Seismic Demands and their Dependence on Ground Motions

Helmut Krawinkler Stanford University

What are Seismic Demands?

- Damage Measures
 - Roof and story drifts
 - Local deformations (e.g., plastic hinge rotation)
 - Floor acceleration and velocity
 - Cost-related damage indices
 - Cumulative damage measures (e.g., energy)
- Design Parameters
 - Story shear forces and overturning moments
 - Relative strength of fuses (strong column concept)

Purpose of Demand Evaluation

- Understanding of Behavior
- Rigorous Probabilistic Performance Assessment in the Presence of Uncertainties
- Approximate Performance Assessment
- Conceptual Design (Strength and Stiffness Requirements)

Probabilistic Performance Assessment in the Presence of Uncertainties

Incremental Dynamic Analysis (IDA)

- Spectral Acceleration Hazard
- Incremental Dynamic Analysis Curves
- Probability Distribution of Drift given S_a
- System Drift Capacity Data Points
- Probability Distribution of Capacity

2001 PEER Annual Meeting

Cornell/Jalayer

Accuracy of IDA Depends on

- Description of return period dependent hazard
 - Intensity measure
 - Frequency content
 - Duration
- Description of structural properties, including deterioration
- Analytical modeling and analysis tool
- Method of prediction (analysis method)

Description of return period dependent hazard

Frequency Effects, $T_1 = 0.5$ sec.

2001 PEER Annual Meeting

Frequency Effects, $T_1 = 2.0$ sec.

2001 PEER Annual Meeting

Near-Fault Effects

NF Response of Strong Structures

NF Response of Weak Structures

Improvement of Intensity Measure

(a) Intensity Measure = $S_a(T_1)$

```
(b) Intensity Measure = S_a R_{sa}^{\alpha}
```

Cordova/Deierlein

Description of structural properties, including deterioration

Basic Modes of Deterioration

No deterioration

Strength deterioration

Strength det. with capping

Strength det. with capping & stiff. det

Det. Modes for Pinching System

No deterioration

Strength deterioration

Strength det. with capping

Accelerated stiffness det. with capping

Example of Deterioration Model

A single deterioration parameter:

$$\beta_{i} = \left(\frac{E_{i}}{E_{t} - \sum_{j=1}^{i} E_{j}}\right)^{c}$$
in which β_{i} = parameter defining the deterioration in excursion *i*
 E_{i} $\gamma F_{y} \delta_{y}$
 $\sum_{j=1}^{i} E_{j}$ $\gamma F_{y} \delta_{y}$
 c = exponent defining the rate of deterioration

Calibration of Deterioration Model

Sensitivity to Deterioration, SDOF

Sensitivity to Frequency Content

R factor vs. Norm. Displacement - Pinched System, T=0.5 s Ord. Rec. LMSR, Sa=1, ξ =5%, P- Δ =0, α =0.05, α_{cap} =-0.10, δ_{c} =4 δ_{y} , No Det

Deterioration Effect, MDOF System

Analytical Modeling and Analysis Tool

- Incorporate deterioration models
- Incorporate uncertainty in properties
- Soil-foundation-structure interaction
- Modeling of 3-D effects

Method of Prediction (Analysis Method)

Story Drift Angle

Understanding of Behavior - Walls

Understanding of Behavior - Walls

AMPLIFICATION OF BASE SHEAR DEMANDS - WALL STRUCTURES

PEER Research Activities

- Demand database for many structural systems and different ground motion types
- Sensitivity of demands to ground motion characteristics (ordinary and near-fault)
- Collapse safety prediction from IDAs
- Improved intensity measures for reducing uncertainties in demand prediction
- Prediction of demand parameters for loss estimation (structural and nonstructural)

PEER Research Activities, cont'd

- Modeling of deterioration
- Evaluation of demand parameters for conceptual design
- Fragility curves for bridge peers and systems
- Probabilistic demand models for bridges

Ultimate Objective

- Provide knowledge and data needed to implement a performance assessment methodology based on the PEER framework equation (short term)
- Provide understanding, knowledge, and data needed to develop and implement a performance-based conceptual design methodology for retrofitting existing structures and designing new ones (long range)

