14.1	7	2	51/2	NL	NL	160	160	100
26. Buckling-restrained braced frames, moment-resisting beam-column connections	14.1	8	21/2	5	ŊL	NL	160	160	100
27. Special steel plate shear wall	14.1	7	2	6	NL	NL	160	160	100
									<u>France</u>

Code Design

- Gravity framing sized in RAM Structural System
- Lateral Analysis and Design performed in ETABS using 3D response spectrum analysis

Gravity Loading

Description/Location	Superimposed Dead	Live Load	Reducable
Roof	28 psf	25 psf	Yes
Mechanical, Electrical at Roof	Total of 100 kips	-	-
Residential including Balconies	28 psf	40 psf	Yes
Corridors, Lobbies and Stairs	28 psf	100 psf	No
Retail	110 psf	100 psf	No
Parking Garage, Ramp	3 psf	40 psf ¹	Yes
Construction Loading	3 psf	30 psf	No
Cladding	15 psf	-	-
PEER document showed 50 ps	f. SGH considered 40 p	osf in keeping with A	SCE 7-05

Wind Design

- ASCE 7-05 Method 2
- Application of horizontal X and Y pressures in combination with torsion
- Gust factor (G_f) computed using 6.5.8.2 for dynamically sensitive structures with 1% damping

SIMPSON GUMPERTZ & HEGER Engineering of Structures and Building Enclosures

Wind Design

Parameter	Value			
Basic Wind Speed, 3 sec. gust (V)	85 mph			
Basic Wind Speed, 3 sec gust (V), for serviceability wind demands based on a 10 year mean recurrence interval	67 mph			
Exposure	В			
Occupancy Category	II			
Importance Factor (I _w)	1.0			
Topographic Factor (K _{zt})	1.0			
Exposure Classification	Enclosed			
Internal Pressure Coefficient (GC _{pi})	± 0.18			
Mean Roof Height (h)	544'-6"			
Wind Base Shear along Two Orthogonal Directions	1436 kips and 2629 kips			

 Wind loads were statically applied in ETABS and brace forces computed

Seismic Design

- Seismic analysis performed using the response spectrum provided by PEER
- Base Shear scaled to 85% of the static lateral base shear obtained from equivalent static lateral force analysis
- Base Shear is the story shear immediately above podium

Basement walls and floor masses modeled

Restraint provided only at wall base

Engineering of Structures and Building Enclosures

SIMPSON GUMPERTZ & HEG

Design Spectrum

Seismic Design

Parameter	Value			
Building Latitude/Longitude	Undefined			
Occupancy Category	II			
Importance Factor (I _e)	1.0			
Spectral Response Coefficients	S _{DS} = 1.145; S _{D1} = 0.52			
Seismic Design Category	D			
Lateral System	Buckling restrained braced frames, non moment resisting beam column connections			
Response Modification Factor (R)	7			
Deflection Amplification Factor (C _d)	5.5			
System Overstrength Factor (Ω_0)	2.0			
Building Period (T) using Cl. 12.8.2	3.16 sec ¹			
Seismic Response Coefficient C _s (Eq. 12.8-1)	0.051 W (Governed by C_{s-min} from Eq. 12.8-5)			
Scaled Spectral Base Shear	3504 kips (85% of Static Base Shear)			
Analysis Procedure	Modal Response Spectral Analysis			
1. Actual period from dynamic model: $T_y = 5.05 \text{ sec}$; $T_x = 3.62 \text{ sec}$				

Member Design

- Member design performed using ANSI/AISC 341-05
- Beams designed for unbalanced force corresponding to adjusted brace strength

Member Design

- Columns designed for accumulated force (sum of vertical components)corresponding to adjusted brace strengths
- Led to large compression and tension design forces for columns and foundations (Note: Attachment of columns to foundations needs to be designed for same forces used for column design)

8.5a Required Axial Strength

The required axial strength of column bases, including their attachment to the foundation, shall be the summation of the vertical components of the required strengths of the steel elements that are connected to the column base.

