Caltrans & PEER Seismic Research Seminar

Stephen Mahin

Nishkian Professor of Structural Engineering University of California, Berkeley

Director

Pacific Earthquake Engineering Research Center

Caltrans/PEER Seismic Research Seminar

June 8, 2009

PEER's Mission

- Advance and apply performance-based earthquake engineering tools to meet the needs of various stakeholders
- Problem-focused, multi-disciplinary research built upon foundation of engineering and scientific fundamentals
- Close partnerships with government, industry and engineering professionals
- Strong international research collaboration, focusing on Pacific Rim

PEER takes an integrative, quantitative approach to PBEE

- Vulnerable existing buildings
 - Evaluation and retrofit
- New Buildings
 - Design criteria for tall buildings
 - Sustainable and natural hazard resilient buildings
- High Performance Simulation
- Lifeline systems
 - Earthquake hazard assessment
 - Electrical power distribution systems
 - Nuclear power plants
 - LNG storage facilities
- Transportation Systems
 - Highway bridges
 - High-speed rail systems

- Vulnerable existing buildings
 - Evaluation and retrofit
 - Scope
 - Develop a consensus on the "hazardous" buildings
 - Demonstrate cost-effective retrofit
 - Identify mitigation policy alternatives
 - Promote active mitigation programs

New Buildings

- Design criteria for tall buildings
- Sustainable and natural hazard resilient buildings

- Advanced dynamic analysis procedures
- Soil-structure interaction
- Innovative structural systems
 - Seismic isolation
 Re-centering systems
 Testing and modeling of components and systems

High performance simulation

http://opensees.berkeley.edu

Lifeline systems

- Earthquake hazard assessment
- Electrical power distribution systems
- Power generation plants
- Fuel storage facilities

- EPRI, PG&E and other utilities
- California Department of Transportation
- California Energy Commission
- Nuclear Regulatory Commission

QuickTime™ and a decompressor are needed to see this picture. QuickTime[™] and a decompressor are needed to see this picture.

PEER

Goal: To improve safety and reliability of Lifelines Systems More than 120 projects have been initiated

Transportation Systems

Highway bridges

Modeling response

Validating predictions

Assessing impacts

Transportation Systems

- Highway bridges
- High-speed rail systems

Early warning systems

- Baysian network systems for design and post-event emergency management
- Fault crossing studies
- Seismic isolation
- Vehicle dynamics during earthquakes

Transportation Systems Research Program: Objectives

Devise and validate transportation systems that are more:

Economical, reliable, sustainable and disaster resilient

- Lessen post-earthquake disruption through better planning, engineering and technology advances
- Reduce environmental impact (sustainable materials, improved construction methods, etc.)
- Achieve faster, more economical and safer construction (Accelerated Bridge Construction)
- Increase traffic flow (new systems)

Ground motions & h	nazard assessment
--------------------	-------------------

Guidelines for selection of ground motion time histories for PBEE	J.Baker	Stanford
Stochastic modeling and simulation of near- and far-field ground motions for use in PBEE	Der Kiureghian	UC Berkeley
Calibration of hybrid simulation methodology for high and mid frequency IMs	Stewart	UCLA & SCEC

PBEE Development and Applications

•		
Application of PBEE tools to actual bridge	Bray & Stojadinovic Caltrans	UC Berkeley & Caltrans
Performance-based seismic assessment of skewed bridges	Taciroglu and Zareian	UCLA & UC Irvine
Detailed PBEE studies of bridges with foundations allowed to uplift	Panagiotou	UC Berkeley
Bayesian framework for PBEE assessment and risk management of transportation systems	Der Kiureghian	UC Berkeley
Pilot PBEE studies on next generation bridge systems	Stojadinovic	UC Berkeley
Contributions to OpenSees Framework for PBEE Analyses of Bridges	Conte	UC San Diego
Integrated Graphical User Environment for Dynamic Analysis and PBEE of Bridges	Elgamal, Mackie, Hachem	UC San Diego, UCF, Consultant

PBEE issues related to soils & foundations

Simplified Design Procedure for Piles Affected by Lateral Spreading based on 3D Nonlinear FEA using OpenSees	Arduino and Mackenzie	Univ. of Washington
Mitigation of lateral spreading effects on bridges	Boulanger	UC Davis
Simulation of global bridge response to 3D shaking and lateral spreading	Brandenberg and Zhang	UCLA
Last hurdles for implementation of rocking foundations for bridges	Kutter et al	UC Davis
Damage-Resistant Pile to Wharf Connections	Roeder and Lehman	Univ. of Washington

PBEE issues for structures		
Self-compacted Hybrid Fiber Reinforced Concrete for Bridge Columns	Ostertag & Panagiotou	UC Berkeley
Ductile High-Performance Fiber- reinforced Concrete for Durable, Resilient Bridge Columns	Billington	Stanford
New seismic isolation concepts for improving the seismic performance of bridges	Mahin	UC Berkeley
Advanced Precast Concrete Dual-Shell Steel Columns	Restrepo	UC San Diego
Rapid Construction of Self-Centering Precast Bridge Bents, plus extension of PEER column performance database	Eberhard and Stanton	Univ. of Washington
State-of-the-art report and workshop on seismic design of high-speed rail systems	Bardet	USC

To learn more about PEER and its activities

- PEER operated for 10 years as a university based center of excellence with funding from the US National Science Foundation
- Continues with funding from Federal, State and Local government agencies as well as from industry

PEER recognized as California's primary earthquake engineering research arm by state's Seismic Safety Commission

More information: WWW.peer.berkeley.edu

SAVE THE DATE: October 17, 2009

20th anniversary of the Loma Prieta Earthquake Commemorative event in San Francisco

in conjunction with the

PEER Annual Meeting & 3rd Int'l Conf on Advances in Experimental Structural Engineering October 15 – 16, 2009

Today's Agenda

8:30-9:00 AM	Introductions
9:00-10:00 AM	Determination of Seismic Hazard using Next Generation Attenuation (NGA) Models
10:00-10:30 AM	Break
10:30 AM - 12:30 PM	Seismic Performance of Rocking Foundations
12:30 - 1:30 PM	Lunch
1:30 - 3:30 PM	Seismic Analysis and Design of Abutments
3:30-4:00 PM	Conclusions/Final Panel Discussion

Session 1

Determination of Seismic Hazard using Next Generation Attenuation (NGA) Models

Co-Chairs: Tom Shantz (Caltrans) and Yousef Bozorgnia (PEER)

Speakers:

- Brian Chiou (Caltrans): Overview of NGA Program
- Tom Shantz (Caltrans): Implementing NGA at Caltrans
- Panelists: Tom Shantz, Yousef Bozorgnia, Brian Chiou, Norm Abrahamson

