PBEE Needs from the Buildings Perspective

Craig D. Comartin

A look across the performance spectrum

Low end:	We need a better understanding of, and procedures for identifying, future collapses .
High end:	We need a rational and reliable procedure for estimating downtime .
Across the board:	We need inelastic force- deformation relationships for geotechnical components.

Five Story Example Buildings

Component damage

Component behavior

Ground motion variability

Near field effects Basin edge effects Site conditions materials stratigraphy topography Microzonation is essential to realistic behavior prediction for individual buildings

Istanbul Problem

700,000 buildings adjacent to a long overdue segment of the fault

	Current PBEE prediction	More likely outcome	
"Collapses"	~ 500,000	40,000-70,000	
Retrofit cost	20%	10%	
Size of problem	\$ 25 billion	\$ 2 billion	

UC Berkeley Campus

Disaster Resistant University Project

Mary Comerio et al

Event	Projected capital losses		
Occasional	\$ 0.7 B		
Rare	\$ 1.7 B		
Very Rare	\$ 2.9 B		

UC Berkeley-Seismic Design Criteria

- California Building Code for minimum strength
- Life Safety Performance for shaking with 10% chance of being exceeded in 50 years (minimum)
- Cost efficient performance enhancements

UC Berkeley-Central Housing and Dining

Benefit-Cost Study

Benefit cost ratios

	Structural	Operational performance upgrades			
	objective	none	Α	В	С
Capital losses	LS in 10/50	baseline	0.6	0.7	0.5
only	IO in 10/50	0.1	0.2	0.3	0.4
Including downtime costs	LS in 10/50	baseline	1.1	1.2	1.0
	IO in 10/50	2.7	2.6	2.5	2.2

Barrington Medical Office Building

Barrington plan

Stiff/strong vs. flexible/weak

Effects of Foundations on Performance

Foundation stiffness and strength affect various structural components differently.

Stiff/strong is not always favorable; nor is flexible/weak always conservative.

A question

Are we doing enough to solve the the biggest problems?

