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Requirements in the Overturning
Based on Static Analysis
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Size effect is not included in the 
conventional static analysis

As long as the shape and mass density are 
the same, a foundation can overturn in the 
conventional static analysis no matter how 
the foundation is extremely large



Akashi Strait Bridge
The World Longest Bridge

In the static design, overturning was 
the major factor for sizing of those 
foundations based on the conventional 
analysis



Does such a 100m tall foundation 
overturn under seismic excitation??

Mass
Natural period
Frequency content of a ground motion
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Shake Table Experiment on the Effect of 
Size & Mass for Overturning of Rigid 
Foundations



Shake Table Experiment on the Effect of 
Size & Mass for Overturning of Rigid 
Foundations
Public Works Research Institute

Kawashima & Unjoh (1992)
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How does the rocking of rigid 
foundations depend on the size?



Analytical Idealization for Rocking and Sliding 
Response of a Rigid Foundation



Analytical Correlation on the Rocking 
Response of a 1.5m Tall Rigid Foundation

Experimental

Analytical



Kawashima et al (1994)

Seismic Response Analysis of Kurushima 
Straight Bridge



62.973m
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Seismic Response Analysis of Anchorages, 
Towers and Superstructure System of 
Kurushima Straight Bridge
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Peak Responses
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Anchorage

How frequently does the anchorage 
uplift?
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Uplift & separation and contact of a 
foundation with the underlying ground

Static Equilibrium
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Nonlinear Interaction between 2 plastic 
hinges; (1) Column Plastic Hinge and (2) 
Foundation Nonlinear Behavior

Rocking response 
of a foundation

Plastic deformation 
of a column



Plastic HingeAnalytical Idealization
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Deck Response under Longitudinal 
and Vertical Excitation

Rocking Isolation
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How Large Uplift occur at the Footing?

Uplift

Reaction of Underlying 
Ground
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Uplift of the Footing from the 
Underlying Ground



Reaction Force of the Underlying 
Ground at Corners increases 
under Bilateral Excitation

LongitudinalTransverse



Bi-Lateral Tri-Directional
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Why do we have an isolation effect by 
the foundation rocking no matter how 
we assume the elastic soil spring?

There is no energy dissipation in the soil 
spring if we assume the elastic behavior

Amplitude dependent period shift 
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Why do we have “hysteretic-like” 
moment vs. curvature relation no matter 
how we assume the elastic soil spring?

Moment vs. rotation relation depends on the 
vertical force, and this results in “hysteretic-
like” relation under variation of the vertical 
force. 
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Rotation
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Factors which contribute to the 
energy dissipation of a foundation 
during rocking response

Nonlinear soil behavior around a 
foundation (nonlinearity of soils, yield of 
bearing capacity, sliding & slip, etc)

Energy dissipation due to pounding of the 
footing to the underlying ground

Radiational damping

…



Deck

Column

FootingBall Bearings

Rubber Block Shake Table

Verification of Seismic Rocking 
Isolation by a Shake Table Experiment



Experimental Model
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Excitation of Model Foundation under 
Niigata-Chuetsu Ground Motion



Correlation of the Experimental 
Response by Analysis
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Implementation of Rocking 
Isolation to Analysis of a Whole 
Bridge

200m
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A1 A2
P1 P2 P3 P4

Idealization of Target Bridge



Response of Target Bridge under 
JMA Kobe Ground Motion



Response of P2 under JMA Kobe 
Ground Motion



The acceleration at the deck 
Deck Acceleration at P2
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Deck Displacement at P2
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Effect of Yield of the Underlying 
Ground (0.5MPa)

Stress vs. vertical 
displacement

Vertical displacementVertical stress



Conclusions
When separation of a footing from the 

underlying ground due to rocking response is 
included in analysis, the plastic deformation of 
a column significantly decreases as a result of 
softening of the moment vs. rotation 
hysteresis of the footing. 

If the underlying ground yields, it enhances 
the effect of rocking isolation, however it 
increases the deck response displacement and 
it can result in residual drift. 

Bridge response acceleration decreases 
under the seismic rocking isolation, however 
bridge response displacement increases. 
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