IMPROVED PROCEDURE TO ESTIMATE SEISMIC FORCES IN ANCILLARY SYSTEMS SUPPORTED ON PIERS AND WHARVES: INSPIRATION FROM PROFESSOR CHOPRA

Rakesh K. Goel, PhD, PE, F.ASCE, F.SEI Associate Dean, College of Engineering Cal Poly, San Luis Obispo rgoel@calpoly.edu

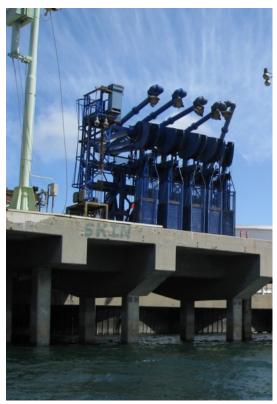
Chopra Symposium October 2-3, 2017, U.C. Berkeley

11/8/2017

PIERS AND WHARVES

Marine Oil Terminal Plan

Pictures Courtesy William Bruin and Gayle Johnson, SGH

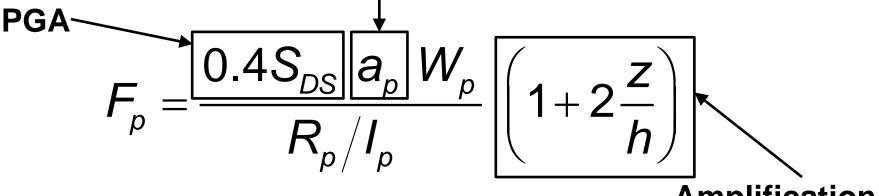

Chopra Symposium October 2-3, 2017, U.C. Berkeley

Marine Oil Terminal Elevation

11/8/2017

ANCILLARY SYSTEMS

Chopra Symposium October 2-3, 2017, U.C. Berkeley


Sign Board

Hose Cranes

ASCE 7-10 FORMULA

Amplification Within Component

Amplification Within Structure

 $0.3S_{DS}I_{p}W_{p} < F_{p} < 1.6S_{DS}I_{p}W_{p}$

Chopra Symposium October 2-3, 2017, U.C. Berkeley

11/8/2017

ASCE 7-10 FORMULA

- S_{DS} = Short period spectral acceleration
 - $a_p =$ Component amplification factor
 - $I_p =$ Component importance factor
 - R_p = Component response modification factor
- W_{p} = Component operating weight
 - z = height in structure of point of attachment of component with respect to base
 - h = average roof height of structure with respect to the base

Chopra Symposium October 2-3, 2017, U.C. Berkeley

ASCE 7-10 FORMULA

- R_p and a_p values are provided in tables
- $a_p = 1$ for rigid components;
- $a_p = 2.5$ for flexible components
 - Lower value permitted if justified by detailed dynamic analysis

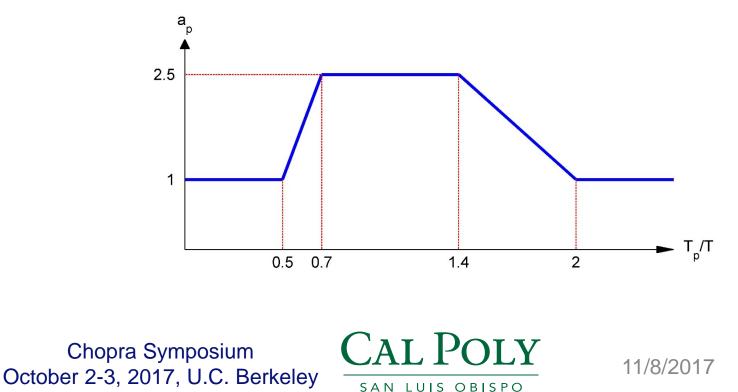
Chopra Symposium October 2-3, 2017, U.C. Berkeley

11/8/2017 0

ALTERNATE FORMULA

 If acceleration, a_i, at the point of attachment of the component can be computed from modal (or response spectrum) method

$$F_{p} = \frac{a_{i}a_{p}W_{p}}{R_{p}/I_{p}}A_{x}$$


Chopra Symposium October 2-3, 2017, U.C. Berkeley

11/8/2017

ALTERNATE ESTIMATE FOR a_p

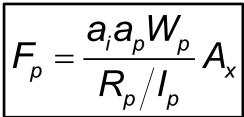
 If fundamental period of the structure, *T*, and of the component, *T_p*, are know, *a_p* may be estimated from

ACCELERATION AT POINT OF ATTACHMENT

- Current Formula
 - Ancillary components are attached at deck level of piers & wharves

$$-z = 1$$
 and $(1+2z/h) = 3$

- Acceleration at point of attachment = 3 times
 PGA
- Independent of primary system period
- Is this appropriate?

