Earthquake analysis of concrete dams as a wave propagation problem

Ushnish Basu

Livermore Software Technology Corporation Collaborators: Anil K. Chopra, Robert L. Taylor University of California, Berkeley

Earthquake analysis of dams

Ushnish Basu

Morrow Point dam

Earthquake analysis of dams

Morrow Point dam

Morrow Point dam

State-of-the-art practice

We need a large foundation domain in order to:

- 1. accurately model the unbounded foundation
- apply ground motions forces at depth (deconvolution)

How do we avoid the large foundation model?

Earthquake free field

Dam in earthquake

Dam interacts with and scatters earthquake motion

Scattered wave field

Unbounded domain

Subtract free-field motion to eliminate EQ source

Earthquake analysis of dams

Bounded-domain approximation

Cannot model unbounded domain

Earthquake analysis of dams

Bounded-domain approximation

Cannot tolerate large reflections

Dam on bounded foundation with absorbing boundary

Absorbing boundary simulates unbounded foundation

Earthquake analysis of dams

REVIEW

Earthquake analysis of dams

Ushnish Basu

Step 1: Get free-field ground motions

Earthquake generates free-field ground motions

Step 2: Model dam-rock interaction

Dam interacts with and scatters earthquake motion

Step 3: Absorb outgoing scattered waves

Absorbing boundary for outgoing waves

All together

- Step 1: Get free-field ground motions
- Step 2: Model dam-rock interaction
- Step 3: Absorb outgoing scattered waves
- Three fundamental problems in numerical simulation of wave propagation:
 - Problem 1: Propagate waves accurately
 - Problem 2: Analyse wave scattering effects
 - Problem 3: Model unbounded domains

All together

- Step 1: Get free-field ground motions [later]
- Step 2: Model dam-rock interaction 🗸
- Step 3: Absorb outgoing scattered waves \checkmark
- Three fundamental problems in numerical simulation of wave propagation:
 - Problem 1: Propagate waves accurately
 - Problem 2: Analyse wave scattering effects
 - Problem 3: Model unbounded domains

Choice of absorbing boundary

Practical choice: perfectly matched layer (PML)

No reflection from interface \Rightarrow perfectly matched Reflected wave can be made insignificant

Perfectly matched layer (PML)

Originally developed for electromagnetic waves [Bérenger (1994); Chew-Weedon (1994)]

Later developed for elastic waves with

- displacement-based FE implementation
- explicit time-integration

[Basu-Chopra (2003,2004), Basu (2009)]

Elastic rod: a one-dimensional system

Semi-infinite rod: simple model of unbounded half-space

Elastic rod: a one-dimensional system

Perfectly matched medium using coordinate stretching

Coordinate stretching gives attenuated wave solutions

Reflection at interface?

No, elastic medium is a PMM with damping $f(x) \equiv 0$

Elastic rod with PMM

Reflection at interface?

No, elastic medium is a PMM with damping $f(x) \equiv 0$

Perfect matching property

f(x) continuous across interface \Rightarrow Elastic medium + PMM = one PMM \Rightarrow No interface!

Elastic rod with PMM

Wave is absorbed and attenuated in the PMM

Now, get rid of unbounded domain:

truncate after wave is sufficiently attenuated

Elastic rod with PML

Truncate to get the perfectly matched layer

Effect of truncation?

Elastic rod with PML

Truncate to get the perfectly matched layer

Effect of truncation? Wave is reflected

Reflected wave amplitude controllable by f and L_P

Simple choices of f give excellent results

Salient features of PML

- 1. Extends to 2D and 3D, time and frequency domain
- 2. PML applicable to any linear material
- 3. Attenuated P- and S-waves, Rayleigh waves &c. through coordinate-stretching, not material damping
- 4. No reflection from interface. PML absorbs waves of
 - all frequencies
 - all angles of incidence
- 5. Reflection from outer boundary can be controlled by attenuation function and depth of layer.

Applied vertical force over square area on a half-space

PML model (quarter mesh)

 \approx 12 elements per shortest wavelength; 5-element PML (mesh density in PML same as in elastic medium)

Reduce the domain size

Maintain mesh density

PML model (cross-section)

PML placed very close to source (8-element PML)

Dashpot model (cross-section)

Classical model (same size as PML model)

Extended-mesh model (cross-section)

Benchmark model (\approx 12 elems/wavelength)

Excitation and response

Apply vertical force:

Compute vertical displacement at center and corner

Return time of extd. mesh >30 (normalised time)

Center displacement

Extd. mesh ----

Earthquake analysis of dams

Center displacement

Center displacement

Extd. mesh — Dashpots — PML —

Earthquake analysis of dams

Corner displacement

Error:

$$\text{\%error} = \frac{\text{max}|u_{\text{PML}} - u_{\text{EXT}}|}{\text{max}|u_{\text{EXT}}|} \times 100$$

Model	Center displacement	Corner displacement
PML	5%	6%
Dashpots	46%	85%

Computational costs:

Model	Elements	Time steps	Wall-clock time
PML	4 thousand	600	30 secs
Dashpots	4 thousand	900	15 secs
Extd. mesh	10 million	900	35 proc-hrs

PML and dashpot results computed on desktop workstation

Extd. mesh results required a supercomputer and parallelised and specially-optimised code

PML guarantees accurate results at low cost

GO BACK

Dam on bounded foundation with absorbing boundary

Absorbing boundary simulates unbounded foundation

Earthquake analysis of dams

Two questions

How do we:

- 1. apply the ground motion?
- 2. account for the unbounded reservoir?

Dam on bounded foundation with absorbing boundary

Earthquake analysis of dams

Foundation has scattered motion ...

but dam has total motion

Earthquake analysis of dams

Discontinuity at interface creates effective forces

Discontinuity is exactly the free-field ground motion ⇒ effective forces depend only on free-field ground motion at the interface

Effective seismic input method

[Herrera, Bielak (1977); Bielak, Christiano (1984)] compute effective seismic forces at the interface using only free-field ground motions at the interface

 \Rightarrow no deconvolution is necessary

Dealing with non-linear rock

Assume that non-linearity is only near the dam

Redefine dam-rock interface to include non-linearity

Soil-structure interaction

Acoustic scattering

Linear background medium disturbed by solid structure

Only linearity is important, not physics

Scattering analysis [Basu-Chopra-Taylor (2004)]

Two-step analysis using auxiliary water-rock system

Scattering analysis

Earthquake wave reaches the dam through the ground...

Scattering analysis

...and the impounded water

Auxiliary system brings in effect of far-field pressure waves

A new viewpoint

Previously: soil-structure + fluid-structure interaction

Now: coupled multi-physics scattering problem

Numerical discovery

Water-foundation rock interaction can affect response if reservoir-bottom absorption is low

Transient analysis procedure

- Equivalent to propagating earthquake from fault to site
- Fully finite-element procedure
- Includes all significant interactions
- Uses PMLs for foundation rock and water

Numerical validation:

- Complete for two-dimensional analysis, against EAGD-84
- Ongoing for three-dimensional analysis, against EACD-3D-2008

Dam-foundation rock model

Earthquake analysis of dams

Dam-water-foundation rock model

Earthquake analysis of dams

Auxiliary water-foundation rock model

Earthquake analysis of dams

Current status:

Work is in progress on:

- Validation of full model
- Specification of input ground motion

Some personal photos

Some personal photos

Some personal photos

UC Berkeley College of Engineering Commencement May 21, 2005

Bobk

