

Bridge Component Characterization

Stephen Mahin

Byron and Elvira Nishkian Professor of Structural Engineering University of California at Berkeley

Key Elements

- Approach slab
- Abutments
- Foundations
- Movement Joints
- Columns/Piers
- Superstructure
- Nonstructural Features

PEER Bridge Program

Focus on:

- Monolithic reinforced concrete bridge construction
- New rather than older construction detailing
- Representative of:
 - Viaducts
 - Overcrossings
 - Major interchanges

Seismic Hazard

- Intensity Measures
 Demand Model
- Damage Measures
- Capacity Model
- Performance Measures
 Decision Model
- Decision Measures

Seismic Hazard

- Intensity Measures
 Demand Model
- Damage Measures

Capacity Model

- Performance Measures
 Decision Model
- Decision Measures

Improved soil-pile-interaction models

Improved models for RC columns and connections

Testing of columns and connections to improve understanding of behavior and validation of numerical models

Database development on performance measures given a demand

Seismic Hazard

- Intensity Measures
 Demand Model
- Damage Measures
- Capacity Model
- Performance Measures
 Decision Model
- Decision Measures

Assess IM-DM pairing and sensitivity

Sensitivity of response to ground motion characteristics

Sensitivity of response to analysis procedures

Define Damage Measures for various elements and systems

Assess Uncertainty in Predicting

Performance Measures

Seismic Demands

Effect of long duration ground

motions (PI: Eberhard)

Large magnitude events (M=8 & 9)

- Near and distant sites
- Stiff and soft soil conditions

Simple bridge idealization

- Well and poorly confined columns
- Analytical models calibrated to existing data and new test results

Sensitivity of various damage intensity parameters to ground motion and structural characteristics

Assess design recommendations

Effect of near-fault pulse

motions (PI: Mahin)

- Near-fault motions
 - Effect of ground motion directivity
 - 1,2 and 3 components of excitation

Simple bridge idealizations

- Ductile columns with circular and interlocking spiral confinement
- Calibrated to shaking table tests

Analysis procedures (elastic response spectrum and time history analysis vs. various nonlinear techniques)

Assess design recommendations

Seismic Demands

Probabilistic Seismic Demand Analysis (PI: Stojadinovic)

Focuses on assessing statistical relation between Damage Measures and Intensity Measures

- Idealized three dimensional models of bridges with various geometries
- Damage Measures (peak local curvature, peak and residual displacement, etc.)
- Intensity Measures (Spectral displacement at various periods, etc.)
- Assess sensitivity of performance to ground motion characteristics (magnitude, distance de-aggregatization)
- Assess Damage Measure-Intensity Measure pairing for different bridge configurations and characteristics

Spirally Reinforced Column Tests

Test Matrix

- Loading history
 - Traditional cyclic
 - Pulse initiated cyclic
 - Variable axial load
 - Shaking table testing
- Loading rates: Fast and quasi-static
- Aspect ratios: Moderate and low
- Cross-section Circular and interlocking spirals

Effect of Axial Load Variation

Baseline Column

- Circular, spirally reinforced cross section
- -1/4 scale (16-in. dia.)
- Aspect ratio of 6
- 1% longitudinal steel
- 0.07f[°]_cA_g PI: Xiao

- Axial Load
 - Constant (0, 0.3f'cAg)
 - Proportional to lateral loading
 - Two cases of nonsyncronized axial loading (vertical or orthogonal effects)
- Monotonic or cyclic lateral loading
- Has effect on hysteretic behavior, p.h. length, and failure mode

Rate of Loading Effects

- Baseline column used
- Dynamic analyses conducted to assess local strain rates for a variety of near-fault records
- Ideal loading history established
- A small, but measurable rate effect was identified
- Plastic hinge length smaller than for cyclic loading, resulting in initial underestimate of flexural capacity

PIs: Ashford and Filiatrault

Effect of Loading History

Characterize sensitivity of response of spirally reinforced concrete columns having different aspect ratios to loading history (PI: Pardoen)

- Baseline column crosssection used
- Aspect ratios selected produce columns with little, limited or high ductility
- Traditional cyclic loading histories compared to ones initiated by pulses
- Strong analytical component

Shaking Table Tests

PI: Mahin

Objectives:

- Data to validate analytical models
- Compare performance for near-fault and long-duration excitations
- Assess effects of multiple components of ground motion
- Assess cumulative damage models

	Unidirectional	Bidirectional
Earthquake 1 Olive View (Northridge, 1994)	Specimen A1	Specimen A2
Earthquake 2 Llolleo (Chile, 1986)	Specimen B1	Specimen B2

Column Performance

After Design Level Event (R=4)

After First Maximum Level Event (μ =6)

Condition at end of tests

Peak Displacement Response

Bi-directional input has limited effect and in the cases considered extends life of column

Long Duration Excitations

1985 Llolleo, Chile Record

Correlation With Analysis

Interlocking Spiral Columns

- Column widely used where different strengths or stiffnesses are required along each direction
- Relatively little research

18 No. 3

W2.9 Con tinuo Spiral @ 1.375

3"

- Three specimens
- 1/6 scale
- 1% Long. steel •
- 1989 Los Gatos Record •Strong axis only •Bi-directional
- Tabas Record •Bidirectional

Interlocking Spiral Columns

Bi-directional Response

Displacement, in.

Connection behavior

- Assess effect of rate of loading on current and pre-1971 column to bent cap connection design details
- Four 1/2 scale models
- Cyclic and pulseinitiated cyclic load histories considered

PIs: Ashford and Filiatrault

Connection Behavior

PEER Bridge Performance Database

http://www.structures.ucsd.edu/PEER/peer.html

Performance Parameter Prediction

Uncertainties in Structural Performance Parameter Estimates (PI: Eberhard)

Assesses predictions of key performance (spalling, bar buckling) and modeling (strength, stiffness) parameters given demand estimates

- Database of 400+ column tests compiled (circular & rectangular)
- http://ce.washington.edu/~peera1
- Analysis models for various performance parameters established and evaluated using synthesized data

Pulling it all together

Fragility Assessment of Bridge Systems (PI: Seible, Elgamal, Conte)

- Test bed structures with real world complexity
- Seismic Hazard assessment
- Study of Damage Measures based on simplifying analytical assumptions
- Selection of Performance Measures

- Assessment of Capacity
- Evaluation of probability of achieving performance for a given hazard
- Integrate information/results developed by others
- Assess/improve methods
- Identify needed research

Future

- Pull information together and evaluate
- Assess and <u>improve</u> numerical models
- Theoretical issues related to element and system capacity definitions
- System level tests
- Modeling and assessment tools for: abutments, foundations, etc.

- Information on Decision
 Variables (direct and indirect costs, interruption of service)
- Assess performance objectives in view of results
- Work with transportation system group