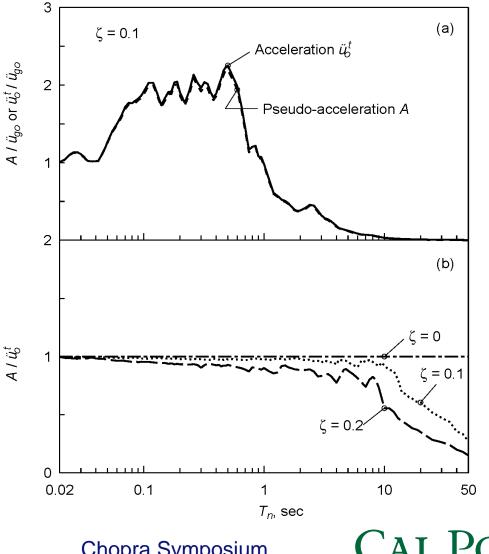

$$F_{p} = \frac{0.4S_{DS} a_{p} W_{p}}{R_{p}/I_{p}} \left(1+2\frac{z}{h}\right)$$

Chopra Symposium October 2-3, 2017, U.C. Berkeley

CALP SAN LUIS OBISPO

ACCELERATION AT POINT OF ATTACHMENT

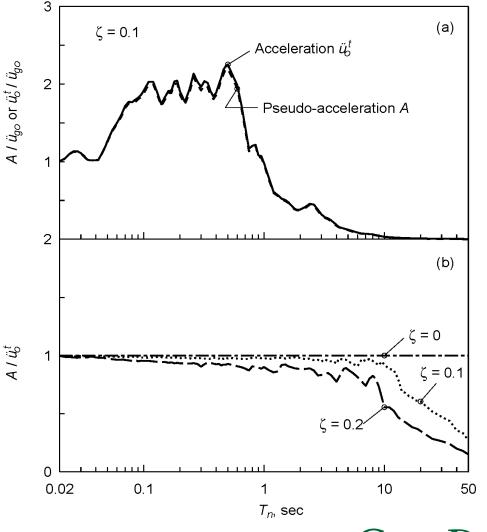
- Alternate approach to estimating a_i in piers and wharves
 - Typically one-level structures
 - Most can be idealized as single-degree-offreedom system in direction under consideration
 - a_i is total acceleration in the SDF system



Chopra Symposium October 2-3, 2017, U.C. Berkeley

INSPIRATION FROM PROF. CHOPRA

SAN LUIS OBISPO

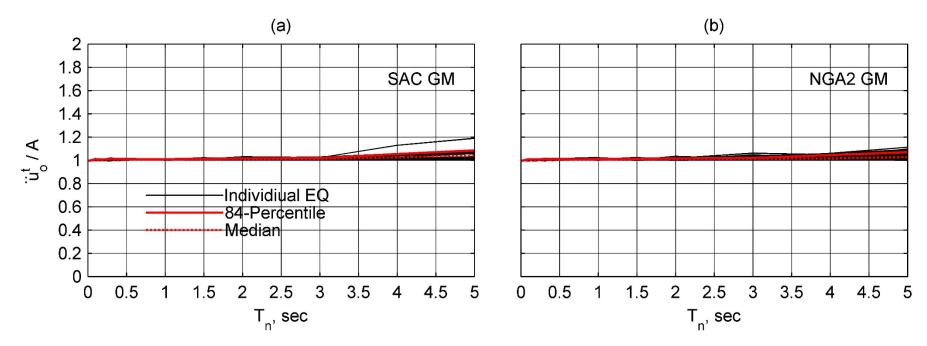


Comparison between pseudo-acceleration (or spectral acceleration) and total acceleration in SDF systems

Figure 6.12.2 from Dynamics of Structures: Theory and Applications to Earthquake Engineering, 5th Edition, Anil K. Chopra, PEARSON

Chopra Symposium October 2-3, 2017, U.C. Berkeley

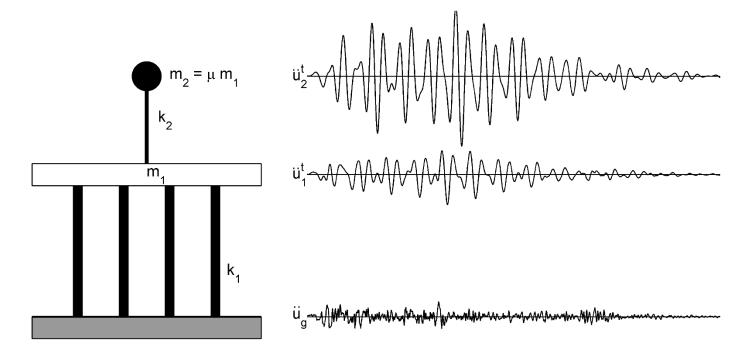
INSPIRATION FROM PROF. CHOPRA


Chopra Symposium October 2-3, 2017, U.C. Berkeley

- Total acceleration and spectral acceleration are theoretically the same for zero damping
- Total acceleration is approximately equal to spectral acceleration for low damping

