PEER 2003 ANNUAL MEETING March 7th, 2003

Performance Based Earthquake Engineering

"From Assessment to Design"

Presented By:

David A. Friedman, SE President Forell/Elsesser Engineers, Inc.

PEER'S Focus

Current: Assessment

Future: Design └→ Retrofit Design └→ New Building Design

David Friedman, SE Forell/Elsesser Engineers, Inc.

PEER 2003

Practice Perspective

- of PBEE Today
- of PEER's Next Steps
- of PBEE in the Future

David Friedman, SE Forell/Elsesser Engineers, Inc.

Engineering Science Comments

- PBEE Assessment Process
- PBEE Design Process

Social Science Comments

- Constituents
- Communication
- Universality of PBEE

Practice Comments

- Predicting Damageability
- Detailing
- Contemporary Architecture

- Do We Define it the Same Way?
- Do We Use it the Same Way?
- Do Constituent "Users" Understand How We are Using It?

The "Performance" Menu

- Immediate Occupancy
- Life Safety
- Collapse Prevention

Immediate Occupancy

High Performance

Essential Services Buildings

Damage - Free

David Friedman, SE Forell/Elsesser Engineers, Inc.

PEER 2003

David Friedman, SE Forell/Elsesser Engineers, Inc.

• Life Safety

Building Code Mandate

Safe Egress

Accepts Damage

David Friedman, SE Forell/Elsesser Engineers, Inc.

PEER 2003

Collapse Prevention

Less Than Code?

Safe Egress

Lots of Damage
 Total Economical Loss

David Friedman, SE Forell/Elsesser Engineers, Inc.

PEER PBEE Assessment Process

The Idealized Pushover Curve

David Friedman, SE Forell/Elsesser Engineers, Inc.

PEER PBEE Probability Framework Equation

$\lambda(DV) = \iint G \langle DV | DM \rangle dG \langle DM | EDP \rangle dG \langle EDP | IM \rangle d\lambda(IM)$

David Friedman, SE Forell/Elsesser Engineers, Inc.

PEER 2003

Decision Variable (DV)

- Economic Loss
- Downtime
- Casualty Rate

David Friedman, SE Forell/Elsesser Engineers, Inc.

The Variable Parameters

- Intensity Measure (IM)
- Engineering Demand (EDP) Parameter
- Damage Measures

Intensity Measure (IM)

- Peak Ground Acceleration
- Spectral Acceleration

Engineering Demand Parameters

- Relative To:
 Performance Target
 Type of Structural System
- Typical EDP's:
 Story Drift
 Inelastic Deformations
 Floor Accelerations
 Ductility Hysteretic Energy Dissipation

Damage Measures

Damage States Repair
Minor
Moderate
Severe

Fragility Curves
Primary Structure
Secondary Structures
Architectural Elements
Systems – Life Safety
Contents

Fragility Curve For Gypsum Partition

Simplified Equation

$$DV \sim \int (IM, EDP, DM)$$

PEER 2003

Assessment PBEE Process

Answer: Decision Variable

Knowns: IM, DM, EDP

Constituents: Structural Engineer Seismologists Building Owner

Design PBEE Process

Answer:

EP

Knowns:

Constituents:

DV, IM, DM

s: Structural Engineer Seismologists Building Owner Users Architects

EDP ~ f (DV, IM, DM)

David Friedman, SE Forell/Elsesser Engineers, Inc. PBEE Framework For New Buildings Step 1: Define Decision Variables

 Owner selects desired level of seismic protection in terms of decision variables (\$, loss, downtime)

Step 2: Correlate Decision Variables to Damage Measures

Select performance level (IO, LS, CP, ??)

Step 3: Relate Damage Measures to Specific Engineering Demand Measures

 Develop relations for modern building systems which show performance levels under various engineering demand parameters. (Refinement of fragility curves)

PBEE Framework For New Buildings

Step 4: Use EDP's to Define System-Level Target Design Parameters

 For different earthquake probabilities, create a set of EDP acceptabilities (initial period, design base shear, maximum interstory drift ratio, floor accelerations)

Step 5: Define Seismic Hazard at Site

Defines family of demand curves

PBEE Framework For New Buildings

Step 6: Given Site-Specific Earthquake Demands (IM, Sa, MMI, PGA), Verify Performance and Develop System-Level Demand Parameters

System-Level Demand Parameters

- Target Initial Period
- Base Shear

Common Design Parameters for (N) Buildings

Step 7: Refine System-Level Parameters

Use Non-Linear Analysis to Verify Performance Using the Above Design Parameters

PBEE Constituents

Mission: "Improve Seismic Risk Decision Making"

Seismologists Assessments • Structural Engineers **Building Owners** • **Municipalities** • **Users / OCCUPANTS** • Design ARCHITECTS • Contractors • M/E/P Systems Engineers •

.

