Non-ductile concrete structures: State of practice and research issues

2003 PEER Annual Meetin

Overview

- Current state of the practice
- Example projects
- "Compartmentalizing the judgment"
- Research versus development and key issues
- FEMA 306 approach
 - Component type and mechanism
 - Behavior mode
- Recommendations

Q: What is the state of practice for the assessment and retrofit on non-ductile concrete structures?

A: FEMA 356 Guidelines

But for the Savvy engineer it is loosely based on FEMA 356 with plenty of judgment and interpretation

Case Studies of FEMA 273

- Engineers who followed the Guidelines more closely struggled to find reasonable design solutions.
- E.g., 5-story building needing numerous 40-inch thick new exterior concrete walls.

12-story concrete wall buildings

- Existing concrete walls with boundary ties at 10 in. spacing.
- FEMA 356 would require improving boundary confinement.
- More detailed evaluation, directly using research results and approaches shows that retrofit of boundaries is not needed.

Administrative Building Retrofit

RUTHERFORD & CHEKENE

"Gravity" Columns

Acceptance limits for shearcritical columns

- 1% plastic rotation in FEMA 273, revised to 0.3% plastic rotation in FEMA 356 (reason for change not documented).
- Research by Moehle et al.
- But how reliably can we estimate the displacement demand?

Supplemental Support at exterior columns

Wurster Hall UC Berkeley

RUTHERFORD & CHEKENE

Steel columns backing up existing precast concrete exterior columns

Compartmentalizing the research

- Seismic hazard / demand parameters / component capacities / performance levels / Socioeconomic impacts
- In any design process judgment gets applied at some point.
- It can be problematic to apply this judgment to the component results rather than to the final answer

Example design decisions

- Should gravity columns be retrofitted?
- Should wall boundaries be retrofitted?
- In a large building these decisions have million-dollar consequences.

The decision depends on compounded assumptions:

Performance expectation

Acceptability

Local demand (drift or ductility)

Displacement demand

Structure stiffness

Ground motion

Applying expert judgment to the final result, e.g.:

 Is it right that the wall boundaries in this building, with #3@10" ties, should be retrofitted?

 Do we have enough confidence in our displacement demand and capacity estimates to know that these shearcritical columns can be left unretrofitted?

EXISTING CONCRETE BUILDINGS EVALUATION AND RETROFIT GUIDELINES

What needs to be done?

EXISTING CONCRETE BUILDINGS RECOMMENDED DEVELOPMENT

- Tie acceptance limits more explicitly to behavior modes
- Simplify general frameworks
- Improve and clarify evaluation and analysis procedures
- Review research and improve acceptance limits
- Example designs
- Quality control

Two possible approaches for PBD

A reference document with a <u>less</u> prescriptive framework than FEMA 356: Engineer investigates the research herself, with an excellent knowledge of applicable assumptions.

A more specific and vetted FEMA 356, with workable code-language design provisions, commentary, and example applications.

Development of improved guidelines

Example designs to illustrate provisions 20% Example designs **RT** to determine key needs 20%

Quality control of provisions 10%

Example designs to determine ramifications 20% Development of building-specific provisions and commentary 20%

Development of general provisions, formats, and frameworks 10%

PEER investigation of key variables and parameters

- E.g., Axial load ratio, load history, concrete strength, story drift, chord rotation.
- Hypotheses of behavior models can help identify what should be a key variable.

FEMA 356 Acceptability Limits

Grouped by:

- Axial load ratio
- Unbalanced reinforcement ratio
- Level of shear stress in concrete
- Conforming versus nonconforming detailing

Are we over-frameworkizing the research?

Study of FEMA 356 AcceptabilitylimitsPanagiotakos and Fardis

Table 2—Statistics of ratio of experimental ultimate plastic (chord) rotation θ_{pl} to values suggested by FEMA 273¹ and FEMA 356^{3*}

