

Residual capacity of earthquakedamaged concrete buildings

Kenneth J. Elwood University of Auckland, New Zealand **QuakeCoRE Director**

2-3 Oct 2017 Anil K Chopra Symposium

Prof Anil Chopra

- making challenging topics seem easy

2010-11 Christchurch NZ: Losses \$40B NZD = 20% GDP > 60% of Multi-story Reinforced Concrete Buildings Demolished

Christchurch Damage Statistics

OuakeCo

→ Significant number of RC buildings with relatively low damage were demolished.

Impact of Uncertainty in Post-EQ Assessments

14 Nov 2016 M7.8 Kaikoura Earthquake

Test design – Specimen selection

Test design – baseline tests

Test design – Loading protocol

Test design – Loading protocol

Static cyclic loading protocol

Test design – Loading protocol

Pulse

Long Duration

Effect of loading characteristics Post-EQ backbone curves

OuakeCoRE

NZ Centre for Earthquake

What do crack widths mean?

OuakeCoRF

Extent of damage – better measure?

OuakeCoRE

Epoxy repair – effectiveness?

DuakeCoRF

Damaged/Repaired building period?

Damaged buildings?

Figure 3. Results of regression analysis for R/C MRF buildings

Chopra and Goel, 2000

- Resilience and recovery requires an understanding of residual capacity.
- Consider a "rapairability limit state" in design of new buildings?

Thank you!

A case for a Repairability limit state?

Beam elongation

Beam elongation - 14 Nov Kaikoura Earthquake

(b) Slab reinforcement close to column may resist tension or compression

DuakeCoRE

Collapsed precast floor units

Demolition Decision Framework

- Marquis et al. 2015

Concerns post-Christchurch

- Reduced strain capacity of reinforcing bar 1.
 - Low-cycle fatigue
 - Strain ageing •
- al Capacity 2. Poorly distributed cracking
 - Importance of dynamic loading rates?
- Reparability 3.
 - How to quantify?

When is residual capacity important?

In post-earthquake situations, RC buildings can be broadly categorized into three categories:

 Minimal damage: no further action required

 Heavy damage: demolition is necessary

3. Moderate damage: residual capacity? Flexural damage (plastic hinging)

Component residual capacity

Residual stiffness

Residual strength

Residual energy dissipation

Residual deformation capacity

Residual fatigue life

QuakeCo

١RF