Implementation of *OpenSEES* Soil Modeling Capabilities

Pedro Arduino (U. of Washington) Ahmed Elgamal (UCSD) Boris Jeremic (UC Davis) Zhaohui Yang (UCSD) PEER Annual Meeting, Oakland, California January 26, 2001

Our Mission: May 2000

Include SOA: Soil-structure interaction Soil models 2D and 3D solid (soil) elements Transmitting Boundary

Transmitting Boundary

Surface Shear Pulse

Pedro Arduino, University of Washington

Transmitting Boundary: Vertical load Pulse

Pedro Arduino, University of Washington

Pacific Earthquake Engineering Research Center

Pedro Arduino, University of Washington

Pedro Arduino, University of Washington

 Pacific Earthquake Engineering Research Center

 Clays: Pressure-independent multi-yield-surface model for general 2D and 3D elasto-plastic hysteretic behavior

Principal effective stress space

Pacific Earthquake Engineering Research Center UCSD pressure-dependent multi-yield-surface model (for gravel, sand, and silt), with liquefaction capability.

Objected-oriented design of the Template Elastic-Plastic Framework
 Easy implementation and Applicable to Soils, Concrete, Steel, ..

Simulation of UC Berkeley Shear Test, Pestana and Seed

Pacific Earthquake Engineering Research Center

Simulation of UC Davis Centrifuge Test

Centrifuge model setup

Simulated 1D response

Kutter, Boulanger, Idriss, and Wilson

Nothing like the real thing! Humboldt Bay Bridge

May 2000

Caltrans C. Sikorsky F. Allamuddin A. Abghari

UCSD F. Seible D. Zonta M. Fraser

UCLA J. Conte

January 2001

Modeling of Actual Bridge Site with *OpenSEES* Middle Channel bridge at Humbolt Bay (Eureka, CA) A Caltrans Retrofit Project

January 2001

Soil

Currently:

Undrained elasto-plastic material.

Future: Solid-fluid coupled medium!

Ongoing Research

- 1. Continued calibration and verification of soil models through:
- Simulation of laboratory tests and centrifuge experiments.
- Definition of input motions.
- Modeling of other existing bridge sites (PEER Field Labs.)
- 2. Interaction with other researchers:
- *OpenSEES* SOA Structural modeling + SOA soil modeling
- Probabilistic Analyses for PBEE, and Decision Making tool.

Expansion Joints / Shear Keys

Currently: modeled as elastic-perfectly-plastic gap elements.

Future: element calibration using UCSD experimental data.

