

Jack Meszaros, Management Ufuk Ince, Finance

For PBEE to be used, client must agree that the risk is worth attention. (This is not true for code-based design.)

6 Case Studies

Three patterns found:

- NEAR MISS: Small crisis, vivid awareness of vulnerability/poor preparation for other risks
- CORE AT RISK: Core Technology Vulnerable
- COSTLESS GAIN: Opportunity to reduce risk cheaply as part of another project

RISK OF RUIN was a crucial heuristic in 5 of the cases

Post-Nisqually Survey ($n \approx 832$)

One-third "ants"; two-thirds "grasshoppers"

	%
Which o f the following two statements comes closest to reaction to this earthquake?your personal	
Our organization seems well prepared for earthquakes since we fared pretty well Our organization needs to get better prepared since more serious	67%
earthquakes c an happen	33

	Mitigations added after quake
Average number of mitigations	0.9
% of firms mitigating	34.4%

Post-Nisqually Survey (n≈832)

Ste p	R _L ²	2	df	Variables	b	s.e.
1	.076	33.76*	18	Constant Industry ^a Organizational age Organizational size Risk perception Worry	-2.458*** n.s. -4.9E-5 .002 .012 .376***	482 .005 .002 .067 .095
2	.199	58.62***	5	Disruption Information search Prior preparedness Overconfidence Shake intensity	.546** 1.590** .025 685** .065	.192 .333 .033 .264 .142
3	.222	11.50*	3	Shake x Disruption Shake x Information Search Shake x Prior Preparedness Shake x Overconfidence	.131 099 .125* 1.222**	.324 .495 .058 .403

Multiple-Objective Filters

Survey of 50 practicing engineers In your last PBEE project (n=19)

> How important were the following goals to the owner? Scale: 1=not a priority; 5=main priority

	mean
Protect people	4.16
Avoid dow ntime after an earthquake	3.89
Protect the value of the building	3.05
Protect contents and inventory (other than	
computers and data)	2.67
Protect computer systems, data and files	2.33

Multiple Objective Filters

Survey of 50 Engineers

Clients' reasons for declining PBEE

Scale:	1=not important;	5=extremely	important
--------	------------------	-------------	-----------

	Mean	n
Desire to invest no more than is legally required	3.62	21
Desire to minimize cost of engineering analysis and design	3.62	21
Desire to minimize length time/business involved in renovation	3.56	16
Cost of doing PBEE exce ed the owner's anticipated benefits	3.47	19
Desire to follow legal prescriptions (i.e., code) i n order to avoid liability	3.42	19
Desire to invest no more in engineering than other similar firms invest	3.20	20
Belief that engineers overstate the probabilities and seriousness of earthquakes	2.78	18
Doubt that serious quakes will occur while they still own the building	2.73	15
Doubt that serious quakes will do serious harm to the ir building, contents, people.	2.62	16
Doubt that serious quakes will ever occur in their location	2.43	14

Multiple-Objective Filters

6 Case Studies

Major decision constraint in 4 cases: Cost and disruption of mitigation could not be significant

In 1 case: Cost could be significant, but not disruption

Financial Metrics & PBEE Decisionmaking

- Use methods and metrics familiar to the *non-engineer* decision maker
- Consider a comprehensive spectrum of mitigation and non-mitigation alternatives
- Leverage the richness of output from PEER
 framework to maximum extent
- Frame the mitigation decision analysis as a mix of financial and non-financial decision variables

Familiar decision methods and metrics

Capital budgeting techniques

Percent of CFOs who always or almost always use a given technique

Comprehensive spectrum of alternatives

	Active – Anticipation	Passive – Resilience
Geographical	Risk Avoidance	Risk retention – Diversification
Physical	Structural Retrofit	Redundancy Building
Risk transfer	Insurance – CAT securities	Government Bail-out

Leverage the output from PEER framework $\lambda(\underline{DV}) = \iint G(\underline{DV} | \underline{DM}) \, dG(\underline{DM} | \underline{IM}) \, d\lambda(\underline{IM})$

Framing: financial and non-financial DVs

	Structural NPV	Structural IRR	Downtime	Injuries	Fatalities	Simulated Probabilities
No Retrofit	\$0	13.0%	4.2 days	1.64	0.40	x%
Moderate retrofit	\$69,093	16.6%	2.1 days	0.80	0.19	y%
Extensive retrofit	-\$40,088	11.9%	1.1 days	0.43	0.10	x%

		PEER-funded projects	Prior test-bed meetings	ATC 58 Project workshop	Features of the financial model
		"Investor-based" decision making explicitly addressing costs and benefits at different levels of seismic safety		Rigorous cost-benefit analysis	\checkmark
Methodology	;	Tradeoffs between investing in seismic resistence or alternative forms of risk management			Insurance will be incorporated. Securitized risk transfer is not included. At the retail customer level (e.g. Van Nuys) not available.
		Consequences and tradeoffs among different levels of safety		Range of potential outcomes may be desirable.	\checkmark
Relative vs.	absolute	Consequences expressed in relative terms rather than absolute	Relative risk considerations		\checkmark
Probability	•		Move from scenario analysis to more refined probabilistic statements	Probabilistic statements are not favorably received. Scenario analysis preferred. 90% confidence level.	The output is % probability of annual loss for three categories under various mitigation scenarios.
cision Variables		Public safety: saving lives/avoiding injuries	Life-safety	Life losses (not the focus of discussion, though)	\checkmark
		Cost of damage repair	Repair costs	Direct economic losses (especially	\checkmark
ă		Cost of down-time	Down-time	down-time)	\checkmark
rime Horizon			Relevant time horizon needs to be considered	Annual probability is not desirable	Reduction in annual expected losses at different levels of mitigation investments is obtained
Externality 1		Consider externalities		Indirect economic losses	No. These are location/structure specific and hard to incorporate in a general framework. For Van Nuys externality data not available