Structural Simulation Models

Filip C. Filippou CEE Department University of California, Berkeley

2001 PEER Annual Meeting

PEER OpenSees Framework

- Software framework for integrating
 - Material and component models. Emphasize degradation and failure behaviors
 - Solution strategies: Static and dynamic for degrading and collapsing systems
 - Performance evaluation based on simulated behavior
- Utilize new computing resources
 - Engineering desktop workstations (SMP, distributed)
 - High-performance computing
 - Computational grids
- Provide network communication mechanisms with scientific visualization methods and databases

Ρ - M

Structural Beam-Column Models

Axial Force-Flexure-Shear Behavior

Other issues

- Parameter uncertainty Sensitivity (DerKiureghian, Conte)
- Shear Wall Models
- Solution Strategies
- Pull-out, bond deterioration

Advances in Frame Element Formulations

- Force based formulation for 1rst and 2nd order theory (exact internal force distribution)
- Large displacements with corotational formulation
- Mixed force-displacement formulation for frame elements with complex interactions (composite action, pile-soil interaction)
- Robust algorithms of state determination

Push-Over of Two Story Frame (Distributions)

Tapered Beam - Curvature Distribution

P

E

E

R

Tapered Beam - Bending Moment Distribution

P

E

E

R

Advantages of Force Formulation

- equilibrium is satisfied exactly along the element in every iteration; end compatibility is satisfied on convergence
- distributed loads can be readily accommodated
- a single element suffices for the entire member; no mesh refinement is necessary; localization problems are minimized
- formulation is very robust in the presence of strength softening

3 2 1 0 -1 Tip Displacement y (cm) -2 -3 --3 -2 -1 0 1 2 Tip Displacement z (cm)

and Variable Axial Load

Biaxial Bending

Low-Moehle Specimen 5: Response in y

Low-Moehle Specimen 5: Response in z

Low-Moehle Specimen 5: Reinforcing Steel Strain History

Correlation Studies for ISPRA columns (Bousias et al.)

12 Column Specimens with identical geometry and reinforcing

- S0
 - Uniaxial displacement cycles in x
 - constant axial compression ~ 16% of axial capacity (?)
- S1
 - Alternating uniaxial displacement cycles in x and y
 - constant axial compression ~ 10% of axial capacity

S5, S7

- Different biaxial displacement histories in x and y;
- constant axial compression ~ 12% of axial capacity
- S9
 - Biaxial displacement history in x and y;
 - two levels of axial compression ~ 3%->15% of axial capacity
- S4
 - Displacement in x, Force in y
 - constant axial compression

P

E E

R

ISPRA Specimen S1 - Lateral Displacement History

ISPRA Specimen S1 - Flexural Response in x

ISPRA Specimen S1 - Flexural Response in y

P

E E R

ISPRA Specimen S1 - Axial Displacement History

ISPRA Specimen S5 - Lateral Displacement History

ISPRA Specimen S5 - Flexural Response in x

ISPRA Specimen S5 - Flexural Response in y

ISPRA Specimen S5 - Axial Displacement History

P E E R

ISPRA Specimen S9 - Lateral Displacement History

ISPRA Specimen S9 - Flexural Response in x

ISPRA Specimen S9 - Flexural Response in y

-6

-8

0

5

10

15

20

25

Load Step

30

35

40

45

P

E E

R

ISPRA Specimen S9 - Axial Displacement History

Second order analysis - Large displacements

The co-rotational formulation separates rigid-body modes fill local deformations, using a sill coordinate system that continuously translates and rowith the element as the deformation proceeds.

Lee's Frame

Parking Garage, 1994 Northridge Earthquake

Shaking Table Specimen of Shahrooz-Moehle (1987)

Shaking Table Specimen El Centro 7.7

6th Floor Displacement Time History to EC7.7L

Shaking Table Specimen El Centro 49.3

6th Floor Displacement Time History to EC49.3L

P E E R