Member Design

- Accommodation of the large forces required use of steel box sections filled with concrete
- Upside: Using Chapter I of AISC 13th Ed. a composite Eleff can be used. This contributed significantly to the lateral stiffness.
- Braced frame beams were sized for horizontal adjusted brace forces and unbalanced loading.

	B (IN)	D (IN)	t (IN)	n
BOX 18	18	18	1½	2
BOX 21	18	18	11/2	2
BOX 24	24	24	2	2
BOX 27	27	27	2	3
BOX 30	30	30	21/2	3
BOX 33	33	33	21/2	3
BOX 36	36	36	21/2	3
BOX 39	39	39	3	3
BOX 42	42	42	3	4
BOX 45	45	45	3	4
BOX 48	48	48	3	4
BOX 51	51	51	3	5
BOX 54	54	54	3	5
BOX 57	57	57	3	5
BOX 60	60	60	3	5

Engineering of Structures and Building Enclosures

Transverse Frame (Below 10th Floor)

Longitudinal Frame (Below 10th Floor)

STORY 10

STORY 9

STORY 8

STORY 7

STORY 6

STORY 5

STORY 4

STORY 3

STORY 2

STORY 1

GROUND

B1

B2

B3

12 FT. THICK MAT FOUNDATION

LATBC-Performance Based Design

- Wind and Gravity Design per code.
- Seismic Design
 - Service level design
 - 2.5%-damped 25-year event
 - Essentially elastic behavior
 - Maximum drift of 0.005
 - MCE Verification
 - Nonlinear response history analysis used to verify adequacy for "collapse prevention" performance

LATBC Design – Service Level

 Used linear response spectrum analysis in ETABS. Max drift was 0.34%(<0.5%)

Brace sizes governed by wind design

LATBC Design - Findings

- Member sizes more economical.
- Additional bays required in the transverse direction below 10th floor eliminated.

LATBC Design- MCE Analysis

- Non linear response history analysis performed using CSI Perform (Tx = 6.5s, Ty = 4.5s)
- 7 ground motion pairs provided by PEER

LATBC Design – MCE Acceptance Criterion

- Acceptance based on mean demands from 7 analyses
 - 3% maximum interstory drift
 - BRBs limited strain to 10 times yield (~0.013) based on observance of data from a large number of tests.

LATBC Design – MCE Story Drift

Peak Interstory Drift in Y Directio 40 35 30 25 **y**²⁰ **g**₁₅ 10 5 Peak Interstory Drift in X Directi o 0 40 -5 35 0.00 0.50 1.00 1.50 2.00 2.! Peak Interstory Drift (%) 30 Average Parachute — Denali 25 **Story** 20 15 10 5 0 -5 0.00 0.50 1.00 1.50 2.00 2.50 Peak Interstory Drift (%) — Nridge Sylmar CS —— LPS aratog a —— Nridge Sylmar Hosp — Landers Yermo — Kocaeli Parachute - Denali

and Building Enclosures

PEER TBI- Performance "+"

- Wind and Gravity Design follow code.
- Seismic Design
 - Service level 2.5% damped 43-year spectrum
 - Essentially elastic performance
 - Drift limited to 0.005
 - MCE level
 - Max transient drift <0.03 average
 0.045 any single run
 - Max residual drift < 0.01 average
 0.015 any single run
 - BRB's respond within range of acceptable modeling

PEER TBI Design

- Started with LATBC design
- Drift not satisfied above 30th floor
- Addition of outriggers at 40th, 30th
 and 20th floors to control drift to <0.5%
- Upsize some columns & braces

PEER TBI Design - MCE Story Drifts

Peak Interstory Drift in Y Directi o

🗕 Average 🛑 Parachute – Denali – Nridge Sylmar CS – LPSaratoga – Nridge Sylmar Hosp – Landers Yermo – Kocaeli

Peak Interstory Drift in X Directio

Summary & Conclusions

- Three prototype designs developed
 - Code Design(without height limit)
 - LATBSDC-Performance Based Design
 - PEER TBI Performance Based Plus Design

and Building Enclosures

Summary & Conclusions

- Performance-based Design resulted in more economical member sizes and more practical column base connection
- Building code for BRBs seems to be overly conservative for high rise structures
 - Assumption that all braces yield simultaneously incorrect

