Passive Force-Displacement Response from Large Scale Pile Cap Tests

Kyle Rollins and Travis Gerber Brigham Young University

Caltrans-Peer Seismic Research Seminar Sacramento, CA-June 8, 2009

Passive Force on Bridge Abutments

- Ultimate passive force significant in seismic bridge response.
- Passive force-deflection relationship (Stiffness) also important

Passive Force Testing-Sponsors

Utah DOT - FHWA
Caltrans
Oregon DOT
Montana DOT
New York DOT
NSF-NEESR

Passive Force Testing

- SYU has performed 12 large-scale passive force tests in past 12 years
 - Various Soil Types (Sand, Silty Sand, Gravels)
 - Various Geometries (3.7 ft high, 5.5 ft high)
 - MSE Wingwalls
 - Limited Width Gravel Zones
 - Dynamic & Static Loading

Pile Cap Geometry

Determination of Passive Force

Measured & Computed Ultimate Passive Force

Method	Sand	Fine Gravel	Coarse Gravel	Silty Sand
Measured	1090	774	1997	1428
Log Spiral	922	817	1688	1210
Caltrans •	914	914	914	914
Coulomb <	1577	1149	3464	1575
Rankine	357	405	719	804

Note: Forces are in kN

LOgRSpitettigisetyiplicatily/Authinited slawstated

Nature likes log spirals!

Development of Passive Resistance

Bi-Linear Load-Deflection Curve (Caltrans, 2004)

Ultimate resistance, $P_{ult} = (5.0 \text{ ksf})^*(\text{H/5.5 ft})^*\text{A}_{wall}$ Initial resistance, $k_{abut} = (20 \text{ kip/in})^*(\text{H/5.5 ft})^*\text{w}$

P_{ult} and stiffness based on UC-Davis load test on 5.5 ft abutment with silty clay backfill

Comparison of Passive-Force Displacement Curves

Passive Force-Deflection Curve using Log-Spiral Hyperbolic (LSH) method

Gaps and Reloading

Effect of Wall Height

Passive Force for Gravel & Sand Backfills

How can we "pump up" the capacity of these abutments?

Compacted Gravel for Improved FoutMatlcPePfenfionanaece

Spreading of shear zones
Reduction of stress on loose sand

Backfill Geometry

Passive Force-Deflection Curves

Passive Force-Deflection Curves

Abutments with MSE Wingwalls

Load Test with MSE Wingwalls

Load Test with MSE Wingwalls

Passive Force-Defection Curves (MSE)

Reinforcement Pullout During Loading

Future Tests

MSE walls with higher Pullout FS

MSE walls with skewed abutment face

Conclusions

- Deflection required to reach maximum passive state ranged from 3.0 5.0% of the pile cap height
- Log spiral theory agreed well with the ultimate passive resistance (P_u) results
- Force-displacement curve is hyperbolic
- Caltrans approach inconsistent in matching ultimate passive force and 50% low on average stiffness

Conclusions

- Narrow gravel zones can produce a major percentage of the passive resistance provided by full gravel backfill.
 - 3 ft wide zone provided 60%
 - 6 ft wide zone provided 80%
- MSE wingwalls may experience pullout. Need method to predict increased wall pressure.