Nanotechnology for cementbased materials

Paulo J.M. Monteiro Department of Civil and Environmental Engineering

Collaborators

Prof. Rudy Wenk U.C. Berkeley ٠ **Prof. David Attwood U.C. Berkeley and ALS** • **Prof. Claudia Ostertag U.C. Berkeley** • **Ecole Polytechnique/CNRS Prof. Pierre Levitz Beamline scientist at ALS (9.3.2)** Dr. Zhi Liu • **ALS Fellow** Dr. Michael Grass • **Dr. Juyoung Ha Postdoc at U.C. Berkeley** • **Postdoc at U.C. Berkeley Dr. Mauricio Mancio** • **Postdoc at U.C. Berkeley** Dr. Jae Oh • Dr. Anne E Sakdinawat **Postdoc at CXRO** • **Rosie Chae PhD student** • **Seyoon Yoon PhD student** • **Cagla Meral PhD student Pierre Itty PhD student** • Ju-hyuk Moon **PhD student** • Kamel Celik **PhD student** ۲

•16 billion ton of concrete •1.5 billion ton of water •12.4 billion ton of aggregate •2.1 billion ton of cement

Production of portland cement

Environmental Impact: 1 ton of cement generates 0.8 ton of CO₂

Consequence: The production of cement \rightarrow 5-8% of CO₂ generation in the world

Business as usual is not an option!

Projected CO2 emissions from the global cement industry through 2050 (assuming no change in current practices)

Fundamental Question:

Exciting opportunities with disruptive impact have been identified. Why somebody has not taken advantage of them? **BECAUSE IT IS REALLY HARD: 120 years of development for** portland cement. It requires science, technology, and resources.

16 billion ton of concrete

12.4 billion ton of aggregate
2.1 billion ton of cement

Thinking really big...

Moss Landing, Ca

Products:

Amorphous Calcium Carbonates Vaterite

Aragonite Calcite

Geopolymers (no cement!)

. 5 um

10 M NaOH solution

Conservative Industry

Corrosion (from MATCO's)

March 17, 2008, I-95 in Philadelphia

Multi-scale approach

Nano Nano Nicro Interfaces Reduction of pores micromechanics Mix Design Geopolymers Durability

Macro

X-ray microscope Neutron diffraction High pressure

Integrated research

Advanced Light Source

Soft x-rays microscopy, Small Angle Scattering, High-Pressure, Microdiffraction, Microtomography, Ambient XPS.

Advanced Photon Source

Total scattering methods (pdf), Nanotomography, Small Angle Scattering.

BESSY

Nanotomography

... more at Los Alamos

Nanotechnology

The <u>purposeful</u> engineering of matter at scales of <u>less than 100 nanometers</u> <u>to achieve size-dependent properties</u> <u>and functions.</u> *Matthew Nordan, 2005*

We need the ability to measure the properties at this scale

Advanced Light Source

the world's first third-generation synchrotron light source in its energy range

Location

Location, location, location Our office ALS

Imaging the chemical reactions with soft x-ray microscopy

Resolution: 15 nm Magnification: 1600 to 2400 times

The Nanowriter: High Resolution Electron Beam Writing With High Placement Accuracy

Courtesy of E. Anderson (LBNL)

CCCCC

BERKELEY

Zone Plates for Soft X-Ray Image Formation

Zone Plate Lens

Soft X-Ray Microscope

Zone Plate Formulae

$r_n^2 = n\lambda f + \frac{n^2\lambda^2}{4}$	(9.9)	$\lambda = 2.5 \text{ nm},$ $\Delta r = 25 \text{ nm}$ N = 618
$D = 4N\Delta r$	(9.13)	63 µm
$f = \frac{4N(\Delta r)^2}{\lambda}$	(9.14)	0.63 mm
$NA = \frac{\lambda}{2\Delta r}$	(9.15)	0.05
Res. = $k_1 \frac{\lambda}{\mathrm{NA}} = 2k_1 \Delta r$	$\int k_1 = 0.61$ ($\sigma = 0$)	$1.22\Delta r = 30 \text{ nm}$
	$\begin{cases} k_1 = 0.4\\ (\sigma = 0.45) \end{cases}$	$0.8\Delta r = 19 \text{ nm}$
$DOF = \pm \frac{1}{2} \frac{\lambda}{(NA)^2}$	(9.50)	1 µm
$\frac{\Delta\lambda}{\lambda} \leq \frac{1}{N}$	(9.52)	1/700