Figure 6.12.2 from Dynamics of Structures: Theory and Applications to Earthquake Engineering, 5th Edition, Anil K. Chopra, PEARSON

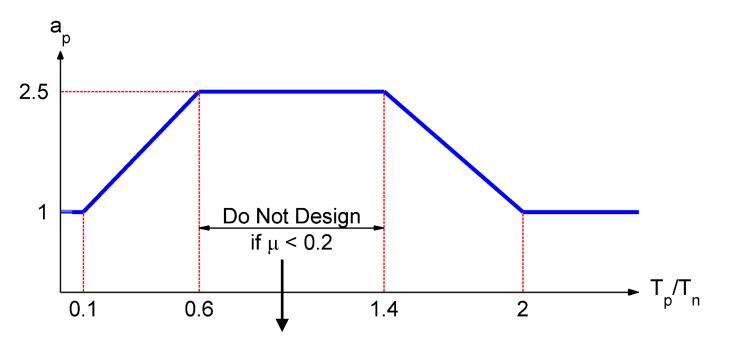
VERIFICATION


Suite of 20 SAC Ground Motions 5% Damping

Suite of 80 NGA 2 West Ground Motions 5% Damping

Chopra Symposium October 2-3, 2017, U.C. Berkeley

AMPLIFICATION FACTOR a_p



A Simple 2 DOF Model to Study Amplification of Acceleration within Component

Chopra Symposium October 2-3, 2017, U.C. Berkeley

RECOMMENDATION FOR AMPLIFICATION FACTOR a_D

Not permitted because ancillary component will act like tuned-mass damper and will experience excessive motions

Chopra Symposium October 2-3, 2017, U.C. Berkeley

PROPOSED PROCEDURE FOR PIERS AND WHARVES

ja_p A

Revised amplification factor

Spectral acceleration at fundamental period of the pier/wharf in direction under consideration

$$0.3S_{DS}I_{\rho}W_{\rho} < F_{\rho} < 1.6S_{DS}I_{\rho}W_{\rho}$$

Chopra Symposium October 2-3, 2017, U.C. Berkeley

VERIFICATION **Excellent Estimate Excellent Estimate** 10 10 $T_{\rm p} T_{\rm n} = 0.1$ mu = 0.01 mu = 0.01 mu = 0.1 nu = 0.1 0. ^{o6}0/^{o2}0 ⁰⁶0/⁰⁷0 4 10 10 mu = 0.15 mu = 0.2 mu = 0.25 mu = 0.15 mu = 0.2 mu = 0.25 8 8 Recommendation Recommendation 0⁶ 0³⁰ 4 0⁶ 0³⁰ 4 ASCE7-10 Commentary ASCE7-10 Commentar ASCE7-10 Flexible ASCE7-10 Flexible € 84-Percentile € 84-Percentile 0.5 1.5 0.5 1.5 0.5 0.5 0.5 1.5 2 0 2 0 1.5 2 0.5 2 0 1.5 2 0 1 1 0 1 1 T_ Τ. Т Τ_ Т Т p/T_n = 1 mu = 0.01 mu = 0.1 mu**Q** 0.05 Better than ASCE 7-0⁶ 0,0² 0 10 but not very good estimate for light 10 mu = 0.15 mu = 0.2 mu = 0.25 secondary systems Recommendation 05 0 05 0 00 0 4 ASCE7-10 Commentary with period close to ASCE7-10 Flexible 384-Percentile primary system 0

Chopra Symposium October 2-3, 2017, U.C. Berkeley

í٥

0.5

Т

1.5

2 0

0.5

1.5

2 0

SAN LUIS OBISPO

0.5

1

1.5

2

11/8/2017 Goel - 17

 $r_{p}/T_{n} = 2$

1.5

2

SUMMARY

- Inspired by work by Prof. Chopra, a simple procedure has been developed to moreaccurately estimate forces in ancillary components supported on piers and wharves
 - Total acceleration approximated by spectral acceleration
 - Utilizes simplicity of piers and wharves as SDF systems

Chopra Symposium October 2-3, 2017, U.C. Berkeley