PBEE Constituents

The Point: A large array of stakeholders

Question 1: Are we addressing the interests/perspectives of all constituents?

Question 2: Can PBEE Methodology be broad enough and comprehensive enough to deliver the seismic performance we think we are designing?

David Friedman, SE Forell/Elsesser Engineers, Inc. Communication of PBEE Methodology How Do We Communicate PBEE?

Probability:

"Mean annual probability of experiencing an earthquake loss that would exceed X% of the replacement value of the facility"

- Acronyms: <u>EDP, IM, NLTHA, IDA,</u>
- Terminology:

Component Inelastic Deformations Floor Accelerations Hysteretic Energy Dissipation **Communication of PBEE Methodology**

How Do We Communicate PBEE:

Assertion:

If PBEE is going to be effective, it will need to be clearly communicated and understandable to both technical and lay audiences

• The Need:

A clear and simple lexicon of PBEE terminology

Universality of PBEE

- Who Are the Current Users of PBEE?
- Is the PEER Audience "Preaching to the Already Converted"?
- Are the Engineering Users the "Tip of the lceberg"?
- What About the Other 90% of the Structural Engineering Community?
- How Much Time and Design Fees Will Be Consumed By the PBEE Methodology?

Universality of PBEE

The Goal:

PBEE as a Universal Tool

The Challenges:

- PBEE Methodology must be at once rigorous and simplified.
- PBEE Methodology must be clear, straightforward, and easily understood by 100% of the earthquake engineering community.
- PBEE Methodology must be "affordable" within the constraints of structural engineering fee structures.

Predicting Damageability

Predicting Damageability

- How accurate are we in predicting and describing damage?
- Is the total damage simply a summation of all of the predicted component damage?
- Do we keep in mind all the applicable components?
 Primary Structure
 - Secondary Structure
 - Architectural Finishes
 - Life Safety Systems
 Contents
- Does construction quality affect damageability?
- Is all damage repairable?

Predicting Damageability

The Goal:

 Gain confidence in predicting and quantifying damage to all components of a building.

The Challenge:

- Expand our database of fragility curves.
- Maintain a holistic view of damage and consideration of all components.
- Be valiant of assumptions and qualifications: How does construction quality affect performance?

Performance & Detailing

 Good performance is certainly correlated to quality of design and detailing.
 Clear and Consistent Load Path
 Reliable and Robust Connectivity

"The Devil is in the Details"

Performance & Detailing

 PBEE and PEER should focus some attention to appropriate component detailing.

PBEE Methodology must work for these buildings or PBEE will not be successful.

David Friedman, SE Forell/Elsesser Engineers, Inc.

- PBEE has a solid foundation, greatly assisted by PEERS's work on assessment methodology.
- PEER is continuing to build and refine the PBEE methodology, appropriately transitioning efforts from assessments to design.
- PBEE methodology for design is doable, but it will be trickier than assessment methodology.
 More"Players"
 - Greater Range of Variables and Probabilities
 - More Unknowns

Though scientifically based, PEER must keep a holistic view of PBEE in devising a utilitarian methodology:

- Development of <u>database of fragility curves</u> to improve our ability to predict and define damage.
- PBEE methodology must consider and "speak" to a greater array of constituents, particularly <u>users</u> and <u>architects</u>.
- Improved, user-friendly lexicon for communicating PBEE methodologies to non-technical constituents.

- Clear and simplified PBEE methodologies for broader use by the earthquake engineering community.
- Consider the elements of detailing that correlate to performance and include into the methodology.
- Use contemporary architectural forms as a litmus test for the PBEE process.

- Last, But Not Least
- PBEE Must be -

CLEAR & ORDERED, NOT CHAOTIC.

David Friedman, SE Forell/Elsesser Engineers, Inc.

PEER 2003