SEISMIC RISK ANALYSIS OF HIGHWAY SYSTEMS: APPLICATIONS AND USER FEEDBACK

by

Stuart D. Werner Seismic Systems & Engineering Consultants Oakland CA

prepared for

PEER Annual Meeting Palm Springs CA

March 8, 2003

PRESENTATION

- Results
- User Feedback
- Closing Comments

REDARS:

<u>Risks from Earthquake DAmage to Roadway Systems</u>

- Methodology for SRA of Highway-Roadway Systems
- Meets Important Needs:
 - Estimate How EQ Damage to Highway System Affects Post-EQ Traffic Flows
 - Enables Users to Consider these Effects during Decision Making

Pre-EQ Planning

Post-EQ Response

SRA PROCEDURE FOR HIGHWAY SYSTEMS

System Module

Network Inventory Traffic Data O-D Zones Trip Tables Traffic Management Network Analysis Models

Economic Module

Economic Sectors Locations Productivity Damageability Stakeholder Impacts Economic Models

Steps 1-4 of SRA Procedure

Hazards Module

Seismo-Tectonics Topography Soil Conditions Ground Motion Attenuation Geologic Hazard Models Model Uncertainties

Component Module

Data

Structural Repair Costs Repair Times Traffic States Models Loss Functionality Uncertainties

ANALYSIS PROCEDURE FOR EACH SCENARIO EQ AND SIMULATION

• <u>Modular</u>

- Facilitate Future Incorporation of New/Updated Models

- Modular
 - Facilitate Future Incorporation of New/Updated Models
- <u>Scenario-Based (Deterministic) & Risk-Based (Probabilistic)</u> <u>Analysis Capability</u>

- Modular
 - Facilitate Future Incorporation of New/Updated Models
- Scenario Based (Deterministic) and Risk Based (Probabilistic) Analysis Capability
- <u>Multidisciplinary</u>

- Modular
 - Facilitate Future Incorporation of New/Updated Models
- Scenario Based (Deterministic) and Risk Based (Probabilistic) Analysis Capability
- Multidisciplinary
- **Diverse Ways to Present Results for Decision Makers**

- Modular
 - Facilitate Future Incorporation of New/Updated Models
- Scenario Based (Deterministic) and Risk Based (Probabilistic) Analysis Capability
- Multidisciplinary
- Diverse Ways to Present Results for Decision Makers
- <u>Will be Public-Domain Software</u>
 Beta Testing in 2004, Public Release in 2005

PRESENTATION

SRA Overview

- User Feedback
- Closing Comments

SHELBY COUNTY, TENNESSEE

HIGHWAY-ROADWAY NETWORK

BRIDGES

SOIL CONDITIONS

ORIGIN-DESTINATION ZONES

ECONOMIC LOSSES DUE TO TRAVEL TIME INCREASES

ECONOMIC LOSSES FOR SELECTED EQS								
	Earthqu	ake/Simu	lation					

PC	POST-EQ TRAVEL TIMES FOR EQ 41789-1						
	Orig	in-Destinatior	Zone				

TRANSPORTATION NETWORK ANALYSIS: MINIMUM-TIME TRAVEL PATHS

POST-EQ TRAFFIC VOLUMES

PRESENTATION

- SRA Overview
- Results

Closing Comments

PEER PROJECT 601: CALTRANS MINI-WORKSHOPS

- Mini-Workshops
 - Caltrans District 7, Los Angeles CA
 - Caltrans District 4, Oakland CA
 - Caltrans Headquarters, Sacramento CA (2 Workshops)
- Objective: To Obtain Caltrans Input Regarding:
 - Possible Uses of SRA
 - How REDARS may be Improved to Enhance Usefulness

• <u>Pre-EQ Assessment of Need for Seismic Strengthening of</u> <u>Bridges along Critical Lifeline Routes</u>

- Pre-EQ Assessment of Need for Seismic Strengthening of Bridges along Critical Lifeline Routes
- **Pre-EQ Planning and Management of Repair Resources**

- Pre-EQ Assessment of Need for Seismic Strengthening of Bridges along Critical Lifeline Routes
- Pre-EQ Planning and Management of Repair Resources
- Post-EQ Traffic-Management/Detour-Route Planning