Cement Hydration

Experimental challenges:

- -Samples must be studied wet
- -Able to observe and record reactions in *real time*
- Identify areas of elemental concentrations
- -High resolution
- -No artifacts from drying or pressure change
- -Characterization of internal structure

Sample Preparation and Positioning

<u>Restriction</u>: sample thickness (less than $10 \mu m$)

Silicon nitride windows

Highly diluted samples (water/ cement is 5 before centrifugation)

Imaging as soon as 6 minutes after mixing

Early hydrates forming during the pre-induction period

In-situ Massive precipitation

8h 30min.

M.C.G. Juenger, P.J.M. Monteiro, E.M. Gartner, G.P. Denbeaux, Cement and Concrete Research 25 (2005) 19-25.

The effectiveness of CaCl₂ may be connected to the ability of Ca²⁺ and Cl⁻ ions to flocculate hydrophilic colloids, leading to a permeable C-S-H shell and favoring Ca²⁺ leaching from inside the boundaries of the original grain.

Two Limitations:

- No chemical information
- Two-dimensional images

Characterizing the chemical speciation at the nanolevel with x-ray spectromicroscopy (STXM)

New Microscope Design

Fly ash characterization - STXM

Fly ash: important binder for geopolymers

Not much is known

Identify different • Al K-edge phases • Si K-edge * Probe spatial correlation

fly ash F

Fe L-edge

Al K-edge

red – red curve 1566.38 eV green – blue curve 1567.9 eV blue – sample green curve from other stack

different Si spectra

Red – Si Green – Fe Blue – Al

Red – Si Green – Fe Blue – Al

Two Limitations:

- No chemical information
- Two-dimensional images

Use of X-rays for imaging

Wilhelm Conrad Roentgen first Nobel prize in physics (1901)

Compressing 3-d information into a 2-d image

Development of tomography

Sir Godfrey N. Hounsfield

Allan M. Cormack

Nobel Prize in Physiology or Medicine 1979

Backprojection of Filtered Projections

$$f(x, y) = \int_{0}^{2\pi \infty} \int_{0}^{\infty} e^{i2\pi(\omega_x x + \omega_y y))} F(\omega_x, \omega_y) d\omega_x d\omega_y$$
 Inverse
Fourier Transf.

First we do cartesian-to-polar coordinate transform:

$$\omega_x = \omega_s \cos\theta, \omega_y = \omega_s \sin\theta \qquad d\omega_x d\omega_y = \omega_s d\omega_s d\theta$$

and we get:

$$f(x,y) = \int_{0}^{2\pi\infty} \int_{0}^{\infty} e^{i2\pi\omega_{s}(x\cos\theta + y\sin\theta)} F(\omega_{s}\cos\theta, \omega_{s}\sin\theta) \omega_{s}d\omega_{s}d\theta$$
$$= \int_{0}^{\pi\infty} \int_{-\infty}^{\infty} e^{i2\pi\omega_{s}(x\cos\theta + y\sin\theta)} P(\omega_{s}, \theta) |\omega_{s}| d\omega_{s}d\theta$$

Synchrotron XCMT

xy plane tomogram

yz plane

- •Smaller sample size used (20 mm x 20 mm)
- •Scanned volume (approximately 20mm x 20mm x 25 mm)
- •White light absorption mode with filtered x-rays (E>30keV) using metal filters
- •11.55 x 2 = 23 μ m/pixel resolution

Image courtesy of S. Brisard

Fiber isolation

Image courtesy of S. Brisard

Nanotomography

- Life gets more challenging and exciting
- Goals: Obtain 3-d images with resolution of resolution of 20 nm or better

Major centers of excellence

- BESSY (soft x-rays)
- APS (hard x-rays)
- Stanford (hard x-rays)
- Berkeley (soft x-rays, under development with the KAUST project)

Challenges

- Alignment of the images
- Stability of the system
- Limited angle tomography when using flat sample holders

Why nanotomography?

