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Requirements Iin the Overturning
Based on Static Analysis

‘ Eccentricity

®Size effect i1s not Iincluded In the
conventional static analysis

®As long as the shape and mass density are
the same, a foundation can overturn in the
conventional static analysis no matter how
the foundation is extremely large
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Shake Table Experiment on the Effect of
Size & Mass for Overturning of Rigid
Foundations
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Kawashima & Unjoh (1992)




Shake Table Experiment on the Effect of
Size & Mass for Overturning of Rigid

Foundations
Public Works Research Institute

Kawashima & Unjoh (1992)



How does the rocking of rigid
foundations depend on the size?
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Analytical Idealization for Rocking and Sliding
Response of a Rigid Foundation
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Analytical Correlation on the Rocking
Response of a 1.5m Tall Rigid Foundation
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Seismic Response Analysis of Kurushima
Straight Bridge
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Seismic Response Analysis of Anchorages,
Towers and Superstructure System of
Kurushima Straight Brid

Base Vertical Springs

Tension
62.97 Sett Uplift
i

Som " Compression

‘TTPL =

Side Solls
Lateral Sliding at Base Lateral force
i Tension

[T ] . y Relative Disp.
LL—I_Jateral Disp. |

Compression
Kawashima & Unjoh (1994)




Peak Responses Soft rock does not yield
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How frequently does the anchorage
uplift?
Soft rock does not yield  Soft rock yields




Uplift & separation and contact of a
foundation with the underlying ground

Start to Uplift
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Nonlinear Interaction between 2 plastic
hinges; (1) Column Plastic Hinge and (2)
Foundation Nonlinear Behavior

— Plastic deformation

of a column

Rocking response
/ of a foundation




Analytical lIdealization
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VFS\ Tension

| Vertical
Displacement

Compression




Bridge Analyzed
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Deck Response under Longitudinal
and Vertical Excitation

Conventional Analysis
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Column Curvature at the Plastic

Hinge under Longitudinal and Vertical
Excitation

Conventional Analysis Rocking Isolation

210 =10
= zZ

= 2

£ 0 / ——
QJ i

= f : S

o) @)

= =_10

10 =
001 0 001 =
Curvature(1/m)

-0.01 0 0.01
Curvature(1/m)




How Large Uplift occur at the Footing?

Conventional Rocking
Analysis Isolation
Uplift
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Reaction Force of the Underlying
Ground at Corners Iincreases
under Bilateral Excitation




Seismic Response under 3 Directional
Excitation
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Why do we have an isolation effect by
the foundation rocking no matter how
we assume the elastic soil spring?

®There Is no energy dissipation in the soill
spring If we assume the elastic behavior

® Amplitude dependent period shift
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Why do we have “hysteretic-like”
moment vs. curvature relation no matter
how we assume the elastic soil spring?

® Moment vs. rotation relation depends on the
vertical force, and this results in “hysteretic-
like” relation under variation of the vertical

force.
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Factors which contribute to the
energy dissipation of a foundation
during rocking response

®Nonlinear soil behavior around a
foundation (nonlinearity of soils, yield of
bearing capacity, sliding & slip, etc)

®Energy dissipation due to pounding of the
footing to the underlying ground

®Radiational damping




Verification of Seismic Rocking
Isolation by a Shake Table Experiment
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Experimental I\/Iodel
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Excitation of Model Foundation under
Niigata-Chuetsu Ground Motion




Correlation of the Experimental
Response by Analysis
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Implementation of Rocking




Ildealization of Interaction between
Abutment and Backsolls
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Idealization of Target Bridge
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Deck Acceleration at P2

Conventional Rocking Isolation
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Deck Displacement at P2

Conventional = Rocking Isolation
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Abutment and Backsolls Interaction
In the Longitudinal Direction

Conventional Rocking Isolation
= 300 = 300
< <
3 150 3 150
2 0 T 0
S S
5-150 l B H
S 5
=002\ o 0.2 =02l /o 0

Displacement (m) Displacement (m)




Curvature at the Plastic Hinge of P2
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Effect of Yield of the Underlying
Ground (O0.5MPa)
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Conclusions

®\When separation of a footing from the
underlying ground due to rocking response Is
Included In analysis, the plastic deformation of
a column significantly decreases as a result of
softening of the moment vs. rotation
hysteresis of the footing.

®If the underlying ground yields, it enhances
the effect of rocking isolation, however It
Increases the deck response displacement and
It can result in residual drift.

®Bridge response acceleration decreases
under the seismic rocking isolation, however
bridge response displacement increases.
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