

University of Ljubljana Faculty of Civil and Geodetic Engineering

Institute of Structural Engineering, Earthquake Engineering and Construction IT RETIREMENT SYMPOSIUM AND CELEBRATION OF THE CAREER OF Anil K. Chopra

OCTOBER 2 AND 3, 2017, SIBLEY AUDITORIUM, UNIVERSITY OF CALIFORNIA, BERKELEY

## On pushover-based analysis and its adoption in Eurocode 8

#### Peter Fajfar

Anil K. Chopra Symposium, Berkeley, October 2, 2017

### A tribute to Anil



Bled 2011



Volume 39 Number 5 25 April 2010

### Earthquake Engineering Structural Dynamics

The Journal of the International Association for Earthquake Engineering

Executive Editor: Anil K. Chopra

Peter Fajfar Masayoshi Nakashima



IJEEBG 39(5) 473–590 (2010) ISSN 0098–8847 www.interscience.wiley.com/journal/equ

### **Common topic**

### **Pushover-based analysis**

- Advocated inelastic spectra against overdamped elastic spectra
- Developed procedures for taking into account higher modes (including torsion)

### Scope

- On seismic analysis
  - Response history versus pushover
- Nonlinear analysis in Eurocode 8
- Practice-oriented probabilistic analysis

Personal view, based on 50 years of professional work (teaching, research, consulting, code development, administration)

### **Seismic Analysis**

### Seismic response of structures is

- Dynamic
- Nonlinear
- Random

"truth ... is much too complicated to allow anything but approximations" John von Neumann (1903-1957, Hungarian-American mathematician, physicist, inventor, computer scientist and polymath)

The analysis is, at best, able to provide a reasonably accurate numerical solution to an inexact set of assumptions and highly uncertain input data (adapted from S. Freeman)

### **Seismic Analysis**

### Nonlinear dynamic analysis is the best available tool

Irreplaceable in research and analysis of important structures

### **Disadvantages** for practical applications

- Computationally demanding (modelling, analysis and postprocessing)
- Additional data: input ground motions, hysteretic behaviour, damping model
- Sensitivity of computed response to system parameters
- Significant judgement required
- Less transparent
- Peer review needed

The more complex the nonlinear analysis method, the more ambiguous the decision and interpretation process is Helmut Krawinkler

### **Concrete Column Blind Prediction Contest 2010**

### RC bridge column - PEER UCSD outdoor shaking table



42 teams from 14 countries

http://nisee2.berkeley.edu/peer/prediction\_contest/



### **Concrete Column Blind Prediction Contest 2010**



### "Today, ready access to versatile and powerful software enables the engineer to do more and think less."

M. Sozen, A Way of Thinking, EERI Newsletter, April 2002

### **Future design office?**



### **Pushover-based methods**

- Pushover analysis of MDOF model and response spectrum analysis of SDOF model
- Provide valuable information on inelastic structural behaviour
- Are relatively simple and transparent
- Appropriate for
  - assessment of existing structures
  - checking design of new structures
  - checking the results of nonlinear dynamic analyses
- Limitation: structures vibrating predominately in a single mode

### **Nonlinear Analysis in Eurocode 8**

Part 1: General and new buildings Part 2: Bridges Part 3: Existing buildings

Nonlinear static (pushover) analysis (NSA) and nonlinear dynamic analysis (NDA) are permitted, but not required

- **NSA**: Basic N2 method (details in informative annex) Warning regarding torsion and higher modes in elevation
- NDA: Requirements related only to ground motion (with exception of bridges)

## Nonlinear analysis in revised Eurocode 8 (draft)

Part 1: General and new buildings Part 3: Existing buildings and bridges Part 2: Work has not started yet

Nonlinear static (pushover) analysis (NSA) and nonlinear dynamic analysis (NDA) are permitted, but not required

NSA: extended N2 method

**NDA**: requirements related only to ground motion ?

### **Extensions of pushover-based methods**

"The nonlinear static pushover analyses were introduced as simple methods ... Refining them to a degree that may not be justified by their underlying assumptions and making them more complicated to apply than even the nonlinear response-history analysis ... is certainly not justified and defeats the purpose of using such procedures."

(Baros and Anagnostopoulos, 2008)

### **Torsion and higher modes in elevation**

### **Extended N2 method**

Combination of the results of two standard procedures

- Basic pushover analysis
- Elastic modal response spectrum analysis (normalized results)

Similar idea in ASCE 41 (for higher modes in elevation)

### **Higher modes in elevation**



## **SPEAR building**



### **Torsion**



**SPEAR building** 

### **Probabilistic Methods**

Probabilistic methods have not yet found their way in engineering practice

Explicit approaches like in Appendix F in the FEMA P-695 are "too complex and lengthy for routine use in design" (Haselton et al, 2017)

Highly simplified methods are needed

### Pushover-based Risk Assessment (PRA) Method

Combination of the

- closed form SAC-FEMA probabilistic approach (Cornell et al)
- N2 method

### Pushover-based Risk Assessment (PRA) Method

Combination of the

- closed form SAC-FEMA probabilistic approach (Cornell et al)
- N2 method

Probability of "failure" (NC limit state)

$$P_{NC} = \exp\left[0.5 \ k^2 \ \beta_{NC}^2\right] H(S_{a,NC}) = \exp\left[0.5 \ k^2 \ \beta_{NC}^2\right] \ k_0 \ S_{a,NC}^{-k}$$

$$P_{NC}$$
 annual probability of "failure" (NC limit state)

- $k, k_0$  parameters of the hazard curve
- $\beta_{NC}$  dispersion measure
- $S_{a,NC}$  (NC) capacity in terms of  $S_a$

### Pushover-based Risk Assessment (PRA) Method

Combination of the

- closed form SAC-FEMA probabilistic approach (Cornell et al)
- N2 method

Probability of "failure" (NC limit state)

$$P_{NC} = \exp\left[0.5 \ k^2 \ \beta_{NC}^2\right] H(S_{a,NC}) = \exp\left[0.5 \ k^2 \ \beta_{NC}^2\right] \ k_0 \ S_{a,NC}^{-k}$$



## **Determination of** *S<sub><i>a*,*NC*</sub>

#### Acceleration



### **Probabilistic Methods**

Eurocode 8 – Part 1 (draft of the revised version)

## Annex F (informative): Simplified reliability-based verification format

(drafted by M.Dolšek et al, based on Cornell's closed form formula for the probability of exceedance of LS)

# Everything should be made as simple as possible, but not simpler

