Open System for Earthquake Engineering Simulation Pacific Earthquake Engineering Research Center

OpenSees Framework for Seismic Simulation

Gregory L. Fenves *University of California, Berkeley* and a community of contributors in the PEER research program

Simulation in PBEE

- Assumption:
 - rational, validated models of behavior of complex materials and systems can be be developed.
- Need for simulation:
 - Evaluation
 - PEER Framing Equation
 - Design using parameterized models

Conceptual Approach

Software Design Approach

UniaxialMaterial Behavior

Aggregate UniaxialMaterials

Form Follow Function: Architecture Follows Mechanics

Beam-Column Modeling

Aggregation of Section Model

Frame Load-Displacement

- Ductile and brittle modes represented
- Solution method converges rapidly even with strong softening

Simulation Applications

- Parametric studies to examine DM and IM and design procedures
- Soil-structure-foundation interaction
- Computational reliability for PBEE

Damage Measures for Bridges

B. Stojandinovic

OpenSees Model

Demand vs. Curvature

Parametric Studies for Design

OpenSees Analyses of Pier

Pier Parameterizaton

Xframe	frame ID
Hcol	column diameter
Lcol	column length
Lbeam	beam length
GIbIc	Ig _{beam} /Ig _{col} – beam-column stiffness ratio
GrhoCol	ρl _{col} – column longitudinal-steel ratio
Gpcol	P _{col} /Po – column axial-load ratio
Gmfact	ground-motion scaling factor

Organizing the Parameterization

Scripting the Models

1.	wipe		
2.	source Units.tcl;	# define units	
3.	source ParamList.tcl;	# load up parameter values	
4.	source GMFiles.tcl;	# load up ground-motion filenames	
5.	foreach <mark>Xframe</mark> \$iXframe Hcol \$iHcol Lcol \$i	Lcol Lbeam \$iLbeam FRAME	
	Gibic \$iGibic GrhoCol \$iGri	noCo <mark>l GPco</mark> l \$iGPcol <mark>GMfact</mark> \$iGMfact {	
6.	source Static.tcl; # load procedure for sta	atic analysis	
7.	source Dynamic.tcl; # load proc	edure for dynamic analysis	
8.	puts FRAME\$XframeFRAME\$Xframe	<u>)</u>	
9.	puts STATIC_ANALYSIS		
10.	Static \$Xframe \$Hcol \$Lcol \$Lbeam \$Glblc \$GrhoCol \$GPcol \$GMfact ;		
11.	puts DYNAMIC_ANALYSIS		
12.	<u>foreach</u> GroundFile \$iGroundFile {	GROUND MOTION	
13.	puts GroundMotion\$GroundFile		
14.	Dynamic \$Xframe \$Hcol \$Lcol \$Lbeam \$Glblc \$GrhoCol \$GPcol \$GMfact \$GroundFile;		
15.	}		
16.	}		
C			

Geotechnical Model Calibration

Soil-Foundation-Structure Interaction

Current Developments

- User interfaces
- Computational Reliability
- Internet-based simulation

High-Level Scripting Language for Model Generation

• Complete frame models may be generated with simple commands

```
Frame f -bays 0:240:720 -stories 0:240:480
```

- f setitem beam.1:2.1:3 -template beamtype
- f setitem column.1:2.1:4 -template columntype
- Irregular frames maybe created by deleting selected beams and columns

Automatic Section Generation

Graphical Model Building

- Graphical definition of cross-sections and wall/frame models
- Support for catesian and polar grids
- Built-in wizards for common section and frame configurations
- Graphical access to response quantities

OpenSees/Reliability for PBEE

OpenSees/Reliability addresses the "component problem" of structural reliability:

Extensions to Scripting Language

Command to create the structural reliability model builder: reliability

Commands to populate the structural reliability domain:

randomVariable type rvTag? mean? stdv? <startPt?>
randomVariable type rvTag? par1 par2 par3 par4 <startPt?>
correlate corrTag? rv1? rv2? correlationValue?
limitState lsfTag? limitStateExpression

Commands to pick components for the structural reliability analysis:

sensitivityEvaluator typeOfSensitivityEvaluator stepSizeRule typeOfStepSizeRule searchDirection typeOfSearchDirection findDesignPointAlgorithm typeOfFDPAlgorithm findCurvaturesAlgorithm typeOfFCAlgorithm addFORMAnalysis addSORMAnalysis addSimulationAnalysis samplePoint numSim? targetCOV?

Command to perform structural reliability analysis:

analyzeReliability

Example of Reliability Analysis

- Characterize the Young's moduli and moments of inertia of the columns as having 10% coefficient of variation; independent lognormal random variables.
- Limit-state function: probability of the max drift exceeding 15 inches.

Results from structural reliability analysis.

Method	Reliability index	Prob. of failure
FORM	3.2635	0.00055027
SORM	3.3253	0.00044169
Simulation	3.3223	0.00041969

The simulation analysis was performed by sampling around the design point. 1000 simulations were pe rformed, yielding a coefficient of variation of 6.27% for the estimated probability of failure. In the SORM analysis; only the first principal curvature of the limit-state su rface was used.

Figure 2. Load-displacement curves for the 7 structural analyses needed to find the "design point" in the FORM reliability analysis.

Using the Internet for Simulation

Internet Enabled Collaborative Environment

Building Community Through Open Source

Anatomy of an Open Source Project Each labeled group also performs the functions of all the groups it is a subset of.

All code is available to anyone under the terms of an open source license such as the Gnu Public License (GPL), which allows for modifications by anyone, so long as released changes are also distributed under the same open source license.

...a center makes this possible...

OpenSees Users

J. Conte, L. Lowes, A. Der Kiureghian, J. Pestana, S. Mazzoni

- F. Filippou G. Deierlein
- G. Turkiyyah K. Law
- Z. Yang P. Arduino

B. Jeremic

F. McKenna

Open Source Depends on Open Communication

http://opensees.berkeley.edu

User "guest" Password "OSg3OS"

Issues for the Future

- Models
 - Degradation, shear-flexure, bond slip, joints
 - Soil-pore fluid models
 - Pile-foundation models
 - Validation protocols
 - Input motions and coupled simulations
- PB Design and Simulation
 - Parameterization including random variables and fields
 - Reliability
- Computing and Information Technology
 - Parallel and distributed computing
 - Visualization and databases
 - Internet applications

Serving User Needs

- Useable interfaces
- Validation Studies
- User support and forums
- Commercial alliances

