Calibration of Abutment Backfill Models through Physical Testing

Jonathan P. Stewart
Professor
UCLA

Collaborators:

UCLA: A. Lemnitzer, E. Ahlberg, P. Khalili-Tehrani, E. Taciroglu, J. Wallace

Caltrans: A. Shamsabadi, C. Whitten

Outline

- Calibration issues
- Desired boundary conditions
- Available field test data
- Comparison to models
- Extension through numerical simulation
- Gaps

Elements requiring calibration

- Elements requiring calibration
 - Capacity

- Elements requiring calibration
 - Capacity
 - Initial stiffness, shape

Load

Deflection

- Elements requiring calibration
 - Capacity
 - Initial stiffness, shape
 - Unload/reload

- Elements requiring calibration
- Variables
 - Wall height

Elements requiring calibration

Variables

Wall height

Backfill soil (type, compaction)

- Elements requiring calibration
- Variables

Wall height

Backfill soil (type, compaction)

Wall skew

- Elements requiring calibration
- Variables
- Boundary conditions
 - Wall displacement

- Elements requiring calibration
- Variables
- Boundary conditions
 - Wall displacement
 - Wingwall configuration

- Elements requiring calibration
- Variables
- Boundary conditions
 - Wall displacement
 - Wingwall configuration
 - Backfill configuration

Desired Boundary Conditions

Wall displacement

Why?
$$\delta_{\text{c-c}} > \delta_{\text{c-s}}$$

Desired Boundary Conditions

- Wall displacement
- Wingwall configuration

Why? Width >> Height

Desired Boundary Conditions

- Wall displacement
- Wingwall configuration
- Backfill configuration

Why?

Available Field Test Data

Variables/BC	UCD (Romstadt et al. 1995)	BYU (Rollins and Sparks 2002; Rollins and Cole 2006)	UCSD (Boz. et al. 2006; Wilson and Elgamal 2008)	UCLA (Lemnitzer et al. 2009)
Height	1.7 m	1.2 m; 1.1 m	1.5-2.3 m; 1.7 m	1.7 m
Backfill soil	Clayey silt	Varies	Clayey sand, silty sand; silty sand	Silty sand (SE 30)
Skew	0	0	0	0
Wall displacement	$H + \theta$	H+θ (small)	$H, \underline{H+V}; H+V$	Н
Wingwall configuration	W/H =2, integral	None, pile cap	W/H=2; 1.7. Integral, sep.	2D, sep.
Backfill configuration	Deep	Depth=H; Deep	Wedge	Deep

Method of slices (LSH)

Method of slices (LSH)

- Method of slices (LSH)
- Hyperbolic fit

$$C = \left(2K_{50} - \frac{F_{ult}}{y_{max}}\right), \qquad D = 2\left(\frac{K_{50}}{F_{ult}} - \frac{1}{y_{max}}\right)$$

- Method of slices (LSH)
- Hyperbolic fit
- HFD coefficients apply for:
 - \blacksquare Skew = 0
 - 2D conditions
 - No uplift
 - \blacksquare H=1.67 m
 - As-tested backfills (deep)

$$C = \left(2K_{50} - \frac{F_{ult}}{y_{max}}\right), \qquad D = 2\left(\frac{K_{50}}{F_{ult}} - \frac{1}{y_{max}}\right)$$

Extension through numerical simulation

Variable height

Extended HFD

$$F(y) = \frac{a_r y}{\hat{H} + b_r y} \hat{H}^n$$

a_r & b_r derived for two tested backfills

Shamsabadi et al. (JBE, in press)

Extension through numerical simulation

- Variable height
- Variable backfill strengths (c & φ)

$$F(y) = \frac{a_r y}{\hat{H} + b_r y} \hat{H}^n$$

$$\begin{cases} a_r = \frac{1}{\beta}(\eta - 1)\alpha \\ b_r = \frac{1}{\beta}(\eta - 2) \end{cases}$$

$$\alpha = \frac{F_u}{\widehat{H}^n}$$
, $\beta = \frac{y_{ult}}{\widehat{H}}$, and $\eta = \frac{y_{ult}}{y_{50}}$

$$\alpha$$
, β , η = fns (c, ϕ , δ , γ)

Gaps

- Skew effects
- Validation data for different heights and backfills
- Gaping behavior
- Cyclic models

References

Bozorgzadeh, A., S.A. Ashford, and J.I. Restrepo (2006). "Effect of backfill soil type on stiffness and ultimate capacity of bridge abutments: Large-scale tests." *Proc., 5th National Seismic Conf. on Bridges and Highways*, Paper No. B01.

Khalili-Tehrani, P. (2009). Ph.D. thesis.

Lemnitzer, A., E.R. Ahlberg, R.L. Nigbor, A. Shamsabadi, J.W. Wallace, and J.P. Stewart (2009). "Lateral performance of full-scale bridge abutment wall with granular backfill," *J. Geotech. & Geoenv. Engrg.*, ASCE, 135 (4), 506-514.

Rollins, K.M., and R. T. Cole (2006). "Cyclic lateral load behavior of a pile cap and backfill." *J. Geotech. Geoenviron. Eng.*, 132(9), 1143–1153.

Rollins, K.M., and A. Sparks (2002). "Lateral resistance of full-scale pilecap with gravel backfill." *J. Geotech. Geoenviron. Eng.*, 128(9), 711–723.

Romstadt, K., B. Kutter, B. Maroney, E. Vanderbilt, M. Griggs, and Y.H. Chai (1995). "Experimental measurements of bridge abutment behavior." *Rep. No UCD-STR-95-1*, Structural Engineering Group, Univ. of California, Davis, Calif.

Shamsabadi, A., P. Khalili-Tehrani, J.P. Stewart, and E. Taciroglu, E. (2009 – tentatively accepted). "Validated simulation models for lateral response of bridge abutments with typical backfills," *Journal of Bridge Engineering*, ASCE.

Wilson, P. and A. Elgamal (2008). "Full scale bridge abutment passive earth pressure tests and calibrated models," Proc 14th World Conf. on Earthquake Engrg., Beijing, China.