- Pre-EQ Assessment of Need for Seismic Strengthening of Bridges along Critical Lifeline Routes
- Pre-EQ Planning and Management of Repair Resources
- Post-EQ Traffic-Management/Detour-Route Planning
- <u>Post-EQ Coordination of Emergency Response Activities</u> <u>between Agencies</u>

- Pre-EQ Assessment of Need for Seismic Strengthening of Bridges along Critical Lifeline Routes
- Pre-EQ Planning and Management of Repair Resources
- Post-EQ Traffic-Management/Detour-Route Planning
- Post-EQ Coordination of Emergency Response Activities
 between Agencies
- Pre-EQ Identification of Vulnerable Sections of Highway System

END USER FEEDBACK: DECISION VARIABLES

- Possible Decision Variables:
 - Bridge/Component Damage States
 - System States at Various Times after EQ
 - Economic Losses (Repair Costs, Costs of Time Delays)
 - Travel Times (Aggregate, System-Wide)
 - Travel Time (Between Selected Locations)
 - Minimum-Time Travel Paths and Distances (Between Selected Locations)
 - Traffic Volumes along Selected Links
- Consistent with Current REDARS Output

• Rapid Post-EQ Updating Procedures in Real Time

- Rapid Post-EQ Updating Procedures in Real Time
- Improved Fragility Models for New and Retrofitted Bridges (including Repair-Cost/Downtime as Function of Damage)

- Rapid Post-EQ Updating Procedures in Real Time
- Improved Fragility Models for New and Retrofitted Bridges (including Repair-Cost/Downtime as Function of Damage)
- Improved Fragility Models for Pavements, Tunnels, Embankments, Retaining Walls, Culverts

- Rapid Post-EQ Updating Procedures in Real Time
- Improved Fragility Models for New and Retrofitted Bridges (including Repair-Cost/Downtime as Function of Damage)
- Fragility Models for Pavements, Tunnels, Embankments, Retaining Walls, Culverts
- Improved Models for Collateral Seismic Hazards for Spatially Dispersed Lifeline Systems (Liquefaction, Landslide, Fault Rupture)

- Rapid Post-EQ Updating Procedures in Real Time
- Improved Fragility Models for New and Retrofitted Bridges (including Repair-Cost/Downtime as Function of Damage)
- Fragility Models for Pavements, Tunnels, Embankments, Retaining Walls, Culverts
- Improved Models for Collateral Seismic Hazards for Spatially Dispersed Lifeline Systems (Liquefaction, Landslide, Fault Rupture)
- Further Calibration/Upgrading of Network Analysis Models (Including Post-EQ Trip Demands)

PRESENTATION

- SRA Overview
- Results
- User Feedback

SOME POSSIBLE PERFORMANCE METRICS FOR HIGHWAY SYSTEMS

- X % Allowable Increase in Post-EQ Total Travel Time (Vehicle Hours Traveled)
- Y % Allowable Increase in Post-EQ Travel Time between Critical O-D Pairs (e.g., between Damaged Region and Emergency Hospital)
- Z % Allowable Increase in Post-EQ Travel Time along Critical Emergency-Response or Lifeline Routes
- System Traffic Flows must be Restored to within P % of Pre-EQ Flows within D Days after EQ

FUTURE RESEARCH ISSUES: INPUT DATA

- Highway Systems Include Many Bridges, Components, Sites
- Federally Available Electronic Data Bases may not Provide All Data Needed for Upgraded Models that may be Developed
 - e.g., NBI Bridge Database Not Intended for Seismic Analysis Applications
- Important Consideration when Planning Research to Improve Models for SRA Applications
- May Need Parallel Effort to Develop Electronic Database of Required Input Data

ACKNOWLEDGEMENTS

- Federal Highway Administration and MCEER
- Current and Former MCEER Project Management:
 - Ian Buckle, UNR; Jerry O'Connor, MCEER; Ian Friedland, FHWA
- Other Members of SRA Project Team:
 - Craig Taylor (Natural Hazards Management Inc.)
 - Jim Moore (Univ. of Southern California)
 - Ron Eguchi, Charlie Huyck, and Sungbin Cho (ImageCat)
 - Jean-Paul Lavoie and Chip Eitzel (Geodesy)

USE OF SRA FOR PRE-EQ RISK REDUCTION DECISION MAKING

