

Nicolas Luco – U.S. Geological Survey

2006 PEER Annual Meeting

Motivation: PEER PBE Methodology

$$v(DV) = \iiint G \langle DV | DM \rangle | dG \langle DM | EDP \rangle | dG \langle EDP | IM \rangle | d\lambda (IM)$$
Impact Performance (Loss) Models and Simulation Hazard

$$\lambda (IM) \text{ is computed via PSHA by seismologists}$$

$$G \langle EDP | IM \rangle = 1 - \Phi \left[\frac{\ln(EDP) - m_{EDP | IM}}{\sigma_{\ln(EDP) | IM}} \right]$$

 $m_{EDP \mid IM}$ = median *EDP* for a given *IM* value $\sigma_{\ln(EDP) \mid IM}$ = variability of *EDP* for a given *IM* value

Objective: Establishing $G\langle EDP | IM \rangle$

• PEER has employed ground motion scaling (in amplitude) to estimate $m_{EDP|IM}$ & $\sigma_{\ln(EDP)|IM}$

Problem: Scaling can induce bias

• If $IM = S_a(T_1)$, as is typical, scaling can lead to biased estimates of $m_{EDP|IM}$ (not to mention σ)

"Near-Source" Bin, T = 1s, R = 4 = 2%) 10 $S_d (T, \zeta = 5\%, R, \alpha)$ Bias = 1.3Scaled / Unscaled Blas = a SF^b 10 a≔:1:00 b=0.38 10-1 101 SF = 2Scale I

• Scaling to $IM = S_a(T_1)$ alone ignores effect of spectral shape on structural response (*EDP*)

Solution 1: Scaling to Alternative IM's

Scale to common values of an *IM* that, unlike $S_a(T_1)$, reflects spectral shape, e.g., ...

- Average Spectral Acceleration over a range of periods (e.g., 0.27₁ to 1.57₁ from Building Code)
- Inelastic Spectral Displacement, $S_{di}(T_1, d_y)$
- Vector composed of $S_a(T_1)$ & Epsilon, ε
- Other vector and scalar combinations of Spectral Acceleration and Inelastic Spectral Displacement

• Must be able to compute seismic hazard, $\lambda(M)$, in terms of the alternative M

Seismic hazard can be computed using existing attenuation relations & correlations

(Tothong & Cornell, 2006)

Attenuation relations for $S_{di}(T_1, d_y)$ are being developed (e.g., by Bozorgnia, Tothong, ...)

(Tothong & Cornell, 2006)

Solution 1: Scaling to Alternative *IM*'s Vector of $S_a(T_1)$ and Epsilon, ε , works too

Magnitude 7+/- Random Set

Wide M, R Range Set; Epsilon > 1.5 Only

Vector Seismic Hazard app. (Bazzurro, 1999)

(Baker & Cornell, 2005)

(Baker & Cornell, 2005)

Solution 1: Other Benefits

Visit

• Fewer ground motions & dynamic analyses, as a result of smaller $\sigma_{\ln(EDP)|M}$ ("efficiency")

Example:	IM	$\sigma_{\ln(EDP) IM}$	# Records
	S_{a}	0.4	16
	S_d^{I}	0.35	12
	$\vec{S_a}$	0.3	9
	$\{ \vec{S}_a, S_d^I \}$	0.2	4

(9-story building, $EDP = \theta_{max}$)

• Insensitivity to the M, R, ε , etc. of selected ground motions ("sufficiency")

(Luco, Manuel, Baldava, & Bazzurro, 2004)

Solution 2: Focus on Median *EDP* $| S_a(T_1)$

♦ Still need $\sigma_{\ln(EDP)|Sa(T1)}$ for PBE, but can settle for generic estimates from researchers

♦ Focus shifts to efficient ways of obtaining unbiased estimates of $m_{EDP \mid Sa(T1)}$, e.g., ...

- Selecting ground motions based on spectral shape (or ε); S_{di} (T₁, d_y); or S_{a,AVG}
- Spectral matching
- Simulating ground motions

 Same focus as "average response of at least 7 ground motions" in Building Code

(Luco & Bazzurro, 2005)

• But can significantly reduce the # of ground motions needed relative to $S_a(T_1)$ scaling

(Bazzurro & Luco, 2003)

Summary

• PEER has explored alternatives to $IM = S_a(T_1)$ in PBE that can ...

- reduce the number of ground motions needed to accurately estimate median *EDP* | *IM*
- aid in selecting ground motions that lead to unbiased estimates of $m_{EDP|IM}$, even with scaling

e.g., $S_{a,AVG}$; $S_{di}(T_1, d_y)$; and $\{S_a(T_1), \varepsilon\}$, etc.

PEER has also investigated other efficient ways of obtaining estimates of $m_{EDP|Sa(T1)}$, including spectral matching and simulation

Extra Slides ...

Simulated vs. Recorded Inelastic Response

- Variability of inelastic response to simulated time histories can be smaller, but it can also be larger – i.e., you can't count on it (yet).
- More importantly, inelastic response to simulated time histories can be biased w.r.t. un-scaled time histories – need validation.

Summary of PEER Achievements

New IM's and attenuation relations, and vector-valued hazard analysis

- Criteria for selecting among alternative IM's, considering EDP | IM (efficiency, sufficiency)
- Evaluation of alternative IM's via casestudies (e.g., PEER Testbeds)
- Guidance for selecting and scaling (or spectrum-matching) ground motion records
- Comparison of EDP | IM for simulated vs. recorded ground motions, and improvements in simulations techniques

