Overview of PEER Research on Selection and Scaling of Time-Series for Nonlinear Analysis

Tom Shantz, Caltrans

What's our objective?

Determine the average response of a nonlinear system given a design event (or hazard)

 \diamond Provide an estimate of the response σ

Select records that have similar...

- Origin characteristics (M_w, r, V_{s30}, basin depth,...)
- Record properties (Sa, PGV, epsilon,...)
- ...as the design event.

Select records that have similar...

- Origin characteristics (M_w, r, V_{s30}, basin depth,...)
- Record properties (Sa, PGV, epsilon,...)
- ...as the design event.

Goulet and Stewart

Select records that have similar...

- Origin characteristics (M_w, r, V_{s30}, basin depth,...)
- Record properties (Sa, PGV, epsilon,...)
- ...as the design event.

Goulet and Stewart

- Select records using new IM's based on..
 - Record property vectors (Sa-AVG)
 - Response of simple inelastic systems (inelastic oscillators, Newmark sliding block)

Select records that have similar...

- Origin characteristics (M_w, r, V_{s30}, basin depth,...)
- Record properties (Sa, PGV, epsilon,...)
- ...as the design event.

Goulet and Stewart

- Select records using new IM's based on..
 - Record property vectors (Sa-AVG)
 - Response of simple inelastic systems (inelastic oscillators, Newmark sliding block)

Tothong and Cornell, Watson-Lamprey and Abrahamson, Shantz, Bozorgnia

Improved Search Tools... (Goulet and Stewart)

Hazard Disaggregation

- Get the relative contribution of parameters controlling the hazard
- Disaggregation |
 - Magnitude
 - Distance
 - Epsilon
 - Others
 - Fault type
 - Directivity
 - Site condition

Improved Search Tools...

The proposed selection tool will allow the user to select *any* of the parameters present in the NGA "flatfile" for record selection.

Examples:

- Ranges of magnitude, distance, latitude, Vs₃₀, basin depth, etc.
- Ranges of Sa, PGA, PGV, Epsilon (for multiple period values)
- Instrument location, soil category, rupture mechanism and directivity, etc.

Evaluation of new IM's.. (Tothong and Cornell)

- 3 different IM's compared :
 - Sde (elastic spectral displacement)
 - *Sdi* (inelastic spectral displacement)
 - Sa-AVG. (Sa averaged over several periods)

• *Sdi* and *Sa-AVG.* tend to reduce the EDP dispersion.

Sufficiency Sufficiency: Defined as f_{EDPlim} being independent of GM record characteristics, e.g., Mw, distance, ε . Plots show the EDP im against the variable that may improve the prediction (here ε) $S_{a,avg}[T_1, T_2, ...] [g]: T=[0.30 2.00]$ 10^{-1} 10^{-1} 10 S_{de} S_{di} \bigcirc 10^{-2} 10^{-2} 10^{-2} a m 00 \bigcirc $med-\theta_{max} = 1.80\%$ $med-\theta_{max} = 1.76\%$ $\text{med-}\theta_{\text{max}} = 1.80\%$ $\beta_{1,\text{glnSde}} = -0.21$: pva $\models 0.009$ $\beta_{1 \ln SF} = 0.03$: pva l= 0.348 $\beta_{1,elnSde} = 0.00$: pva $\models 0.942$ 10^{-3} 10^{-3} 10^{-3} 2 -2 -1 0 2 -2 -1 2 -2 -1 0 1 0 ϵ_{lnSde} ϵ_{lnSde} $\epsilon_{\ln S de}$

- ε helps improve response prediction for Sde case
- Scaling GMs based on *Sdi* and *Sa-AVG*, show sufficiency w.r.t. ε, i.e., no dependency on ε.

Scaling GMs based on *Sdi* and *Sa-AVG*. does not introduce bias in the response of a structure.

Evaluation of new IM's... (Tothong and Cornell)

Conclusions

- Sdi and Sa-AVG are robust IM's w.r.t. GM selection and scaling.
- Epsilon is not an issue when using Sdi and Sa-AVG.
- Both IM's require new attenuation relationships (feasible and available).

Evaluation of new IM's... (Watson-Lamprey and Abrahamson)

Approach

- Uses a simple inelastic system as a proxy for a more complicated system (Newmark block, inelastic oscillator)
- Seek record properties that correlate well with peak system response (PGV, A_{rms}, Dur_{ky})
- Develop predictive model for peak system response using above parameters
- Choose scaled records that have record properties that are expected to produce an average response

Calculate the expected Newmark displacement for each scaled record Calculate the difference between the <u>expected displacements</u> and the <u>Design Event Displacement</u>

Evaluation of new IM's... (Watson-Lamprey and Abrahamson)

Advantages:

- Allows for a much wider selection of records than magnitude-distance binning
- Scale factors as large as 20 can be used without bias

Attenuation of Inelastic Spectra (Bozorgnia et al.)