Work at Bessy

 This transmission image seems to show that the "sheet of wheat" (or "stars") have a core which acts as a nucleation point (see arrows)

Wrong assumption!

Work with Brisard, Levitz and Chae

Comparisons

Work with Brisard, Levitz and Chae

How can we measure the mechanical properties of very small crystals?

High Pressure X-ray Diffraction

- Able to apply high pressure
- High pressure generating device:
 - Diamond Anvil Cell (Ko=~440GPa)
 - Theoretically, possible over 500GPa, but usually ~50GPa
 - Extremely small sample size
- Hydrostatic pressure Medium
 - 4:1 Methanol/Ethanol solution
 - Up to ~20GPa, nearly hydrostatic pressure
- Measurement of pressure inside of anvil cell: Ruby fluorescence technique

Schematic of Diamond Anvil Cell

Experimental Procedures of XRD

- As the pressure increases, t he unit cell shrinks.
- Unit cell dimensions (a, b, c , α , β , γ) at a certain pressure can be calculated from X-ra y diffraction pattern
- $\mathbf{P}(V/V_0)$ can be obtained

Bulk modulus = $K_T = -V \frac{dP}{dV}$

Figure. X-ray diffraction Pattern i n beamline 12.2.2 (tobermorite)

At high pressure

Ruby Fluorescence Technique

700

705

Wavelength (nm)

710

715

720

0 **⊨** 695

- Pressure Measurement
- ~5-10µm ruby chips in sam ple chamber
- R₁ and R₂ peaks in spectru
 m → shift with increasing p ressure
 - □ Linear up to 30GPa
 - Available up to 200GPa

Birch Murnaghan Equation of State

- Equation of State (EOS): V = f(P,T)
- EOS of condensed material
 - Volume vs. Hydrostatic Pressure
 - Isothermal Equation

Simple Definition of BUL
K MODULUS

$$K = -V \frac{dP}{dV}$$

3rd order Birch Murnaghan EOS

$$P = \frac{3}{2}K_o \left[\left(V/V_o \right)^{-\frac{7}{3}} - \left(V/V_o \right)^{-\frac{5}{3}} \right] \left[1 + \frac{3}{4}(K'_o - 4)\left(\left(V/V_o \right)^{-\frac{2}{3}} - 1 \right) \right]$$

where,

1. Ko=bulk modulus at zero pressure

2. Ko'=the derivative of bulk modulus at zero pressure

Nanoquestion:

Does the Al substituti on change the mech anical behavior of C SH?

Alkali-activated Slag C-S-H (I) vs. synthetic C-S-H (I)

What's the structural difference betw een them?

Al substitution:

- The synthetic C-S-H (I) does not contain AI in its structure
- The alkali-activated slag C-S-H (I) contains AI in i ts structure

Result

There is no difference in bulk modulus

Results

There is no difference in bulk modulus due to the Al substitution.

Class	Phase	bulk modulus <i>K_o</i> (GPa)	pressure derivative <i>K'_o</i>	R-squared value (R ²) of EOS to the data
C-S-H⊅	SYN C-S-H (I)	34.73 ± 4.98	4.00 (assumed)	0.9722
	AAS C-S-H (I)	34.70 ± 1.48	4.00 (assumed)	0.9920

Summary

Exciting developments in x-ray microscopy are permitting to image highly complex chemical reactions. This can lead the way to development of sustainable construction materials.