

Quantitative Risk Assessment for Design and Evaluation of Concrete Dams

Yusof Ghanaat

Quest Structure, Inc

Orinda, California

Anil K. Chopra Symposium, October 2 and 3, 2017

- Identify and estimate probability of loads (PSHA)
- Identify and estimate probability of failure, given the loads
- Identify consequences (loss of life, economic, or environmental)
- Integrate the three

Mühleberg NPP and HPP

- An initial SPRA of NPP in 2006 with PEGASOS seismic input indicated dam is one of the dominant contributors to seismic risk
- This prompted estimation of seismic fragility of the existing dam for a thorough SPRA
- Later, the 2011 Fukushima event prompted additional studies including strengthening of the dam using risk-based design

R

Seismic Fragility Methodology

Nonlinear Analyses with Latin Hypercube Simulation (LHS)

Q Dam Sections and Potential Failure Mode

Turbine Building Section

Nonlinear Models of Existing Dam

- Compressible water
- Foundation mass and damping
- Transmitting B.C's
- Traction seismic input at bottom and sides
- Nonlinear slip surface (tie-break w/failure criteria)
- Nonlinear Turbine Building columns

- EQ ground motion 30 THs
 - 30 THs to randomly select from
 - $DF_{H}=0.18$, $DF_{V}=0.25$ for variability about geomean
- Concrete modulus (35,460 MPa, β =0.30)
- Concrete damping (5% , β =0.35)
- Rock modulus (3,000-8,200 MPa, β =0.25)
- Base sliding cohesion (480 kPa, β =0.25)
- Base sliding friction (23°, β =0.15)
- Rock wedge cohesion (650 kPa, β =0.20)
- Rock wedge friction (17°, β =0.25)
 Composite runs: 30 trials at 8 GMLs for 240 runs Randomness runs: 30 trials at 5 GMLs for 150 runs

LOGNORMAL

Sliding Failure at 0.85g

Seismic Fragility of Existing Dam

- **Composite Fragility** 240 nonlinear runs on HPC Cloud Services
- Randomness Fragility 150 nonlinear runs on HPC Cloud Services

<i>A_m</i> = 0.82g	Median capacity in terms of PGA
$\beta_c = 0.47$	Log standard deviation of composite variability
$\beta_r = 0.13$	Log standard deviation of randomness
β_u = 0.45	Log standard deviation of uncertainty
HCLPF = 0.3g	High confidence of low probability of failure
$\beta_u = \sqrt{\beta_c^2 - \beta_r^2}$	

Strengthened Dam

Final Ground Motion

- UHS corrected for kappa
- Acceleration records selected from M_w5-7 at 25 km
- Acceleration records modified following NUREG/CR-6728 Guidelines
- Components checked for statistical independency
- Scaled by "directional factors" to account for variability about geomean (DF_H= 0.18, DF_V= 0.25)

Foundation Rock

- Sections Showing foundation rock types beneath dam
- Shear strength parameters and their variabilities measured
- Slip surface confirmed

Concrete-filled Steel Pipe Pile

Pushover analysis to obtain Shear Capacity

- Rock: Moving and fixed parts
- Pile: 1200-mm-diameter steel pipe
- Steel pipe: Plastic kinematic shell elements
- Concrete: Winfrith nonlinear concrete
- Contacts: Between pipe, concrete, and rock
- Parameters controlling shear capacity
 - Concrete compressive strength, f'_c
 - Concrete tensile strength, f'_t
 - Steel yield strength, f_y
 - Steel rupture strength, \mathcal{E}_u

Pile Response Before and at Failure

Before Failure at 2.5 cm

At Failure at 8.7 cm

Q

Pile Shear Capacity Results

Median Pile Capacity = 18.6 MN Logarithmic Standard Deviation, β = 0.298

Model of Strengthened Dam with Piles

- Compressible water with radiation damping
- Foundation with mass, damping, transmitting boundaries, and traction input
- Multiple failure surfaces
- Piles included

Q Model of Strengthened Weir with Piles

Seismic Fragility of Strengthened Dam

- **Composite Fragility** 180 nonlinear runs on HPC Cloud Services
- Randomness Fragility 150 nonlinear runs on HPC Cloud Services

<i>A_m</i> = 1.48g	Median capacity in terms of PGA
$\beta_c = 0.42$	Log standard deviation of composite variability
$\beta_r = 0.21$	Log standard deviation of randomness
$\beta_u = 0.37$	Log standard deviation of uncertainty
HCLPF = 0.55g	High Confidence of Low Probability of Failure
$\beta_u = \sqrt{\beta_c^2 - \beta_r^2}$	

Installation of Concrete-filled Pipe Piles

Piles installed at Weir toe

Pile cap steel reinforcement

- Probabilistic modeling using nonlinear analysis with LHS offers an efficient method to estimate probability of failure and address uncertainty for risk-based design
- Subjective estimation of probability used in practice verbal descriptors may work for portfolio risk assessment but not for evaluation and risk-based design of a specific dam