	n	$\theta_{pl,exp.}/\theta_{pl,FEMA}$		$\theta_{u,exp.}/\theta_{u,FEMA}$			$\theta_{pl,exp.}/\theta_{pl,FEMA}$		$\theta_{u,exp.}/\theta_{u,FEMA}$		DE SCA	$\theta_{pl,exp.}/\theta_{pl,FEMA}$		$\theta_{u,exp.}/\theta_{u,FEMA}$		
$V/bd \sqrt{f_c}'$, units: lb. in.		< 1.00				cient of then, %	1.00 to 2.00			no dia no dia	>2.00					
$(\rho - \rho')/\rho_{bal}$		m	σ	m	σ	n	m	σ	m	σ	n	m	σ	m	σ	
		Beams with closely spaced stirrups [†]														
≤ 0	0	-		,		0		(and the second	0.00.00		0	0.00	nd <u>bali</u>	aa <u>l vi</u> at	10(-21)	
0 to 0.25	42	1.18	0.36	1.28	0.35	11	1.13	046	1.32	0.5	0	nye <u>ns</u> tel	Do <u>la</u> ga	0-11 <u>9</u> 173	ort <u>, ab</u> re	
≥ 0.25	0	200				0	Y	<u>1110 010</u>	ata <u>va</u>		0	10 <u>kG</u> e	01 2000	aram o		
	Beams without closely spaced stirrups [†]															
	0	101		1.650		0	- 1	20	and These		0	11-71	Survey ST	16 SAT	OTTO D	
$v = N/A_g f_c'$	Columns with closely spaced stirrups [†]															
≤ 0.1	76	1.43	0.78	1.48	0.70	18	1.07	0.63	1.19	0.55	5	0.78	0.17	1.03	0.13	
0.1 to 0.25	172	1.36	0.57	1.55	0.60	16	0.89	0.47	1.05	0.50	0	_		(.24)89	d gault	
0.25 to 0.4	58	1.2	0.85	1.32	0.78	5	1.12	0.52	1.24	0.43	2	0.09	0.13	0.42	0.05	
≥ 0.4	28	1.1	0.85	1.18	0.77	0		(9 <u>10</u> 0)	61 <u>ad</u>) .	al anoi.	0	<u>ikelq 10</u>	ua nd on	t no ba	EQ <u>ano</u> s	
bend hin harm	TSUTO:	Columns with no closely spaced stirrups [†]														
. ≤ 0.1	44	2.75	1,33	2.59	1.14	8	2.79	1.72	2.58	1.41	5	2.01	0.54	2.18	0.40	
0.1 to 0.25	26	2.13	1.15	2.17	0.98	4	0.93	0.39	1.02	0.39	2	1.92	1.38	1.95	0.99	
0.25 to 0.4	21	1.54	1.09	1.77	0.92	1	2.57		2.25	41-5-54	1	2.56	- 9 - 5.	2.25	1	
≥ 0.4	12	2.74	1.57	2.38	1.08	0	-		Site of	11-1-10	0	and the	dia to	Autority	-	

Ultimate rotation capacity

Panagiotakos and Fardis

FEMA 306 Approach

- Document covers wall buildings.
- Designed for evaluation of earthquake damage.
- Applicable to seismic evaluation
- Emphasizes understanding the mechanism of response and identifying component behavior modes

RC2: Weaker wall pier

RC4: Stronger spandrel

Inelastic displaced shape

Wall Shear Failure at First Story

Wall shear failure and story mechanism at 2nd Story

Inelastic displaced shape

Mechanism of coupling beam failure

Inelastic displaced shape

Mechanism: Flexural yielding above curtailed reinforcement

> Inelastic displaced shape

Behavior Mode

A. Ductile Flexure

- B. Flexure/Diagonal Tension
- C. Flexure/Diagonal Compression (Web Crushing)
- D. Flexure/Sliding Shear
- E. Flexure/Boundary Zone Compression
- F. Flexure/Lap-Splice Slip
- G. Flexure/Out-of-plane Wall Buckling

Moderate (Varies)

High

Ductility

Capacity

RC1A: Flexure-Governed Wall

Component Type RC1: Isolated Wall

Behavior Mode B: Flexure/ Diagonal Tension

Component Type RC1: Isolated Wall

Behavior Mode D: Flexure/ Sliding Shear

RC1D: Sliding shear failure

Buckled wall reinforcement -- RC1E

Buckled wall reinforcement -- RC1E

Component Type RC1: Isolated Wall

Behavior Mode G: Flexure/ Out-ofplane wall buckling

Out-of-plane wall buckling -- RC1G

Behavior Mode

Ductility Capacity

- H. Preemptive Diagonal Tension
- I. Preemptive Web Crushing
- J. Preemptive Sliding Shear
- K. Preemptive Boundary Zone Compression
- L. Preemptive Lap-Splice Slip
- M. Global Foundation Rocking
- N. Foundation Rocking of Individual Piers

Moderate to High

Low

Behavior Mode H:

Preemptive Shear Failure in Diagonal Tension

Northridge 1994

RC2H: Weaker wall pier, preemptive diagonal tension

RC2H: Weaker wall pier, preemptive diagonal tension

RC3 Components: Weaker Spandrels

RC1H: Shear Failure in Diagonal Tension

RECOMMENDATIONS

- Take full advantage of research done previously and at non-PEER institutions. Emphasize review of research as well as new research.
- Continue to select and design tests based on actual buildings (to the extent possible) so that overall impacts of findings can be studied.

RECOMMENDATIONS

- Continue to seek and use practitioner input, and coordinate research among institutions.
- Question proposed frameworks if there are potentially better alternatives.