KEY ISSUES RELATED TO PILE GROUP
IN SPREADING LIQUEFIED GROUND
WITH A NONLIQUEFIED SURFACE LAYER

Ignatius Po Lam, Earth Mechanics, Inc.
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MCEER Recommendations for Bridge Foundations
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Analysis Modules for Pile Pinning Effects on Ground Displacement
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Ground Displacement including Pile Pinning
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Material 3
Silty Sand (SM)
7, = 120 pcf, ¢’= 33

Material 4 Clay (CL)

% = 120 pcf, Sv= 1,000 psf
Material 5

Silty Sand (SM)

7% = 120 pef, ¢'= 33

Material 6 Sandy Silt (ML)
w/ Layers of Clayey Silt/Clay
7% = 120 pef, Sv= 1,500 psf

ElL_-55

Material 7

S, Silty Sand (SM)

|11 % = 120 pef, g= 34 EL —60
Material 8 Silt/Clay (ML/CL) 7 = 120 pcf, Sy= 1,500 psf EIl. -62

Material 9
Sand/Silty Sand (SM)
7, = 125 pef, ¢'= 34




Response due to Presence of Pile

Modification of Site
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KEY ISSUES

Kinematic soil-pile interaction has been concern to geotechnical engineers
especially at poor ground conditions, such as spreading
liquefiable grounds, simplified methods seems to be overly
conservative especially penalizing the use of large diameter
hollow cylinder concrete piles.

Conventional geotechnical approach tend to result in overly
conservative solutions and could be very misleading.

Past case histories largely reviewed pile damage at pile head connections,
rather than in deep seated in ground zones. Is it because pile
damage at deep in ground zones are not known. In that case,
since that such damage do not compromise serviceability, is it too
conservative to design foundation to essentially elastic response.




KEY ISSUES

What is the proper procedure to estimate ground displacement profile for
soil-pile interaction analyses to assess pile performance in
kinematic pile loading problem in liquefiable grounds. Can we
really do a meaningful job based on freefield site response
approach, without considering reinforcing effects of the piles?

What p-y curve procedure should we use in kinematic pile loading
analyses. How good is conventional p-y curves from pile load tests
data at surficial soil-pile interaction zone to be used for deeper
soil-pile interaction zones. Since that maximum pile moment will

be at the competent soil layer very close to liquefied soil zone, how
will the adjacent liquefied soil alter the p-y curves at the
unliquefied soil layer?

Do we need to superimpose loading conditions from the conventional
inertial load case to the deep-seated kinematic pile loading problem?

What analyses can we do to solve the problem in design processes: (1) for
the basic inertial response problem and (2) for the deeper ground
curvature problem?




